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Abstract 13 

Neurodegenerative diseases pose increasing challenges to global aging populations. 14 

Cognitive decline in older adults is an initial indicator of neurodegenerative diseases, yet 15 

comprehensive research on environmental chemical exposures related to cognitive decline is 16 

limited. This study uses Environment-Wide Association Study (EWAS) framework to investigate 17 

associations of environmental chemicals with cognitive function in individuals aged ≥60 years. 18 

We used the Digit Symbol Substitution Test (DSST) scores (lower scores indicate cognitive 19 

decline) and chemical biomarker data of the U.S. National Health and Nutrition Examination 20 

Survey (NHANES) spanning four cycles (1999-2000, 2001-2002, 2011-2012, 2013-2014). We 21 

conducted multiple survey-weighted regression to identify biomarkers associated with DSST 22 

scores, penalized logit regression to estimate odds ratio (OR) of cognitive decline with identified 23 

biomarkers, and correlation network analyses to examine relationships among identified 24 

biomarkers and cognitive decline. After correction for multiple comparisons, 27 out of 173 25 

biomarkers having a ≥10% detection rate were associated with DSST scores (q-value <0.05). 26 

Among them, increased odds of cognitive decline were associated with elevated levels of blood 27 

lead (Pb) (OR = 1.12, 95% CI: 1.01,1.42), blood 1,4-dichlorobenzene (1,4-DCB) (OR = 1.34, 95% 28 

CI: 1.17, 1.54), and urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) (OR = 1.34, 29 

95% CI: 1.10, 1.62). Correlation network showed biomarkers that potentially impact cognitive 30 

decline upon related health conditions, such as stroke. In conclusion, leveraging the EWAS 31 

framework enables us to identify chemical biomarkers that were not previously discovered from 32 

traditional approaches of examining a small number of chemicals at a time. While our findings 33 

provide foundation for further research, longitudinal studies are warranted to elucidate causal 34 

relationships.  35 
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Introduction 40 

 Increasing incidence of neurodegenerative diseases poses a prominent challenge in 41 

societies experiencing global population aging.1 In the United States (U.S.) alone, more than 6.2 42 

million people were affected by neurodegenerative diseases in 2022, including Alzheimer’s 43 

disease.2 These diseases accounted for approximately 300,000 deaths and 3 million disability-44 

adjusted life years (DALYs) during 1990-2016.3-5 The prevalence of clinical Alzheimer’s disease 45 

among adults aged 65 years and older is projected to increase from 7.2 million in 2025 to 13.9 46 

million in 2060.6 In 2021, the U.S. incurred an annual cost of over $355 billion due to 47 

Alzheimer’s disease and related dementias, and this societal burden is expected to increase due to 48 

the increased health care cost.7 Consequently, there is growing attention towards the 49 

identification of risk factors and treatment development for neurodegenerative diseases.8 50 

Neurodegenerative diseases are characterized by the progressive loss of neurons, leading 51 

to deterioration in both the structure and function of neural networks.9 This deterioration 52 

ultimately leads to impaired cognitive function.1,10 Gradual cognitive decline in old age is 53 

typically limited to subtle declines that evolve slowly over the years, attributed to normative 54 

developmental processes.11,12 Conversely, mild or precipitous declines in cognitive function can 55 

lead to pathological processes underlying Alzheimer’s disease and related dementias.11,13 Thus, 56 

early detection of changes in cognitive function, such as mild cognitive impairment, enables 57 

timely diagnosis and treatment of neurodegenerative diseases, potentially delaying disease 58 

progression.13,14  59 

The risk of cognitive decline generally increases due to a combination of genetic and 60 

non-genetic factors. Age and genetic factors, including family history and susceptibility genes 61 

such as the apolipoprotein E ε4 allele, are the most significant contributors to cognitive 62 
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decline.15,16 Other well-known non-genetic risk factors include comorbidities (hypertension, 63 

diabetes, stroke), unhealthy diet, physical inactivity, smoking, and alcohol consumption.17,18 64 

These risk factors could influence the susceptibility of individual’s cognitive function (e.g., 65 

disease onset, timing, severity) by interacting with genetic factors.16,19,20 Therefore, identifying 66 

and understanding modifiable risk factors of cognitive decline could be a proactive approach to 67 

promoting cognitive health.17,21 68 

Several studies have assessed associations between exposures to environmental 69 

chemicals and cognitive decline in specific populations. For example, exposures to metals, 70 

typically manganese (Mn),22-24 cadmium (Cd),24-27 lead (Pb),25-27 barium (Ba),24 cobalt (Co),24 71 

cesium (Cs),24 and thallium (TI)24 were reported to increase the risk of low cognitive 72 

performance. In addition, higher urinary 3-phenoxybenzoic acid concentrations in adults were 73 

associated with cognitive dysfunction28 and it was observed that butyl benzyl phthalate is a 74 

potential cognitive-disrupting compound.29 However, previous studies examined exposure to a 75 

small number of chemicals or compounds individually in association with cognitive function. In 76 

addition, they are neither systematic nor comprehensive. 77 

Environmental-Wide Association Studies (EWAS), derived from Genome-Wide 78 

Association Studies (GWAS), are a useful approach for systematically and comprehensively 79 

evaluating associations between hundreds of environmental factors and health outcomes.30 While 80 

