## 1 TITLE: Telerehabilitation services have declined post-COVID-19

- 2 **Authors:** Anthony K May PhD<sup>1</sup>, Anne E Holland PhD<sup>1,2,3</sup>, Jennifer A Alison PhD<sup>4</sup>, Kelcie
- 3 Herrmann<sup>5</sup>, Narelle S Cox PhD<sup>1,2</sup>\*

### 4 Affiliations:

- 5 1, Respiratory Research@Alfred, Monash University, VIC, Australia; 2, Institute for Breathing
- and Sleep, VIC, Australia; 3, Department of Physiotherapy, Alfred Health, VIC, Australia; 4,
- 7 Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney,
- 8 NSW, Australia; 5, Lung Foundation Australia, QLD, Australia

## 9 **\*Correspondence:**

- 10 Dr Narelle S Cox. Email: <u>Narelle.Cox@monash.edu</u>
- 11 Address: Respiratory Research@Alfred, Monash University, Level 6, The Alfred Centre, 99
- 12 Commercial Rd, Melbourne, Victoria, 3004, Australia
- 13 **Notation of prior abstract publication/presentation:** Abstract/poster presentation:
- 14 TSANZSRS 2024 annual scientific meeting
- 15 Funding information: No funding was received for this research. NSC and AEH receive
- 16 research fellowship support from the National Health and Medical Research Council
- 17 (NHMRC) (GNT2016286 and GNT1197007, respectively).
- 18 **Conflict of interest statement:** The authors declare no conflicts of interest.
- 19 Acknowledgements: We would like to extend our thanks Emma Halloran for her input
- 20 during survey development.

### 2

#### 22 Abstract

- 23 **Objective:** To characterize Pulmonary rehabilitation (PR) service delivery, investigate the
- 24 impact of the pandemic on PR services, and describe centre-based PR (CBPR) and
- 25 telerehabilitation with reference to PR essential components.
- 26 **Design:** Online national cross-sectional survey.
- 27 Setting: Australian PR services.
- 28 Participants: Representatives of PR programs listed within the Lung Foundation Australia
- 29 national database (n=295).
- 30 Interventions: Not applicable.
- 31 **Main Outcome Measure(s):** Availability of PR in CBPR and telerehabilitation settings.
- 32 **Results:** 97% of Australian PR services (n=114/117) delivered CBPR, similarly to pre-COVID-
- 33 19 pandemic availability (96%). 43% (n=50/116) of services delivered telerehabilitation,
- which was significantly less than availability during COVID-19 restrictions (74%; p<0.001).
- 35 CBPR was primarily delivered in a group setting (99%; median (IQR) 7 (6-8)
- 36 participants/group), and telerehabilitation primarily via individual telephone calls (94%).
- 37 39% of respondents report CBPR group size has reduced. PR essential components of initial
- 38 centre-based assessments and individually prescribed/progressed endurance and resistance
- 39 training were achieved by most CBPR and telerehabilitation programs. Staff training in
- 40 delivery of telerehabilitation models was undertaken in 33% of services.
- 41 **Conclusions:** PR essential components are generally met in current Australian programs.
- 42 However, telerehabilitation services and CBPR program capacity have declined indicating

- 43 reduced program capacity. Sustainability of effective PR programs is required to support
- 44 access for people with chronic respiratory diseases.

45

- 46 **Keywords:** Telerehabilitation, pulmonary rehabilitation, chronic respiratory disease, service
- 47 delivery, telehealth

- 49 Abbreviations list:
- 50 CBPR = Centre-based pulmonary rehabilitation
- 51 IQR = Interquartile range
- 52 PR = Pulmonary rehabilitation

