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Abstract

Dengue is a neglected tropical vector-borne disease
that is spreading rapidly and increasing worldwide.
Climate change has been considered one of the pri-
mary factors contributing to this escalation. In
Brazil, a vast and heterogeneous country, each epi-
demic has set new records, with the disease currently
spreading widely across the country. In this study,
we used predictive modeling techniques, grounded
on a Bayesian hierarchical framework, to forecast the
spatio-temporal dynamics of dengue in Brazil under
future climate scenarios. We used monthly histori-
cal data on dengue incidence from 2000 to 2021, col-
lected over 557 Brazilian microregions, to learn about
its association with population, environmental, cli-
matic, and socioeconomic conditions. By integrating
projections of precipitation, minimum temperature
and population based on different Shared Socioeco-
nomic Pathway scenarios, we obtained spatially re-
solved projections of dengue incidence for 2021-2040
and 2041-2060. The model’s predictive performance
was ensured via robust cross-validation. We observed
an increase in dengue incidence with rising precip-
itation, urban infrastructure, and Normalized Dif-
ference Water Index, and a decrease with increas-

ing elevation and deprivation index. Minimum tem-
perature exhibited a nonlinear and positive associ-
ation behavior. Our forecasts show great regional
variability. In the south region, some traditionally
non-endemic microregions are expected to see a clear
increase in dengue incidence rate. Conversely, other
regions show geographic variability of patterns, sug-
gesting that in some cases elevated temperatures may
exceed the viable threshold for dengue transmission.
Investing in reducing greenhouse gas emissions and
implementing measures to address the rising inci-
dence of dengue due to climate change is crucial.
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1 Introduction

Dengue is considered the most important mosquito-
borne viral disease in humans, caused by arboviruses
with four serotypes [1]. Its symptoms can often
overlap with other diseases, including COVID-19 [2].
This makes its diagnosis challenging, especially in re-
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gions where it is endemic, which include several trop-
ical and subtropical countries worldwide. Globally,
there has been a significant increase in dengue inci-
dence over time, with an extension in the geographi-
cal range of transmission [3–5]. In the Americas, the
pattern observed is cyclic, with outbreaks every three
to five years [6].
In Brazil, the first reports of dengue date back to

the end of the 19th century [1]. Despite significant
efforts in surveillance and control measures, includ-
ing a government investment of over half a billion
dollars annually in mosquito control, there has been
no reduction in vector density that could effectively
limit or decrease the sustained spread of dengue. The
disease remains a pressing public health concern [7].
Recently, in 2024, dengue cases and deaths reached
a historic record with over 6.3 million probable cases
and more than 4,700 confirmed deaths [8].
The increase in the incidence of dengue fever, both

globally and in Brazil, is increasingly being attributed
to global warming and climate change. Recent find-
ings from the Intergovernmental Panel on Climate
Change (IPCC) highlight an alarming trend where
human activities are driving an irreversible rise in
global temperatures [9].
Climatic conditions significantly influence various

aspects of dengue transmission, including the virus
(e.g., incubation period), the vector (e.g., accelerated
development rates), and human behavior (e.g., water
storage during drought periods) [10,11].
Other contributing factors include sanitation, hu-

man mobility, deficiencies in mosquito control mea-
sures, population growth, urbanization, and im-
proved disease reporting capabilities [12].
In Brazil, the current strategic tools employed to

identify areas at risk and address dengue epidemics
primarily focus on entomological surveillance, rely-
ing on indicators that assess the immature stages of
Aedes aegypti (Linnaeus, 1762) [13] which is the pri-
mary vector. However, numerous authors have crit-
icized the use of these indicators, which are recom-
mended by the Ministry of Health, as they do not
provide estimates of adult mosquito abundance or
direct assessments of dengue transmission risk. In
practice, a gap exists between traditional entomo-
logical surveillance measures and the implementation

of vector control interventions, leading to indiscrim-
inate control efforts that fail to prioritize high-risk
areas [14–16].

Furthermore, the direct correlation between con-
trol measures and the reduction in dengue cases re-
mains inadequately supported, necessitating further
research to explore this relationship. It is noteworthy
that in Brazil, there have been no significant changes
in vector control activities since the beginning of the
first dengue epidemics, after the reintroduction of the
vector in Brazil in the 1970s [17]. It is also worth
mentioning that, despite promising advances in vac-
cine research, a vaccine has not yet been implemented
for the entire population [18].

Presenting a significant public health challenge,
dengue is currently categorized as a neglected trop-
ical disease (NTD), and its control efforts are in
alignment with the Sustainable Development Goals
(SDGs) established by the United Nations. Specif-
ically, SDG Target 3.3 aims to eliminate NTDs by
2030 [19]. In Brazil, cost estimates have ranged
from 516.79 million USD (2009) to 1,988.3 million
USD (2013) [20]. The burden extends beyond eco-
nomic considerations, encompassing societal impacts
as well, and it appears to be on the rise, potentially
underestimated [21].