GWAS aim to identify genetic factors associated with diseases of interest, EWAS focus on 81 

assessing environmental factors. Over the past decade, several EWAS studies have been 82 

conducted to elucidate the relationship between environmental chemical exposures and health 83 

outcomes.31 Frequently-studied health outcomes were type 2 diabetes,30,32,33 obesity,34,35 and 84 

blood pressure.36,37 Other outcomes included liver enzymes,38 mental and social well-being,39 85 
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testosterone deficiency,40 diabetic retinopathy,41 multiple sclerosis,42 peripheral arterial disease,43 86 

and cardiovascular disease.44 However, no studies have simultaneously and comprehensively 87 

examined environmental chemical exposures associated with cognitive decline in older adults. 88 

This study aims to identify environmental chemical biomarkers associated with cognitive 89 

decline in U.S. older adults by using the EWAS approach and the National Health and Nutrition 90 

Examination Survey (NHANES) data. First, to screen chemicals or their biomarkers, we 91 

examined a single association for each biomarker and identified those that were statistically 92 

significant after controlling for multiple comparisons. Second, we evaluated the effects of 93 

multiple exposures to those identified biomarkers on cognitive decline. Finally, we extracted a 94 

correlation network structure to explore potential pathways between chemical exposures and 95 

cognitive decline and further assessed the potential mediating effect of other modifiable factors. 96 

 97 

2. Methods 98 

2.1. Study population 99 

NHANES is conducted every two years in the U.S. by the Centers for Disease Control 100 

and Prevention (CDC) and the National Centers for Health Statistics (NCHS). This is a cross-101 

sectional survey designed to assess the health and nutritional status of both adults and children. 102 

To obtain a representative sample of the U.S. population, complex, multi-stage, and probability 103 

sampling techniques are used. NHANES data are publicly available (at 104 

https://www.cdc.gov/nchs/nhanes) and include individual questionnaires, physical examinations, 105 

and laboratory tests. More details on the design and methods of the NHANES data are available 106 

elsewhere.45  107 
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Our study combined data from four cross-sectional surveys conducted in 1999-2000, 108 

2000-2001, 2011-2012, and 2013-2014, each of which included assessments of cognitive 109 

function. Targeting older adults (age �60 years), our analysis consisted of 4,970 individuals after 110 

excluding those with missing cognitive function data (n = 34,774) and those with abnormal 111 

urinary creatinine levels (n = 1,191) (Figure 1). The NCHS Ethics Review Board has approved 112 

this survey (Protocol #98-12 for NHANES 1999-2002 data, Protocol #2011-17 for NHANES 113 

2011-2014 data), and all participants completed informed consent forms.  114 
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115 

Figure 1. The process of data integration, non-targeted screening, and extended analysis. Data 116 

from four cycles of the National Health and Nutrition Examination Survey (NHANES) were 117 

used in this study. Final study subjects and environmental factors included in this study were 118 

selected based on specified inclusion and exclusion criteria.  119 

 120 

2.2. Cognitive function assessment   121 

In NHANES, the Digit Symbol Substitution Test (DSST), a subscale of the Wechsler 122 

Adult Intelligence Scale, was utilized to evaluate primary cognitive processing speed, attention, 123 

and working memory.46 Its application aids in determining the presence of cognitive dysfunction 124 

across various stages, including preclinical, prodromal, and dementia phases.47,48 Administered in125 

 

n 

 in 
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a paper-and-pencil format, this cognitive test requires individuals to match symbols to 126 

corresponding numbers based on a provided key.49 The score is the total number of correct 127 

matches within 90 to 120 seconds, with lower scores indicating diminished cognitive function.49 128 

Since 1999, NHANES has administered this test in participants aged 60 years and older. This test 129 

occurs during face-to-face interviews at the Mobile Examination Center by trained interviewers. 130 