4

## 53 Introduction

| 54 | Pulmonary rehabilitation (PR) is a highly effective, yet widely underused treatment for         |
|----|-------------------------------------------------------------------------------------------------|
| 55 | people with chronic respiratory disease [1, 2]. Typically, PR is an 8-12 week program           |
| 56 | delivered within a hospital or healthcare centre [2]. Limited program availability and patient- |
| 57 | related barriers to centre-based PR (CBPR) attendance have increased interest in alternative    |
| 58 | PR models utilising telerehabilitation to improve program access [2, 3, 4]. Telerehabilitation  |
| 59 | use expanded during the COVID-19 pandemic. However, post-pandemic it is unclear how             |
| 60 | many services continue to deliver CBPR and telere habilitation.                                 |
| 61 | Telerehabilitation programs may use synchronous (e.g. telephone calls, video-conferencing)      |
| 62 | or asynchronous communication (e.g. email) [3], and can be available across a variety of        |
| 63 | platforms. A recent Cochrane review has demonstrated that telerehabilitation achieves           |
| 64 | similar clinical outcomes to CBPR with greater program completion rates [4]. For                |
| 65 | telerehabilitation to be a clinically acceptable alternative to CBPR, models should meet        |
| 66 | similar standards to CBPR in delivering essential components of effective PR [5]. Defined PR    |
| 67 | essential components include initial centre-based assessment, individually                      |
| 68 | prescribed/progressed endurance and resistance training, and delivery by healthcare             |
| 69 | professionals trained in the specific telerehabilitation model [1]. The extent to which         |
| 70 | telerehabilitation models deliver essential components of PR in clinical practice is not clear. |
| 71 | This study aimed to characterise PR service delivery, investigate the impact of the pandemic    |
| 72 | on PR services, and describe CBPR and telerehabilitation with reference to PR essential         |
| 73 | components.                                                                                     |

5

## 75 Methods

| 76 | An online, cross-sectional survey was undertaken between July 19 and August 28, 2023             |
|----|--------------------------------------------------------------------------------------------------|
| 77 | (Qualtrics, Provo, UT, USA), with pilot testing prior to launch. Email invitations for voluntary |
| 78 | anonymous survey completion were sent to all PR programs within the Lung Foundation              |
| 79 | Australia national database, the most comprehensive record of programs available. Ethics         |
| 80 | approval was granted prospectively (Monash University (ID 39264)).                               |
| 81 | The survey comprised twenty-seven questions (plus sub-questions as required) that                |
| 82 | explored the study aims. Demographic information relating to respondent role and PR              |
| 83 | service setting were collected.                                                                  |
| 84 | All responses received, including from incomplete surveys, were included in data analysis        |
| 85 | (IBM SPSS Statistics V28.0 (IBM Corp., NY, USA)). Descriptive statistics were reported           |
| 86 | (number (%) or median (interquartile range (IQR))). Open responses were coded                    |
| 87 | thematically. Service availability at the time of survey completion was compared with            |
| 88 | availability pre-COVID-19 pandemic for CBPR, and during the pandemic (2020-22) for               |
| 89 | telerehabilitation (McNemar's test; significance p<0.05).                                        |
| 90 |                                                                                                  |

- 91 Results
- 92 Survey invitations were sent to 295 PR programs with 117 responses received (40% response
- rate; n=9 (8%) incomplete). 92% of respondents were the service PR coordinator. For PR

94 service availability and respondent demographics see Figure 1.

95 97% of respondents (n=114/117) reported delivery of CBPR at survey completion (Figure 1),

similar to pre-pandemic CBPR availability (96%). CBPR was primarily delivered in a group

6

| 97  | setting (n=109/110, 99%), to median (IQR) 7 (6-8) participants/group, which 39% of             |
|-----|------------------------------------------------------------------------------------------------|
| 98  | respondents (n=42/109) reported to be smaller than pre-pandemic group size. The most           |
| 99  | common CBPR training modalities were walking (90%), free/machine weights (78%),                |
| 100 | stationery cycling (68%) and resistance bands (53%).                                           |
| 101 | During the pandemic, 74% of respondents (n=85/114) delivered telerehabilitation, which         |
| 102 | had declined significantly at the time of survey completion (43%, n=50/116; p<0.001) (Figure   |
| 103 | 1). The most cited reasons for telerehabilitation cessation were staffing limitations, patient |
| 104 | preference for CBPR, and staff perception for greater ease/benefits of CBPR. All services      |
| 105 | except one delivered telerehabilitation in addition to CBPR. Multiple telerehabilitation       |
| 106 | models were used, including telephone (94%), video-interaction (60%) and email (34%). Of       |
| 107 | synchronous (video) telerehabilitation programs (n=28), group video-conferencing (n=11/28,     |
| 108 | 39%; median (IQR) 3 (2-4) participants/session) was less commonly delivered than 1:1 video-    |
| 109 | calls (n=26/28, 93%). The most common telerehabilitation training modalities were walking      |
| 110 | (89%), free/machine weights (63%), bodyweight resistance exercises (58%) and resistance        |
| 111 | bands (50%).                                                                                   |
| 112 | The essential component of initial centre-based assessment was performed in 100% of CBPR       |
| 113 | and 89% of telerehabilitation programs (Figure 1), while individually prescribed/progressed    |
| 114 | endurance and resistance training was delivered by most CBPR (91%) but fewer                   |