This paper presents a modelling study of dengue
incidence and its main determinants in Brazil, ac-
counting for spatial and temporal dependencies, and
use the approach to project dengue incidence to 2021-
2060 based on different scenarios of greenhouse gas
emissions.

Results

The findings in this section are derived from a
Bayesian hierarchical mixed effect model with spatio-
temporal random fields, assuming a Poisson distribu-
tion for the monthly counts of dengue cases reported
across 557 Brazilian microregions (which are legally
defined areas consisting of groups of municipalities)
from 2000 to 2021. We selected seven predictors to
explain the spatio-temporal variability of the dengue
incidence rates (per 100,000 people), including min-
imum temperature, precipitation, percentage of ur-
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ban infrastructure, the Normalized Difference Water
Index (NDWI), elevation, seasonal period and the
Brazilian deprivation index (BDI).
The effects of the covariates on the dengue inci-

dence rate (per 100,000 people) are shown in Table
1. These results, summarised by the posterior mean
and the 95% credible intervals (CI), are presented on
the incidence rate ratio (IRR) scale, for a one stan-
dard deviation increase in each covariate value (since
the covariates were standardized before being entered
into the spatio-temporal model). They reveal a pos-
itive association with lagged effect (two months) of
precipitation, with one standard deviation increase
corresponding to a 4% (95% CI: 4-5%) escalation in
the incidence rate of dengue.
Similarly, one standard deviation increase in

NDWI, % urban infrastructure, and elevation corre-
sponds to a 8% (95% CI: 6-9%), 8% (95% CI: 3-12%)
increase, and a 31% (95% CI: 27-35%) decrease, re-
spectively, in the dengue incidence rate.
We also found significant relationships between

dengue incidence and the seasons of the year and the
deprivation index. In detail, we estimated a higher
incidence rate in summer and autumn compared to
winter and a negative association of dengue incidence
rate with the deprivation index.
Figure 1 displays a nonlinear relationship between

dengue incidence rate and minimum temperature. It
is noted that the temperature begins to show a posi-
tive relationship with the incidence of dengue around
15 ◦C, and as the temperature increases, a downward
trend in this association is observed, although it re-
mains largely positive and significant.
Figure 2 presents the results of cross-validation for

the selected model. In each iteration of the training
and testing rounds, data from one month was ex-
cluded from all microregions within a specific region
of Brazil in the training set, while the remaining data
was used for prediction. This process was repeated
for all twelve months across all five regions of Brazil.
We observed high correlation between the observed
and predicted values, as well as MAE values lower
than the average of the cases. These results indicate
that the model is effective in making predictions con-
sidering different months and regions of Brazil.
For the future projections of dengue incidence

Table 1: Covariate effects, described by the posterior
means and 95% credible intervals (CI), on the dengue
incidence rate (per 100,000 people) in Brazil from
2000 to 2021

Covariates IRR 95% CI

Precipitation (2-month lag) 1.04 (1.03-1.05)
% Urban Infrastructure 1.08 (1.03-1.12)
NDWI 1.08 (1.06-1.09)
Elevation 0.69 (0.65-0.73)
Seasons:

Winter (ref.) 1 -
Spring 0.90 (0.74-1.12)
Summer 3.20 (2.58-3.93)
Autumn 3.07 (2.48-3.75)

Deprivation Index (BDI):
BDI < −0.7 (ref.) 1 -
−0.7 ≤ BDI < 0.7 0.71 (0.64-0.78)
BDI ≥ 0.7 0.46 (0.40-0.53)

rates, we used the UKESM1-0-LL model [22], a
high-complexity climate model that simulates var-
ious atmospheric, oceanic, terrestrial, and biogeo-
chemical processes. We present three different cli-
mate change scenarios described by the Shared So-
cioeconomic Pathways (SSP): SSP126 (temperature
increase of 1.18 ◦C/100 yr), SSP370 (temperature in-
crease of 3.6 ◦C/100 yr), and SSP585 (temperature
increase of 4.4 ◦C/100 yr).

These scenarios represent low, high, and very high
greenhouse gas emissions, respectively [22–25]. The
description of the climatic variables minimum tem-
perature (lag 1 month) and precipitation (lag 2
months) for the period 2021-2040 and 2041-2060 are
presented in Figure 3. It can be observed that there
is a clear increase in minimum temperatures in fu-
ture scenarios compared to the historical period of
2000-2021, with the last period showing the highest
increase. There is also generally little difference be-
tween scenarios, with the greatest difference seen in
the last period where scenario SSP585 has the highest
temperature values, followed by SSP370, and finally
SSP126, across all regions. Precipitation generally re-
mains constant, with a slight visual increase in peaks
in the northeast, southeast, and central-west regions,

3

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2024. ; https://doi.org/10.1101/2024.07.22.24310334doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.22.24310334
http://creativecommons.org/licenses/by/4.0/


Figure 1: Effect of minimum temperature, described
by the posterior mean (green solid line) and 95% cred-
ible intervals (CI; green ribbon) on the dengue inci-
dence rate (per 100,000 people) in Brazil from 2000
to 2021

and a slight visual decrease in other regions.