Participants have the option to select from English, Spanish, Korean, Vietnamese, or Chinese. In 131 

this study, we used DSST z-scores when screening chemical biomarkers related to cognitive 132 

function and DSST raw scores below the 25th percentile when defining as cognitive decline, as 133 

used by NCHS reports50 and other previous studies.51,52 134 

 135 

2.3. Measurement of environmental chemical biomarkers 136 

In NHANES, environmental chemical biomarker data were collected from the blood and 137 

urine samples of randomly selected participants within specific age groups in a one-third sample. 138 

Because detailed biological sample collection methods from NHANES participants vary by 139 

cycle,53-56 we used a harmonized and unified version of the NHANES chemical biomonitoring 140 

data.57 A total of 381 environmental chemical biomarkers were examined across the four cycles. 141 

These chemicals could be grouped as follows: acrylamide (n = 2), aldehydes (n = 13), aromatic 142 

amines (n = 16), dietary components (n = 6), dioxins (n = 14), furans (n = 20), metals (n = 29), 143 

per- and polyfluoroalkyl substances (PFAS) (n = 11), personal care & consumer product 144 

compounds (PCCPCs) (n = 12), pesticides (n = 55), phosphate flame retardants (PFR) (n = 9), 145 

phthalates & plasticizers (n = 14), polyaromatic hydrocarbons (PAHs) (n = 12), polychlorinated 146 

biphenyls (PCBs) (n = 70), smoking-related compounds (SRCs) (n = 15), and volatile organic 147 

compounds (VOCs) (n = 83). Detailed information, including the number of observations, 148 
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detection rate, and lower limit of detection (LLOD) value, is given in Table S1 of Supplementary 149 

Information. In NHANES, all chemical biomarker concentrations below the LLOD were 150 

replaced with the LLOD/√�. The distribution of each biomarker concentration is provided in 151 

Table S2. The NHANES website offers detailed laboratory measurement methods and quality 152 

control procedures (https://wwwn.cdc.gov/nchs/nhanes/). 153 

 154 

2.4. Covariates 155 

We selected 11 covariates which are potential confounding or risk factors for cognitive 156 

decline identified in previous studies: sex (men and women), age group (60-64, 65-69, 70-74, 75-157 

79, and �80 years), race/ethnicity (non-Hispanic white, non-Hispanic black, Mexican 158 

American/Hispanic, and others), marital status (married or living with partner, never married, 159 

divorced or separated, and widowed), education level (<high school, high school, and >high 160 

school), body mass index (<25, 25-<30, 30-<40, and �40 kg/m2),58 cotinine level as a proxy of 161 

smoking status (<3 and �3 ng/mL),59 alcohol consumption (non-drinker and drinker), health 162 

conditions (hypertension, diabetes, and stroke). Alcohol consumption and health conditions were 163 

ascertained by self-reported questionnaires (variable name in NHANES): “Had at least 12 164 

alcohol drinks/lifetime? (ALQ110)”, “Ever told you had high blood pressure? (BPQ020)”, “Ever 165 

told you have diabetes? (DIQ010)” and “Ever told you had a stroke? (MCQ160f)”. 166 

 167 

2.5. Statistical analysis 168 

Descriptive statistics of participant characteristics were summarized using mean ± 169 

standard deviation (SD), number of cases (n), and percentage (%). The differences in DSST 170 

scores among each covariate were compared using t-tests and ANOVA. A cognitive decline 171 
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group (i.e., participants with the lowest 25th percentile DSST scores) and a normal group (i.e., 172 

the rest as a reference) were compared using the chi-squared test. All analyses were performed 173 

using R version 4.3.1 (R Core Team, https://www.R-project.org/). The critical level of 174 

significance was set at α = 0.05.  175 

 176 

2.5.1. Screening environmental chemical biomarkers related to cognitive function scores 177 

 To screen hundreds of chemical biomarkers that are associated with lower DSST z-scores, 178 

we performed an EWAS non-targeted screening approach and identified biomarkers potentially 179 

affecting cognitive function. During this step, we used complete-cases data without missing 180 

values and considered chemicals with a detection rate of �10%. All concentrations were log10-181 

transformed to control a right-skewed distribution and z-standardized. We explored the 182 

association between each biomarker and DSST z-scores using multiple survey-weighted 183 

regression adjusted for all covariates. To account for the complex survey design, we calculated 184 

sample weights following the NHANES guidelines.60 P-values were corrected using the false 185 

discovery rate (FDR, q-value) (Figure 1).  186 

 187 

2.5.2. Associations between exposure to identified biomarkers and cognitive decline  188 

 After identifying chemical biomarkers associated with DSST z-scores from the first step 189 