- telerehabilitation programs (78%). Staff training in the delivery of specific telerehabilitation
- 116 models was undertaken in 33% of services (n=15/45).
- 117

## 118 Discussion

medRxiv preprint doi: https://doi.org/10.1101/2024.07.22.24310787; this version posted July 24, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

| 119 | This study characterises availability and delivery of PR in Australia. CBPR program availability |
|-----|--------------------------------------------------------------------------------------------------|
| 120 | is largely consistent with pre-pandemic levels, but with reduced group size. Meanwhile,          |
| 121 | telerehabilitation availability has declined compared with during COVID-19 restrictions,         |
| 122 | although remains higher than pre-pandemic [6, 7]. The majority of telerehabilitation             |
| 123 | programs complied with PR essential components.                                                  |
| 124 | The decline in telerehabilitation availability post-COVID reflects a trend across telemedicine   |
| 125 | more broadly. Increasing patient preference for in-person consultation, waning concerns          |
| 126 | about COVID-19 infection and variable administrative and regulatory support for hybrid care      |
| 127 | delivery models (i.e. face-to-face and telehealth) have all been posed as contributors to        |
| 128 | reduced telehealth availability [8]. Given that telerehabilitation is a recommended              |
| 129 | alternative to CBPR in international guidelines [2], and clinical services demonstrated ability  |
| 130 | to deliver telerehabilitation under COVID conditions, understanding the factors that             |
| 131 | underpin reduced telerehabilitation provision currently is important if models are to be         |
| 132 | sustainable.                                                                                     |
| 133 | While most telerehabilitation programs complied with essential components of centre-             |
| 134 | based assessment and exercise training prescription/progression, relatively few provided         |
| 135 | telerehabilitation model-specific training. Experience and competency with technology are        |
| 136 | known factors in the successful delivery of remote healthcare [9]. Whether enhanced              |
| 137 | telerehabilitation model-specific training would improve clinician confidence and acceptance     |
| 138 | of telerehabilitation, leading to greater service availability, remains to be determined.        |
| 139 | Potential to improve PR service access is a proposed benefit of telerehabilitation models [1,    |
| 140 | 2]. This study highlighted reduced CBPR group size post-pandemic, along with few                 |
| 141 | telerehabilitation models being delivered in a group format. This creates the very real          |

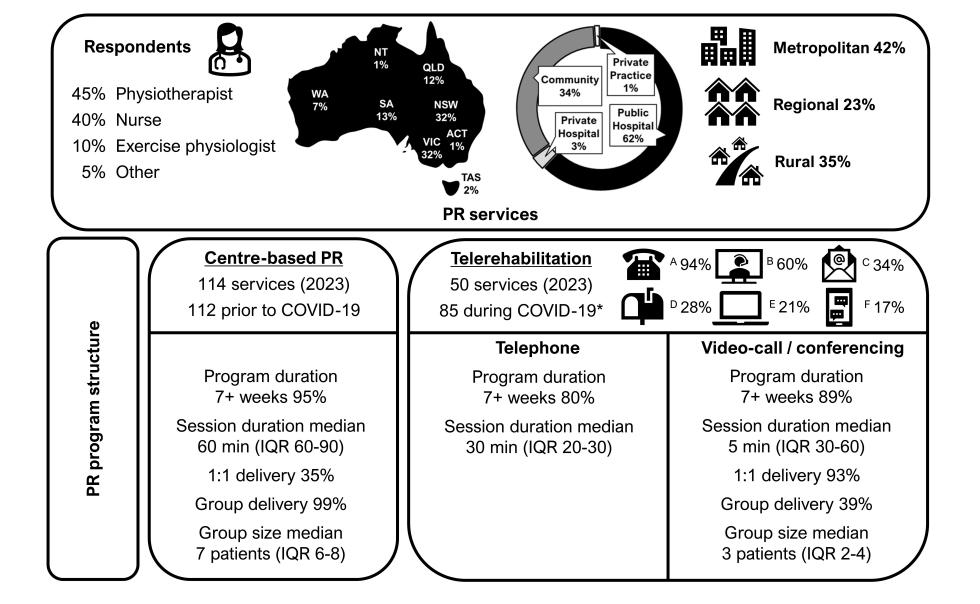
medRxiv preprint doi: https://doi.org/10.1101/2024.07.22.24310787; this version posted July 24, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