The average population for the period 2000-2021
was approximately 195 million, rising to average val-
ues of 220, 235, and 219 million for scenarios SSP126,
SSP370, and SSP585 respectively from 2021-2040,
and reaching average values of 219, 258, and 217
million in the respective three scenarios considered
for 2041-2060. Similarly at regional level, scenario
SSP370 had the highest population increase, with
scenarios SSP126 and SSP585 having values close to
each other.

Figure 4 presents the posterior predictive mean of
the projections for the month of March, chosen due
to the highest dengue incidence. This figure includes
the historical years 2000, 2016 (peak year), and 2021,
as well as the predicted periods 2021-2040 and 2041-
2060, for the three scenarios SSP126, SSP370, and
SSP585.

It is worth mentioning that, the north, central,
northeast and southeast regions show a considerable
geographic variability in the predictions of incidence
rates, with microregions presenting increase, reduc-
tion and maintenance in their incidence patterns.
Meanwhile, there is a clear increase in the posterior
mean of dengue incidence rate in the south region of

the country, which historically have shown low inci-
dence scenarios. A clearer spatial visualization of the
posterior means of dengue incidence for March in this
region can be seen in detail in Figure 5 (panel A), for
the years 2000, 2016, and 2021, and predicted values
for future periods and scenarios.

Figure 5 (panel B) also indicates the temporal
change of dengue incidence (posterior mean and 95%
CI) for six selected microregions in the South region,
chosen as those where the model predicted a consid-
erable increase compared to the historical series.

Discussion

This study has presented probabilistic estimates of
dengue incidence in Brazil, based on climatic, demo-
graphic and socio-economic factors and, to the best
of our knowledge, is the first to provide projected
future scenarios for the periods 2021-2040 and 2041-
2060, considering different greenhouse gas emission
scenarios at microregion level.

The other only study regarding Brazil and green-
house gas emission scenarios, by Colon-Gonzalez et
al. [26], made an important contribution by estimat-
ing the increase in dengue cases under different global
warming scenarios across Latin America for the years
2050 and 2100, using historical data from 1961–1990
as a baseline and considering three climatic variables.
Compared to it, we believe our study brings a new
perspective, as it is entirely focused on Brazil, uses
more up-to-date data, incorporates additional factors
beyond climatic variables in the model, and makes
predictions closer to the present. By doing so, we
can establish possible patterns for different Brazilian
microregions, indicating not only areas with expected
increases but also some with stability or even reduc-
tions in dengue cases.

As far as we know and according to the system-
atic review by Xu et al. [27], other studies that have
aimed to predict dengue under different greenhouse
gas emission scenarios commonly used the years 1961-
1990 as the baseline period and 2050 as the projection
period. These studies covered areas including Nepal,
China, the US, Korea, 10 European cities, Australia,
and globally [27]. Additionally, Colon-Gonzalez et
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al. [28] predicted dengue across Southeast Asia, us-
ing data from 2000–2017 and making predictions for
2050 and 2080. Recently, Wang et al. [29], used the
baseline period of 2012-2020, to predict conditions for
the 2030s to 2090s in South and Southeast Asia.
In our study, we identified a lagged and nonlinear

behaviour of minimum temperature (modelled with
a 1-month lag), which showed a negative relationship
with dengue incidence until reaching 14.4◦C, peak-
ing at 21.2◦C. This result indicates that very low
temperatures have an inverse association with disease
incidence, while at higher temperatures we found a
positive association with dengue incidence [30]. This
result is in line with the current evidence, showing
that temperature influences the spread of dengue.
Laboratory tests indicate that the temperature for
mosquito population development is 13◦C, with a
maximum threshold of 36◦C [31, 32]. Mordecai et
al. [33] found that, in a more realistic scenario where
daily temperatures varied by 8◦C, the minimum and
maximum temperatures for transmission were 13.5◦C
and 34.2◦C, respectively. The systematic review by
Abdullah et al. [34], on the other hand, found that
the association between dengue cases and minimum
temperature ranges from 6.5◦C to 21.4◦C, discussing
that Ae. aegypti has a higher low-temperature tol-
erance compared to Ae. albopictus. Therefore, al-
though studies report varying minimum temperature
values linked to dengue cases, our analysis of monthly
data from Brazilian microregions aligns with existing
literature.
As anticipated, the correlation between precipita-

tion and dengue incidence proved to be positive, with
a two-month lag, which is consistent with the litera-
ture [30]. This means that as the amount of precip-
itation increases, the incidence of dengue also tends
to rise. One of the phases of the vector’s reproduc-
tion occurs in aquatic environments, meaning that
mosquitoes lay their eggs in places with standing wa-
ter. Therefore, more rain results in more breeding
sites and, consequently, an increase in the mosquito
population. This leads to a higher probability of
dengue transmission [35].
Since there is a time interval required for the

eggs to hatch and for adult mosquitoes to develop
and start transmitting the virus, it is expected that

dengue incidence will increase about two months af-
ter a rainy period [30]. This time frame allows
mosquitoes to complete their life cycle and begin
infecting people, resulting in an increase in dengue
cases. Additionally, rainy periods often bring higher
temperatures and humidity, favoring mosquito activ-
ity [36].