(q-value <0.05), we divided our participants into two groups (a normal group vs. a cognitive 190 

decline group) and examined associations of chemical exposures with cognitive decline by only 191 

including the identified chemical biomarkers with a detection rate of ≥50% and variance 192 

inflation factor (VIF) <10 in the model. We employed a multivariate imputation by chained 193 

equations (MICE) technique assuming ‘missing-at-random (MAR)’ to create 10 imputed 194 
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datasets.61 To reduce imputation bias due to temporal trends in chemical biomarker, we generated 195 

imputed data separately for each of the 1999-2002 and 2011-2014 cycles and estimated the odds 196 

ratio (OR) and 95% confidence intervals (CI) of cognitive decline associated with biomarker 197 

levels using penalized logit regression with the Akaike Information Criterion (AIC) adjusted for 198 

all covariates. 199 

 200 

2.5.3. Interactive impact of chemical biomarkers and selected covariates on cognitive decline 201 

 To uncover the interactive impact of identified chemical biomarkers and the selected 202 

covariates on cognitive decline, we first combined imputed data from both the 1999-2002 and 203 

2011-2014 cycles, focusing solely on chemical biomarkers consistently measured across all 204 

cycles. Next, we utilized Gaussian Graphical Models (GGMs) with the desparsified Lasso to 205 

derive a partial correlation network structure encompassing the identified chemical biomarkers, 206 

cognitive decline, and all covariates. Significant p-values were adjusted using the Holm–207 

Bonferroni method. We selected non-chemical factors exhibiting statistically significant 208 

correlation coefficients with cognitive decline. Finally, we conducted stratified analyses on each 209 

category of the non-chemical factors to assess their potential as mediators using logistic 210 

regression adjusted for other covariates. 211 

 212 

3. Results 213 

3.1. Characteristics of study participants 214 

Overall, 4,970 participants were included in this study, with 1,305 participants classified 215 

as the cognitive decline group. Significant differences in DSST z-scores were observed across all 216 

covariates (Table 1). Men had lower DSST z-scores than women, and Mexican 217 
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Americans/Hispanics or widowed individuals had the lowest z-scores. DSST z-scores tended to 218 

decrease with increasing age or lower education levels. Smokers scored lower than non-smokers, 219 

whereas participants who consumed alcohol scored higher than those who never drank alcohol. 220 

No trend was observed with changes in BMI. 221 
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Table 1. Characteristics of the National Health and Nutrition Examination Survey (NHANES) study 222 
participants (1999-2000, 2001-2002, 2011-2012, and 2013-2014) included in this study (total = 4,970). 223 

 

Digit Symbol Substitution Test (DSST) 
scores 

Cognitive declinea 

p-valuec 
Cognitive 
normality 

(n = 3,665) 

Cognitive 
decline 

(n = 1,305) 
n (%) Mean ± SD p-valueb n (%) n (%) 

Sex   
<0.001 

  
<0.001 

  Men 2,545 (51.2) 41.6 ± 17.2 
 

1,805 (49.2) 740 (56.7) 
 

  Women 2,425 (48.8) 45.6 ± 18.7 
 

1,860 (50.8) 565 (43.3) 
 Age (years)   

<0.001 
  

<0.001 
  60-64 1,441 (29.0) 49.5 ± 18.7 

 
1,177 (32.1) 264 (20.2) 

 
  65-69 1,070 (21.5) 45.0 ± 18.0 

 
   814 (22.2) 256 (19.6) 

 
  70-74    946 (19.0) 42.9 ± 17.1 

 
   705 (19.2) 241 (18.5) 

 
  75-79    605 (12.2) 38.9 ± 16.3 

 
   409 (11.2) 196 (15.0) 

 
  Over 80    908 (18.3) 36.2 ± 15.4 

 
   560 (15.3) 348 (26.7) 

 Body mass index (BMI, kg/m2)   
<0.001 

  
<0.001 

  Underweight or normal (BMI 
<25) 

1,293 (26.0) 43.5 ± 18.4 
 

   946 (25.8) 347 (26.6) 
 

  Overweight (25≤ BMI <30) 1,847 (37.2) 43.6 ± 17.9 
 

1,377 (37.6) 470 (36.0) 
 

  Obesity (30≤ BMI <40) 1,456 (29.3) 44.3 ± 17.9 
 

1,093 (29.8) 363 (27.8) 
 

  Severe obesity (BMI ≥40)  233 (4.7) 44.7 ± 17.4 
 

 179 (4.9) 54 (4.1) 
 

  Unknown  141 (2.8) 33.5 ± 16.1 
 

   70 (1.9) 71 (5.4) 
 

Race/ethnicity   
<0.001 

  
<0.001 

  Non-Hispanic white 2,626 (52.8) 48.5 ± 16.8 
 

2,212 (60.4) 414 (31.7) 
 

  Non-Hispanic black    986 (19.8) 37.3 ± 16.8 
 

   599 (16.3) 387 (29.7) 
 