| 142 | possibility that overall PR program capacity has actually reduced post-pandemic, further         |
|-----|--------------------------------------------------------------------------------------------------|
| 143 | impeding program access for patients. Whether changes in program funding, or other               |
| 144 | contributors such as referral practices, have contributed to reduced service capacity requires   |
| 145 | exploration. In Australia, healthcare is largely funded under a universal scheme for             |
| 146 | subsidisation and reimbursement, however in regions where PR reimbursement is complex,           |
| 147 | such as the US, fluctuating service availability based on financial drivers may have profound    |
| 148 | effects on access to PR for patients [5].                                                        |
| 149 | The cross-sectional nature of this work relied upon participant recollection of service          |
| 150 | delivery over the previous 4-year period. This need for recall, coupled with potential for staff |
| 151 | changes during the intervening period, may have impacted historical program knowledge            |
| 152 | held by the respondent. The response rate for this study was 40%. This may be attributed to      |
| 153 | the online method of survey delivery without incentive [10]. However, given that all             |
| 154 | Australian states and territories are represented, including rural, regional and metropolitan    |
| 155 | services, we believe the data to be largely reflective of the current state of Australian PR.    |
| 156 |                                                                                                  |
| 157 | Conclusions                                                                                      |
| 158 | Most Australian telerehabilitation programs currently meet PR essential components,              |

- supporting the ability of such models to deliver effective PR programs. However,
- 160 telerehabilitation services and CBPR program capacity have both declined post-COVID
- 161 highlighting the importance of ensuring sustainability of effective PR programs, irrespective
- 162 of model of delivery, to support widespread access to this recommended treatment.

#### 163 **References**

- 164 1. Holland AE, Cox NS, Houchen-Wolloff L, et al. Defining modern pulmonary
- rehabilitation. An official American Thoracic Society Workshop Report. Ann Am Thorac Soc.
- 166 2021;18(5):e12-e29.
- 167 2. Rochester CL, Alison JA, Carlin B, et al. Pulmonary rehabilitation for adults with


168 chronic respiratory disease: An official American Thoracic Society Clinical Practice Guideline.

169 Am J Respir Crit Care Med. 2023;208(4):e7-e26.

- 170 3. Bhatt SP, Rochester CL. Expanding implementation of tele-pulmonary rehabilitation:
- 171 The new frontier. Ann Am Thorac Soc. 2022;19(1):3-5.
- 4. Cox NS, Dal Corso S, Hansen H, et al. Telerehabilitation for chronic respiratory
- disease. Cochrane Database Syst Rev. 2021;1:CD013040(1).
- Bhatt SP, Casaburi R, Mosher CL, et al. Telehealth pulmonary rehabilitation: A call for
  minimum standards. Am J Respir Crit Care Med.210(2):156-46.
- Spruit MA, Pitta F, Garvey C, et al. Differences in content and organisational aspects
   of pulmonary rehabilitation programmes. Eur Respir J. 2014;43(5):1326-37.
- Johnston CL, Maxwell LJ, Alison JA. Pulmonary rehabilitation in Australia: A national
  survey. Physiotherapy. 2011;97(4):284-90.
- 180 8. Huang J, Yeung AM, Eiland LA, et al. Telehealth Fatigue: Is It Real? What Should Be
  181 Done? J Diabetes Sci Technol. 2024;18(1):196-200.
- 182 9. Inskip JA, Lauscher HN, Li LC, et al. Patient and health care professional perspectives
- on using telehealth to deliver pulmonary rehabilitation. Chron Respir Dis. 2018;15(1):71-80.
- 184 10. Shih T, Fan X. Comparing response rates in e-mail and paper surveys: A meta-analysis.
  185 Educ Res Rev. 2009;4(1):26-40.

#### 187 Figure legend

- 188 Figure 1: Summary of Australian pulmonary rehabilitation (PR) services and programs.
- 189 \* p<0.001 vs. 2023 (McNemar test).
- 190 A Telephone; B Video-call/conference; C Email; D Postal service; E Desktop or mobile
- 191 application; F Text message.
- 192 ACT Australian Capital Territory; NSW New South Wales; NT Northern Territory; QLD
- 193 Queensland; SA South Australia; TAS Tasmania; VIC Victoria; WA Western Australia.