However, it is important to note, that precipi-
tation alone may not conclusively determine vector
presence. Even in arid environments, transmission
can persist, as communities often resort to rainwa-
ter harvesting during such periods. Furthermore, the
vector’s eggs are typically found on container walls,
above the waterline, and they can remain viable for
over a year without water contact, underscoring that
the absence of water does not necessarily eradicate
the vector population [31].

As expected, we found a positive relationship with
the NDWI, in line with other studies. This sug-
gests increased water availability, potentially leading
to higher mosquito larval reproduction and survival
in stagnant water containers such as tires, water stor-
age containers, plant pots, and other objects that
collect water [37]. Therefore, a positive NDWI may
indicate areas prone to Ae. aegypti mosquito breed-
ing, thereby posing a higher risk of dengue trans-
mission. Additionally, NDWI can aid in identifying
flood-prone areas, which may further increase breed-
ing sites for vector mosquitoes. Thus, the positive
association between NDWI and dengue underscores
the importance of water presence in predicting and
controlling dengue incidence [38,39].

The percentage of urban infrastructure also showed
a positive association with dengue incidence. This
result is expected since Ae. aegypti, the primary vec-
tor, is predominantly urbanized, with a preference for
oviposition in artificial containers. Urbanized areas,
therefore, present ample opportunities for breeding
sites for the vector, ranging from trash heaps and
cemeteries to residential areas, where 75% of breed-
ing sites are located, according to the Ministry of
Health [40]. Additionally, the proximity of people in
urban areas provides further sustenance to the vec-
tors [41].

Our study found an inverse relationship between
dengue cases and elevation, which is expected due to
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the lower temperatures [42,43].
Regarding the deprivation index, our study reveals

that higher incidences of dengue are associated with
microregions characterized by lower levels of depri-
vation. Despite these findings contrasting with some
studies that observed a positive relationship, the as-
sociation between dengue and socioeconomic condi-
tions is considered controversial, and the disease af-
fects people across a wide range of socioeconomic pro-
files. Mondini and Chiaravalloti Neto [44] highlighted
this controversy in their evaluation of the relationship
between dengue risk and socioeconomic conditions in
a Brazilian area, emphasizing its potential variability
across different municipalities.
Therefore, it is crucial to interpret these results

cautiously due to the study’s geographical scope, en-
compassing microregions composed of clusters of mu-
nicipalities. Additionally, the most recent available
socioeconomic data stem from the 2010 census. This
temporal gap underscores the need for updated and
localized socioeconomic assessments to better under-
stand the nuanced dynamics of dengue transmission
in diverse socioecological contexts.
Lastly, we found a positive association with the

summer and autumn seasons compared to winter,
and no significant association with spring. This result
is expected for Brazil, as it is well known that dengue
follows a seasonal pattern, with higher prevalence in
summer and lower in winter [45].
It is well-established that climatic variables signif-

icantly impact the severity and spread of the disease.
Temperature plays a dual role by hastening the vec-
tor’s life cycle and enhancing its ability to transmit
the virus, while also shortening the virus’s extrin-
sic incubation period of the vector, thus expediting
transmission [46,47].
Consequently, it is expected that climate changes

can profoundly alter both the distribution and sever-
ity of dengue incidence, potentially amplifying or mit-
igating its impact [31, 35]. Substantiating this, our
study shows a pattern of increased dengue incidence
in microregions with historically low cases, while ob-
serving either maintenance or even a decrease in areas
with previously high case rates.
Our findings place important emphasis on the

south region of Brazil. This region is characterized

by well-defined climatic seasons, featuring lower tem-
peratures compared to other regions of the country,
factors that hinder mosquito proliferation. Conse-
quently, this region exhibits the lowest incidence rates
for the historical period [48].

Although the first case of dengue in Brazil was re-
ported as early as the 1980s, after the reintroduction
of Ae. aegypti, the initial case in the south region
resulted from the introduction of serotype 2 in 1995.
Following this, serotype 1 was introduced in 1999,
serotype 3 in 2000, and serotype 4 in 2011 [49].

Soek et al. [31] analyzed climatic variables based
on future scenarios predicted by the IPCC, although
they did not directly associate these variables with
either vector presence or disease cases. The authors
concluded that these projections indicate a high sus-
ceptibility to the expansion of vector coverage areas
and prolongation of periods of high dengue transmis-
sion due to the extended time within optimal condi-
tions for vector reproduction.