  Mexican American/Hispanic 1,062 (21.4) 35.7 ± 17.7 
 

   609 (16.6) 453 (34.7) 
 

  Others  296 (6.0) 48.8 ± 17.8 
 

  245 (6.7) 51 (3.9) 
 Marital status   

<0.001 
  

<0.001 
  Married or living with partner 2,951 (59.4) 45.8 ± 17.9 

 
2,294 (62.6) 657 (50.3) 

 
  Never married  203 (4.1) 43.2 ± 18.7 

 
 142 (3.9) 61 (4.7) 

 
  Divorced or separated     681 (13.7) 43.1 ± 18.1 

 
   487 (13.3) 194 (14.9) 

 
  Widowed 1,026 (20.6) 38.3 ± 17.1 

 
   664 (18.1) 362 (27.7) 

 
  Unknown  109 (2.2) 37.0 ± 18.2 

 
   78 (2.1) 31 (2.4) 

 
Education level   

<0.001 
  

<0.001 
  < High school 1,607 (32.3) 30.9 ± 15.3 

 
   766 (20.9)   841 (64.4) 

 
  High school 1,173 (23.6) 44.8 ± 15.9 

 
   921 (25.1)   252 (19.3) 

 
  > High school 2,182 (43.9) 52.3 ± 15.4 

 
1,975 (53.9)   207 (15.9) 

 
  Unknown      8 (0.2) 29.4 ± 18.6 

 
     3 (0.1)     5 (0.4) 

 Cotinine level as a proxy of 
smoking status (ng/mL)   

<0.001 
  

<0.001 

  Low (<3) 3,912 (78.7) 44.5 ± 18.1 
 

2,964 (80.9)   948 (72.6) 
 

  High (≥3)    789 (15.9) 40.3 ± 17.5 
 

   526 (14.4)   263 (20.2) 
 

  Unknown  269 (5.4) 38.9 ± 17.6 
 

 175 (4.8)   94 (7.2) 
 

Alcohol consumption   
<0.001 

  
<0.001 

  Non-drinker    797 (16.0) 39.5 ± 17.7 
 

   526 (14.4)   271 (20.8) 
 

  Drinker    877 (17.6) 42.3 ± 17.8 
 

   645 (17.6)   232 (17.8) 
 

  Unknown 3,296 (66.3) 44.9 ± 18.0 
 

2,494 (68.0)   802 (61.5) 
 Health conditions 

      
  Ever told you had high blood 
pressure   

<0.001 
  

0.009 
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    No 2,129 (42.8) 45.2 ± 18.4 
 

1,637 (44.7)   492 (37.7) 
 

    Yes 2,833 (57.0) 42.3 ± 17.6 
 

2,022 (55.2)   811 (62.1) 
 

    Unknown      8 (0.2) 43.6 ± 25.2 
 

     6 (0.2)     2 (0.2) 
 

  Ever told you have diabetes 
  

<0.001 
  

<0.001 
    No 3,779 (76.0) 44.7 ± 18.3 

 
2,875 (78.4)   904 (69.3) 

 
    Yes 1,007 (20.3) 38.9 ± 17.0 

 
   654 (17.8)   353 (27.0) 

 
    Unknown  184 (3.7) 44.9 ± 15.6 

 
 136 (3.7)   48 (3.7) 

 
  Ever told you had a stroke 

  
<0.001 

  
<0.001 

    No 4,630 (93.2) 44.2 ± 18.0 
 

3,476 (94.8)  1,154 (88.4) 
 

    Yes  330 (6.6) 34.2 ± 16.4 
 

     181(4.9)     149 (11.4) 
 

    Unknown    10 (0.2) 44.6 ± 13.9 
 

     8 (0.2)         2 (0.2) 
 a Cognitive decline was defined as less than the 25th percentile of Digit Symbol Substitution Test 224 

(DSST) raw scores.  225 
b p-value was estimated using t-test or ANOVA. 226 
c p-value was estimated using the Chi-square test.227 
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3.2. Identified chemical biomarkers related to cognitive function test scores 228 

Out of 381 environmental chemical biomarkers examined across all four NHANES 229 

cycles, we only evaluated 173 biomarkers with a detection rate of �10% (Figure 1). Among the 230 

173 chemicals, 27 were associated with DSST z-scores (q-value <0.05). These included metals 231 

(n = 11), PAHs (n = 3), PCBs (n = 3), pesticides (n = 3), phthalates (n = 2), and one each of 232 

PCCPCs, phytoestrogens, VOCs, flame retardants, and SRCs (Figure 2). PAHs, PCBs, phthalates, 233 