Our study corroborated this hypothesis, demon-
strating through robust statistical modeling that
there is a projected increase in dengue incidence in
this region. We found that several microregions in
the south region, previously considered non-endemic,
can become public health emergencies.

It is worth noting that recently, a state in the
South region of the country faced a calamity event
attributed to climate change. Specifically, the state
of Rio Grande do Sul experienced flooding due to
an extreme weather event of heavy rainfalls, affect-
ing over one million people. This flood event is just
one example of the impacts of climate change, which
have the potential to exacerbate future health-related
issues, such as the spread of dengue.

Climate change is already considered one of the
greatest threats to life, especially for vulnerable pop-
ulations. Bashir [50] underlined that climate change
increases the burden on the healthcare system and
has economic as well as mortality consequences. This
is particularly concerning as it disproportionately af-
fects the vulnerable population and contributes to
increasing inequality.

Barcellos et al. [51] stated that climate change and
thermal anomalies have played a significant role in
the recent progression of dengue in Brazil. Between
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2000 and 2014, they observed a notable increase in
the frequency of temperature anomalies across vari-
ous regions of the country, which was associated with
an increase in the incidence of the disease.
Another region that deserves attention is the

Central-West. This region recorded the first case of
serotype 1 in 1987, followed by serotype 2 in 1991,
serotype 3 in 2000, and serotype 4 in 2011 [48]. Bar-
cellos et al. [51] discussed the increase in thermal
anomalies and found that the Central-West region
had the highest incidence of dengue in the country.
In our study, future projections indicate that this re-
gion will continue to have the highest incidence rates.
In general, we observed that North, Northeast,

Southeast and Central-West regions showed a visual
geographic variability in the pattern of dengue inci-
dence, with increase, stability or even decline for the
future. The decrease that we predicted for several mi-
croregions corroborates with the study developed by
Cardoso-Leite et al. [52], which predicted the environ-
mental suitability of Ae. aegypti under current and
2050 climatic conditions. They found a projection
of decreased vector suitability in the future for the
North region of Brazil, which is likely due to temper-
atures surpassing the maximum viable temperature
threshold for the vector.
One limitation of our study is the challenge of mod-

eling dengue incidence in an unstable climate context.
To address this limitation, we utilized robust general-
ized linear mixed effects models with spatio-temporal
random fields to capture spatial and temporal de-
pendencies. Additionally, we considered three differ-
ent scenarios of future climate projections along with
projection of population growth and we performed
a rigorous cross-validation to evaluate the predictive
ability of the model.
One additional limitation to consider is that the

socioeconomic data are from the latest census con-
ducted in 2010. However, this is the most current
data available, as the 2022 census results have not
yet been released.
Future projections of minimum temperature and

precipitation used in our study are from WorldClim
[53,54], which provides monthly information for each
20-year period rather than annual data. Neverthe-
less, despite this limitation, the 20-year periods yield

more stable statistical estimates, reducing short-term
fluctuations and allowing for more consistent compar-
isons across microregions. WorldClim data remains
an invaluable source because it is derived from ter-
restrial weather stations, satellite data, and global
climate models, and is processed and interpolated
to create high-resolution maps representing climatic
conditions.

While the most recent available historical data year
is 2021, the time of writing this paper, and has yet
to be updated with more recent data, future stud-
ies could explore the potential of evaluating these
estimates using newer data as it becomes accessible
through WorldClim. Finally, future studies should
also emphasize the importance of assessing the im-
pact of vaccines, especially considering that in 2024,
the public distribution of vaccines began through
the Unified Health System (SUS), initially targeting
younger age groups [18].

To conclude, we stress that dengue is a complex
challenge in public health, persisting in causing major
epidemics and spreading territorially, despite decades
of efforts dedicated to its surveillance and control.
Our results indicate that, according to the differ-
ent greenhouse gas emission scenarios considered, the
threat will persist and possibly it will change its spa-
tial pattern in some Brazilian microregions, worsen-
ing in some areas and mitigating in others.

We hope that these results highlight the impor-
tance of cross-sector investments in surveillance and
control, focusing on areas of highest risk. Addition-
ally, we hope that our findings underscore the rele-
vance of the consequences that climate change may
have for society, including the neglected disease bur-
den and the social and economic impacts caused by
dengue.

Subsection for Method

Brazil has an estimated population of around 203 mil-
lion inhabitants (IBGE 2024) and covers a land area
of 8,510,820,623 km². The Gross Domestic Product
(GDP) per capita was RS 31,833.50 (2017), with a
birth rate of 14.16 live births per thousand inhabi-
tants (2015). The illiteracy rate among those aged
15 years and older was 6.6 % (2019), while the infant
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mortality rate stood at 12.35 deaths per thousand
live births (2018). The unemployment rate was 11
in the fourth quarter of 2019, and the Gini index,
which measures income inequality, was 0.61 in 2010.
The units of analysis for this study were the 557 mi-
crorregions of Brazil.

Historical data: 2000 to 2021

Information on dengue cases was acquired by month
and year and municipality of residence, of Notifiable
Diseases Information System - Sinan, provided by the
Ministry of Health, through a formal request. Sub-
sequently, the cases were aggregated by microregion
to overcome the problem of data sparsity. To achieve
this, we utilized a table of the Brazilian Territorial
Division, which provides the correspondence between
each municipality and its respective microregion, as
established by the Brazilian Institute of Geography
and Statistics (IBGE).
The total precipitation and minimun temperature

were obtained monthly from CRU-TS 4.06 [53] down-
scaled with WorldClim 2.1 [54], with a spatial reso-
lution of 2.5 minutes (∼21 km2 at the equator).
In the model, it was important to consider the sea-

sons of the year because this variable captures sea-
sonal patterns in disease transmission and vector ac-
tivity. It is known that the periods of highest disease
transmission are during summer and autumn.
Precipitation is also an important variable for the

disease transmission pattern. During rainy periods,
suitable conditions are provided for mosquito devel-
opment in breeding sites, as females lay their eggs
in stagnant water, which hatch when the water level
rises due to rainfall. There is an expected lag between
increased precipitation, increased vector abundance,
and disease emergence [35].
Socioeconomic data was derived from the Brazil-

ian Deprivation Index (BDI), a metric designed to
gauge socioeconomic status by incorporating data on
income, education, and household conditions gath-
ered during the 2010 Census by IBGE. BDI is a valu-
able tool for monitoring and assessing socio-economic
factors’ impact on public health. This index was de-
veloped by researchers from the Center for Data In-
tegration and Knowledge for Health (Cidacs/Fiocruz

Bahia) and the University of Glasgow-Scotland, as
part of the Social Policy and Health Inequalities
(SPHI) project, funded by the UK’s National Insti-
tute for Health Research (NIHR). In terms of inter-
pretation, values close to zero signify moderate de-
privation, positive values indicate high deprivation,
and negative values represent low deprivation. The
BDI was transposed from municipalities to microre-
gions by aggregating and weighting it based on the
population size.

The urban infrastructure percentage was derived
from images in the MapBiomas collection 7.1, by
year and months of study, a collaborative project
by various Brazilian institutions aimed at mapping
land use and cover [55]. The elevation data were ob-
tained from NASA Shuttle Radar Topography Mis-
sion (SRTM) with a resolution of 1 arc-second (ap-
proximately 30 meters).

We acquired the normalized difference water in-
dex (NDWI) for each microregion at each point in
time from a series of data images from the Moderate-
resolution Imaging Spectroradiometer (MODIS) sur-
face reflectance, constructed using 16-days of Terra
and Aqua MODIS data at 500 meter resolution. The
NDWI is an indicator for vegetation liquid water con-
tent [55,56], and allows to differentiate water from the
dry land.

Future data: 2021 to 2040 and 2041 to
2060

The future climate variable predictions were based
on documents provided by the Intergovernmental
Panel on Climate Change (IPCC). The global climate
model (GCM), specifically the UKESM1-0-LL model,
was selected for this study due to its stable represen-
tation of a realistic climate, vegetation, and anthro-
pogenic and natural aerosol states without requiring
artificial corrections [22].

Three climate scenarios, based on the Shared So-
cioeconomic Pathways (SSPs), were considered to de-
scribe the evolution of greenhouse gas emissions. The
SSPs (including SSP1, SSP3, and SSP5) are valu-
able tools for studying the potential consequences of
different socioeconomic and environmental trajecto-
ries on climate change [57]. These scenarios allow re-
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searchers to assess the implications of various policy
choices and societal pathways on global temperature
rise, informing decision-making and facilitating the
development of strategies to mitigate climate change
and achieve sustainable development goals.
Developed by the scientific community, the SSPs

provide a range of plausible socioeconomic and envi-
ronmental storylines that explore alternative future
trajectories of human societies and their interactions
with the environment, including climate change [57].
SSP1, Sustainability, depicts a world with low chal-

lenges to mitigation and adaptation, emphasizing
inclusive development, environmental stewardship,
and human well-being. Improved global governance
and investments in education and health reduce in-
equality and shift consumption towards low material
growth and resource use. SSP3, Regional Rivalry, in-
volves high challenges to both mitigation and adap-
tation. Nationalism and regional conflicts lead to a
focus on security over development, with slow eco-
nomic growth and persistent material-intensive con-
sumption. Inequalities worsen, and environmental
degradation increases due to the low priority on envi-
ronmental issues. SSP5, Fossil-fueled Development,
presents high challenges to mitigation but low chal-
lenges to adaptation. Driven by competitive mar-
kets and technological innovation, this scenario sees
rapid economic growth and human capital develop-
ment, with significant fossil fuel use. Local environ-
mental issues are managed, and there is confidence in
addressing broader social and ecological challenges,
including geoengineering [58].
In detail, SSP1-2.6 (SSP126) represents a mitiga-