SRCs, and VOCs each decreased DSST z-scores, whereas flame retardants, PCCPCs, and 234 

phytoestrogens increased the scores. Metals and pesticides had varying effects depending on the 235 

biomarker (Table S3). For example, per 1 standard deviation increase in log10-transformed blood 236 

lead (Pb) level, DSST z-scores decreased by 0.09. 237 
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 238 
Figure 2. Manhattan plot of environmental factors (chemical biomarkers) associated with the Digit Symbol Substitution Test (DSST) 239 

z-scores. Significant chemical biomarkers were dotted above the grey dashed line (q-value <0.05), and the arrows indicated the 240 

direction of their effects on DSST z-scores. Abbreviation: B, blood; DDT, dichlorodiphenyltrichloroethane; NNAL, 4-241 

(methylnitrosamino)-1-(3-pyridyl)-1-butanol; PCB, polychlorinated biphenyl; U, urine.242 
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3.3. Associations between exposure to identified chemicals and cognitive decline 243 

After screening chemical biomarkers that were associated with DSST z-scores, we 244 

examined associations between the identified biomarkers and cognitive decline by restricting 245 

analyses to those with a detection rate of �50% and separating the entire data to 1999-2002 and 246 

2011-2014 cycles. When using the data collected during the 1999-2002 cycle, we could evaluate 247 

only 8 out of the 27 identified biomarkers, because the other 19 biomarkers were not measured 248 

during this cycle or had detection rates below 50%. From this cycle, blood Pb increased the odds 249 

of having cognitive decline (OR = 1.12, 95% CI: 1.01, 1.42), whereas blood cadmium (Cd) 250 

decreased the odds (OR = 0.78, 95% CI: 0.64, 0.96) (Table 2). From the 2011-2014 cycle data, 251 

we evaluated 18 biomarkers after excluding those that were not measured during this cycle or 252 

highly correlated chemicals with a VIF >10. From this cycle, blood 1,4-DCB and urinary 4-253 

(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) increased the odds of having cognitive 254 

decline (OR = 1.34, 95% CI: 1.17, 1.54 and OR = 1.34, 95% CI: 1.10, 1.62, respectively). 255 
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Table 2. Associations between 27 identified environmental chemical biomarkers and cognitive 256 
decline by two combined cycles (NHANES 1999-2002 and 2011-2014) (total = 4,970). 257 

 
NHANES 1999-2002 NHANES 2011-2014 

 (n = 1,641, Casea = 693) (n = 2,043, Casea = 593) 
  OR (95% CI) OR (95% CI) 

Metals 
    In blood 

      Cadmium 0.78 (0.64, 0.96)d 0.89 (0.57, 1.39) 
    Lead 1.20 (1.01, 1.42)d 0.997 (0.23, 4.27) 
    Methylmercury b 0.83 (0.51, 1.35) 
    Total mercury b c 
  In urine       Cesium 0.74 (0.07, 7.64) 0.39 (0.02, 6.22) 
    Thallium 1.04 (0.06, 18.16) 2.08 (0.13, 33.17) 
    Cadmium b 1.34 (0.67, 2.67) 
    Dimethylarsonic acid b 1.49 (0.40, 5.51) 
    Mercury b 1.63 (0.47, 5.63) 
    Arsenobetaine b 0.79 (0.26, 2.35) 
    Total arsenic b c 
Phthalates in urine 

    Mono-ethyl phthalate 1.14 (0.25, 5.28) 1.43 (0.31, 6.53) 
  Mono-benzyl phthalate 1.87 (0.77, 4.56) 1.27 (0.36, 4.46) 
PAHs in urine     2-naphthol b 1.27 (0.06, 27.98) 
  2-fluorene b c 
  3-fluorene b 0.79 (0.23, 2.71) 
PCBs in urine     PCB 167 e b 
  PCB 177 e b 
  PCB 178 e b 
Pesticides in blood     p,p'-DDT 2.23 (0.68, 7.36) b 
  3-phenoxybenzoic acid b 0.88 (0.04, 17.86) 
  Mirex e b 
Others     Blood 1,4-Dichlorobenzene b 1.34 (1.17, 1.54)d 
  Urinary Benzophenone-3 b 0.52 (0.18, 1.52) 
  Urinary Diphenyl phosphate b 0.43 (0.02, 9.25) 
  Urinary Enterodiol 1.23 (0.31, 4.92) b 
  Urinary NNAL b 1.34 (1.10, 1.62)d 
Note: All biomarker concentrations were log10-transformed and scaled. The OR and 95% CI were 258 
estimated using the penalized logistic regression model with the Akaike information criterion adjusted for 259 
sex, age group, body mass index, race/ethnicity, marital status, education level, smoking status based on 260 
the cotinine level, alcohol consumption, and health conditions (diabetes, hypertension, and stroke). 261 

Abbreviation: CI, confidence interval; DDT, dichlorodiphenyltrichloroethane; NNAL, 4-262 
(methylnitrosamino)-1-(3-pyridyl)-1-butanol; OR, odds ratio; PAH, polycyclic aromatic hydrocarbon; 263 
PCB, polychlorinated biphenyl. 264 

a Defined as less than or equal to the 25th percentile DSST scores.  265 
b Not measured in this cycle.  266 
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c Excluded due to multi-collinearity. 267 
d p-value <0.05. 268 
e Detection rate <50%. 269 

 270 

3.4. Interactive impact of chemical exposures and health conditions on cognitive decline 271 

Based on the partial correlation network structure newly created in the current study, 272 

cognitive decline was directly associated with non-chemical factors, including smoking, obesity, 273 

alcohol consumption, and health conditions (stroke, diabetes, and hypertension) (Figure 3). 274 

Environmental chemical exposures seemed to have indirect relationships with cognitive decline, 275 

with health conditions serving as potential mediators. For instance, blood Cd was positively 276 

correlated with stroke which was also positively correlated with cognitive decline. Thus, we 277 

conducted stratified analyses by the status of stroke, diabetes, hypertension, and obesity to 278 

examine the potential interactive impact of health conditions. Overall, we observed no significant 279 

associations from these analyses (Figure 4). However, the odds of having cognitive decline for 280 

stroke cases tended to be higher than for non-cases with increased levels of blood Cd, blood Pb, 281 

urinary thallium (Tl), urinary mono-ethyl phthalate (MEP), and urinary mono-benzyl phthalate 282 

(MBzP). Similarly, the odds for diabetes cases tended to be higher than for non-cases with 283 

increased levels of blood Cd, urinary Tl, urinary cesium (Cs), urinary MEP, and urinary MBzP. 284 

The odds for hypertension cases tended to be higher than for non-cases with increased levels of 285 

urinary Tl. The odds for obesity cases tended to be higher than for non-cases with increased 286 

levels of urinary Tl, urinary MEP, and urinary MBzP. 287 
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 288 
Figure 3. Partial correlation ( ) network plot depicting the magnitude and direction of 289 

correlation coefficients among identified chemical biomarkers, cognitive decline, and selected 290 

covariates. Only chemical biomarkers or covariates with significant correlation coefficients with 291 

cognitive decline (adjusted p-value <0.05) are shown. Green lines indicate relatively strong 292 

correlation coefficients (| 0.5). Red numbers indicate positive correlations and blue numbers 293 

indicate negative correlations.294 
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 295 
Figure 4. Odds ratio (OR) and 95% confidence interval (CI) of cognitive decline associated with six chemical biomarkers 296 

identified from correlation network structure stratified by four health conditions (total = 4,970). All chemical biomarker 297 

concentrations were log 10-transformed and scaled.298 
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4. Discussion  299 

To the best of our knowledge, this study represents comprehensive and systematic 300 

investigation into the association between environmental chemical exposures and cognitive 301 

decline. By using the EWAS approach and the NHANES data, we screened 173 environmental 302 

chemical biomarkers and identified those potentially related to cognitive decline. Additionally, 303 

we estimated the odds of having cognitive decline from the identified biomarkers and 304 

investigated previously undiscovered pathways linking chemical biomarkers to cognitive decline 305 

by extracting a correlation network structure. This allowed us to understand that cognitive 306 

decline can be worsened with increased chemical exposures among those with known risk 307 

factors of cognitive decline. 308 

Among 173 chemical biomarkers investigated in this study, we observed that 27 309 

biomarkers were associated with DSST z-scores. Most of them were metals, PAHs, PCBs, 310 

pesticides, and phthalates which are known to have neurotoxicity.62-66 Because these are 311 

characterized by persistence and bioaccumulation,67-70 older adults might have been chronically 312 

exposed throughout their lives.  313 

When including all environmental chemical biomarkers identified from non-targeted 314 

screening, we found that blood Pb, urinary NNAL, and urinary 1,4-DCB increased the odds of 315 

cognitive decline. Previous studies have shown consistent results for the association between Pb 316 

exposure and cognitive function. For instance, each 1 µg/L increase in Pb concentration was 317 

associated with a 1.08-point decrease in DSST scores among U.S. older adults.26 For every 1 318 

µg/dL increase in Pb levels, the odds of low cognitive performance in older adults in the U.S. by 319 