tion pathway with a projected global temperature in-
crease of 1.8◦C (1.3 to 2.4◦C). SSP3-7.0 (SSP370)
represents a high-emission pathway with a projected
increase of 3.6◦C (2.8 to 4.6◦C). SSP5-8.5 (SSP585)
represents a very high-emission pathway with a pro-
jected increase of 4.4◦C (3.3 to 5.7◦C) [57].
The climate data (minimum temperature and pre-

cipitation) for these three scenarios were provided by
WorldClim 2.1 for two time periods: 2021-2040 and
2041-2060, with 2.5 minutes of arc (∼21 km2) reso-
lution [54].
Forecasts for 2021-2040 and 2041-2060 fromWorld-

Clim are based on monthly averages for this 20-year

period, as there are no yearly data available. We
considered to be appropriate to use 2021 as the most
recent year in our historical data and to employ the
2021-2040 forecasts as a representative monthly av-
erage for the future. Additionally, predicting the 20-
year average rather than specific yearly values can
offer a more stable perspective and be less suscep-
tible to annual variations, allowing for more robust
planning.

In addition to climate variables, population data
for the future was also used, with a resolution of 30
seconds (∼ 1km) based on the selected SSPs scenarios
[59].

Statistical model

We employed a Bayesian hierarchical model to
project the future evolution of dengue incidence to
2060 for each Brazilian microregion under three cli-
mate scenarios (SSP126, SSP370, and SSP585).

Let Yit and Nit be the number of dengue cases and
total population (per 100,000 inhabitants) in microre-
gion i ∈ (1, . . . , nt) during month t ∈ (1, . . . , T ), re-
spectively. Being the outcome variable, Yit, a count,
we specified a Poisson distribution. Thus, the first
level of the Bayesian hierarchical model has a Pois-
son log-linear specification given by:

Yit ∼ Poisson(µit),

µit = Nit × λit,

ln(λit) = ηit = β0 + f(Tempit−1) + β1Precit−2

+ β2NDWIit+

β3Urbit + β4Elevi +

4∑
k=2

β5kSeasonitk+

3∑
c=2

β6cBDIic + θt + ξit. (1)

Here, µit represents the Poisson mean, which is a
product of Nit, the total number of populations in
each microregion i at time t, and λit, the underlying
unknown dengue incidence rate in each microregion
i at time t. The log-dengue incidence rate is mod-
elled in function of p known climatic, environmental
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and socioeconomic covariates, related to microregion
i and month t, including the intercept term, β0,

and two random effects capturing a residual un-
structured temporal component, θt, and spatio-
temporal correlation, ξit. In detail, f(Tempit−1) cap-
ture nonlinearity in the effect of temperature [Temp]
lagged of one month, β1 is the coefficient associ-
ated with precipitation [Prec] lagged of two months,
β2, β3, β4 are the coefficient associated to the linear
covariates NDWI, urbanization [Urb] and elevation
[Elev] respectively, β5k is the regression coefficient
associated with calendar season [Season] (reference
category: winter), and β6c is the regression coeffi-
cient associated with BDI (reference: low BDI level,
i.e., most deprived).
Additionally, to capture the unstructured tempo-

ral variation over months and years, θt was mod-
eled using a Gaussian white noise process. This al-
lowed capturing the temporal variation unexplained
by the model and structured effects. The space-time
latent effect ξit is modelled by a zero-mean Gaussian
Markov random field with covariance matrix that im-
plies that within each time point the microregion are
linked through an intrinsic conditional autoregressive
prior [60], which incorporates a spatial dependency
structure among the microregions represented by the
graph of the neighborhood matrix [61], while over
time (i.e., between time points) the process evolves
dynamically according to a first order autoregressive
process with coefficient ρ < 1 [62,63].

The regression parameters were modelled assuming
independent weakly informative zero-mean Gaussian
prior distributions with variance of 1000, while pe-
nalising complexity (PC) priors [64] were used for the
hyperparameters of the random walk structures and
the autoregressive process coefficient, which are ex-
pressed through probability statements. In particu-
lar, we specified that the probability for the standard
deviations of the first order random walk models of
being greater than 1 is small, and is equal to 0.01, and
that the probability for the ρ parameter to be larger
than 0 is large being 0.9. To model the nonlinear re-
lationship between minimum temperature, lagged by
one month, and the response, we binned the tempera-
ture values intom groups, using equidistant quantiles
in the probability space and we specified a first order

random walk prior over the m groups. This param-
eterization posses the necessary flexibility to accom-
modate complex patterns of variation. Specifically,
we assumed:

Tempit−1(j+1) − Tempit−1(j) ∼ N (0, τ−1
Temp)

for j = 1, . . . ,m
(2)

where τTemp is the precision (i.e., the inverse of the
variance). We imposed a sum to zero constraints to
make it identifiable, and for easier interpretation we
scaled the model to have an average variance equal
to 1.

Future projections

Spatio-temporal projections for the period 2021-
2040 and 2041-2060, under climate scenarios SSP126,
SSP370, and SSP585, were obtained by sampling
from the posterior predictive distribution (PPD)
gomez2020bayesian, orozco2023scalable. Broadly
speaking, if Y ∗

it represents the new observation i
at a future time point t∗, the PPD is defined as:
π(Y ∗

it∗ |YYY it) =
∫
π(Y ∗

it∗ | ϕϕϕ)π(ϕϕϕ | YYY it)dϕϕϕ where YYY it =
{Yi1, Yi2, . . . , YiT } and ϕϕϕ indicate all the model pa-
rameters. As described in the previous section, in our
study we built a multilevel statistical model includ-
ing a number of predictors. Thus, by letting Xit to
represent collectively the model predictors described
in eq. [1] for the years 2000-2021 and letting X∗

it∗ to
be the future predictors for the period 2021-2040 and
2041-2060 under the different climate change scenar-
ios, the PPD was defined as:

π(Y ∗
it∗ |Xit,X

∗
it∗ ,YYY it) (3)

Specifically, by fitting the model in eq. [1], we ob-
tained the approximated joint posterior marginal of
ηηη and ϕϕϕ, then we sampled from it by using 1000
draws, then we generated the future projected dengue
disease cases from a Poisson distribution with mean
λs
it∗ × N∗

it∗ , for s = 1, . . . , S = 1000, where N∗
it∗ are

the new future population estimates for the period
2021-2040 and 2041-2060.
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Model assessment and cross-validation

Prior to develop the statistical model, we performed
a number of descriptive analyses in order to learn
about relationship between the data. This included
using the VIF (Variance Inflation Factor) to check
for collinearity among the variables, retaining only
those with a VIF value below 3. Then, the models
were built from the simplest to the most complex fol-
lowing a forward selection procedure, testing also for
nonlinearity and lagged effects of the climate vari-
ables [65].

Since the prediction objective was to use the his-
torical series to forecast subsequent periods, in the
Time-wise Holdout procedure, models were run ex-
cluding last year of the series (2021) as validation
data and using the historical series to train the model,
similarly to Oliveira and Colleagues [66].

Moreover, an additional validation performed on
the best model to verify the predictive capacity of
the model was thoroughly assessed through a robust
Spatio-temporal Contiguous Block Cross-Validation
procedure [66]. This process involved systematically
removing data from the microregions of a specific ge-
ographic area and a specific month from the model.
The evaluation metrics used to determine the model’s
performance included the coverage of the 95% predic-
tion intervals (obtained by counting how many of the
values in the validation set fall in their corresponding
prediction interval), the mean absolute error (MAE),
and the Pearson’s correlation between observed and
predicted count of dengue cases.

To qualify as a good predictive model, coverage
equal or close to the nominal level (that is, 95%
for a 95% prediction interval) is expected, indicat-
ing that the model reliably captures the variability
in the data, as the model is able to predict new data
with a precision consistent with what was observed
in the training data. Additionally, there should be a
high correlation between the predicted and observed
values, suggesting that the model accurately captures
the underlying patterns and trends present in the ob-
served data, reflecting its predictive strength. Fur-
thermore, MAE should be lower than the mean value
of the observed cases, demonstrating that the model
performs better than a basic model that might sim-

ply predict the average value for all instances [28]. A
lower MAE signifies that the model’s predictions are
closer to the actual values, underscoring its accuracy
and effectiveness.

The cross-validation in space and time adds a sig-
nificant layer of rigor to the evaluation process. It
ensures that the model is not only capable of making
accurate predictions based on the existing data but
also robust enough to generalize well across different
spatial and temporal contexts. This comprehensive
validation approach is crucial for confirming the re-
liability and generalizability of the model in various
real-world scenarios [66].

The analyses were conducted using the statistical
software R version 4.2.1 (2022-06-23), while compu-
tation was performed using the Integrated Nested
Laplace Approximations (INLA) algorithm [67,68].
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Figure 2: Results from the predictive model cross-validation: correlation between observed and predicted
cases by region and month of the year (left panel), and mean absolute error (MAE) versus the mean cases
by region and month (right panel)
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Figure 3: Distribution of precipitation (purple y-axis)
and minimum temperature (green y-axis) variables
by month: historical period (2000-2021) and future
projections (2021-2040 and 2041-2060) across three
different SSPs scenarios
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Figure 4: Spatial distribution of the posterior mean of dengue incidence rate for the month of March: years
2000, 2016, and 2021, and future projections 2021-2040, 2041-2060, across three different scenarios.
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Figure 5: Spatial distribution of the posterior mean of dengue incidence rate for the month of March: years
2000, 2016, and 2021, and future projections 2021-2040, 2041-2060, across three different scenarios. South
region of Brazil, with emphasis on temporal projections for selected microregions
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