10%.25 In addition, Pb, a ubiquitous environmental contaminant,71 is exposed primarily through 320 

food, water, tobacco smoke, air, dust, and soil.72 When Pb enters our human body, over 90% is 321 
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accumulated in bones.73 Thus, older adults have high levels of Pb in their bodies due to their long 322 

lifespan.73,74 Pb can affect cognitive decline by disrupting neurotransmission75 and promoting 323 

oxidative stress76 through altering the fluidity or permeability of cell membranes.77 It also has 324 

indirect effects due to its associations with hypertension and other cardiovascular diseases,78 as 325 

well as its long-term storage in bones.79 Regarding NNAL, a previous study using NHANES data 326 

in older adults found that the group with the highest urinary NNAL concentration had a 327 

significantly lower DSST z-score by 0.19 compared to the lowest concentration group.80 NNAL 328 

is a reliable biomarker for nitrosamine ketone (NNK) exposure.81 NNK is present in the leaves of 329 

Nicotiana tabacum grown in the U.S.82 and can be exposed directly or indirectly through 330 

smoking,83 a well-known risk factor of cognitive decline. This compound is known to increase 331 

neurotoxicity by altering responses to centrally acting drugs, increasing susceptibility to 332 

neurotoxins, and enhancing metabolism.81 Lastly, 1,4-DCB (or paradichlorobenzene) can be 333 

easily encountered in our daily lives because it is an active ingredient in mothballs, deodorizers, 334 

and fumigants.84,85 However, there have been no epidemiological studies on the relationship 335 

between 1,4-DCB and cognitive function. Several in vivo studies have suggested its neurotoxic 336 

mechanism. This compound has central nervous system toxicity, causing oxidative damage and 337 

trace element alterations in various tissues, as well as oxidative DNA damage, leading to 338 

reported cognitive decline.84,86,87 339 

From our correlation network analysis showing several pathways between chemical 340 

biomarkers and cognitive decline, we observed that stroke had relatively strong correlation 341 

coefficients with both blood Cd and cognitive decline. This finding highlights the need of this 342 

network analysis because blood Cd had protective effects against cognitive decline when 343 

considering other identified environmental chemicals in the regression. Previous studies have 344 
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shown that exposure to Cd can impair cognitive performance both in isolated exposure scenarios 345 

and in combination with other environmental chemicals identified through EWAS screening.24-27 346 

It is also well known that Cd causes vascular damage and promotes atherosclerosis88 by 347 

generating reactive oxygen species, disrupting sulfhydryl homeostasis, and downregulating nitric 348 

oxide.89 Stroke affects cognitive domains such as attention, memory, and language. People who 349 

had stroke commonly experience cognitive impairment and memory loss, making them highly 350 

likely to develop dementia within one year of stroke onset.90,91 While our findings suggest that 351 

the effects of Cd exposure on cognitive decline may vary by individual’s health conditions, the 352 

specific mechanisms underlying these pathways remain unclear. Further experimental 353 

investigation is warranted to elucidate the mediating effects of these health conditions on the 354 

association between Cd exposure and cognitive decline. 355 

Our study has several limitations. Firstly, the cross-sectional nature of the NHANES data 356 

precludes establishing causation from our findings. Secondly, chemical biomarker concentration 357 

data were from a spot sample of each participant, so they may not represent individual’s average 358 

exposure over the lifetime of our participants. Thirdly, despite adjusting for confounders 359 

associated with cognitive decline based on previous studies, there may still be unmeasured 360 

confounding variables influencing our effect estimates. Fourthly, there could be imputation bias 361 

on the biomarker data because each NHANES cycle had a different list of chemical biomarkers 362 

and only one third of samples from each cycle were used to assess chemical biomarker 363 

concentrations. In addition, if the missing data mechanism of NHANES is non-random (i.e., 364 

missing not at random, MNAR), performing multiple imputation under the assumption of 365 

missing at random (MAR) may produce biased estimates.92 Finally, the EWAS approach used in 366 
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this study cannot assess the effects of chemical mixtures, such as additive effects, synergism, 367 

potentiation, and antagonism.  368 

 369 

5. Conclusions 370 

In this study, we employed an EWAS approach to explore 173 environmental chemical 371 

biomarkers in association with cognitive decline among U.S. older adults. From the regression 372 

including all identified biomarkers significantly associated with cognitive decline, we observed 373 

positive associations between cognitive decline and Pb, 1,4-DCB, and NNAL. From the 374 

correlation network structure, Cd may increase the risk of stroke which is a risk factor of 375 

cognitive decline. These findings suggest that combined and prolonged exposure to these 376 

chemicals may worsen cognitive impairment in aging populations. Our study underscores the 377 

complex interplay between exposure to environmental chemicals and cognitive function in older 378 

adults, emphasizing the need for further research to elucidate causal mechanisms and effectively 379 

guide public health interventions. 380 
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