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Abstract 

Purpose: Malnutrition is a serious health concern, particularly among the older people living in 

residential aged care facilities. An automated and efficient method is required to identify the 

individuals afflicted with malnutrition in this setting. The recent advancements in transformer-

based large language models (LLMs) equipped with sophisticated context-aware embeddings, 

such as RoBERTa, have significantly improved machine learning performance, particularly in 

predictive modelling. Enhancing the embeddings of these models on domain-specific corpora, 

such as clinical notes, is essential for elevating their performance in clinical tasks. Therefore, our 

study introduces a novel approach that trains a foundational RoBERTa model on nursing progress 

notes to develop a RAC domain-specific LLM. The model is further fine-tuned on nursing progress 

notes to enhance malnutrition identification and prediction in residential aged care setting. 

Methods: We develop our domain-specific model by training the RoBERTa LLM on 500,000 

nursing progress notes from residential aged care electronic health records (EHRs). The model’s 

embeddings were used for two downstream tasks: malnutrition note identification and malnutrition 

prediction. Its performance was compared against baseline RoBERTa and BioClinicalBERT. 

Furthermore, we truncated long sequence text to fit into RoBERTa’s 512-token sequence length 

limitation, enabling our model to handle sequences up to1536 tokens. 

Results: Utilizing 5-fold cross-validation for both tasks, our RAC domain-specific LLM 

demonstrated significantly better performance over other models. In malnutrition note 

identification, it achieved a slightly higher F1-score of 0.966 compared to other LLMs. In 

prediction, it achieved significantly higher F1-score of 0.655. We enhanced our model’s predictive 

capability by integrating the risk factors extracted from each client’s notes, creating a combined 
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data layer of structured risk factors and free-text notes. This integration improved the prediction 

performance, evidenced by an increased F1-score of 0.687. 

Conclusion: Our findings suggest that further fine-tuning a large language model on a domain-

specific clinical corpus can improve the foundational model’s performance in clinical tasks. This 

specialized adaptation significantly improves our domain-specific model’s performance in tasks 

such as malnutrition risk identification and malnutrition prediction, making it useful for identifying 

and predicting malnutrition among older people living in residential aged care or long-term care 

facilities.  

Keywords: 

Large language model, domain-specific fine-tuning, RoBERTa, prediction, nursing notes, 

unstructured EHR, malnutrition 
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1. Introduction 

Malnutrition is a serious health problem with many negative health consequences for older people, 

such as a weakened immune system and impaired cognition [1]. It may also contribute to 

vulnerabilities of infections, anemia and other diseases [2-4]. Malnutrition has been identified as 

a key area for urgent review by the Australian government for residential aged care [5] with 

identification of poor nutrition and weight loss as important indicators measuring the quality of 

care in residential aged care facilities (RACF). Healthcare professionals are requested to regularly 

screen older adults for early detection of malnutrition [6, 7]. To date, the common malnutrition 

screening tools used at RACFs include Mini Nutritional Assessment (MNA) and Subjective Global 

Assessment (SGA). However, since using these tools are time-consuming, they were not 

consistently applied [7]. Predicting and addressing malnutrition can lead to better health outcomes 

and improved quality of life [8]. Thus, it is crucial to develop new methods to improve the 

efficiency and effectiveness in malnutrition detection. However, scarcity of reliable datasets 

detailing the nutritional intake, lack of domain-specific knowledge models, and the novelty of the 

transformer approach have been primary obstacles to the development of a malnutrition prediction 

model for older people. 

1.1 Electronic health records 

Electronic health records (EHRs) have been widely adopted in RACFs in Australia to document 

clients’ diagnosis, health assessment, nursing care plans, personal preferences, activities of daily 

living and care received [9]. The datasets in these EHRs can be classified as structured data and 

unstructured data. The structured data include client demographics and diagnosis that are recorded 

in structured tables. The unstructured data include nursing care plans, assessment records and free-
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text clinical notes [10]. Most information about clients in RACFs, including nutritional 

information, is recorded in unstructured progress notes in EHR. Since EHR data is captured real-

time in the care service delivery process, models trained on EHR can be more readily applied to 

clinical practise [11]. This provides the opportunity for natural language processing (NLP) to 

extract insights from the unstructured data in EHR for aged care services.  

1.2 Natural language processing 

Recent advancements in artificial intelligence, more specifically NLP, have opened doors for 

extracting relevant information and automating clinical diagnoses and predictions using language 

models on patient EHR [12-14]. One of NLP’s recent advancements is the word embedding 

technique, which is a way of representing text as multi-dimensional vectors. Models such as GloVe 

[15] and word2vec [16] apply such text representation and have achieved promising results in 

different fields [17, 18]. However, these models lack context awareness, a core competency in text 

analysis. 

1.3 Large language models 

The emergence of the encoder-based large language models (LLM) such as Bert [19] and 

RoBERTa [20] have brought in positive disruption to the field of NLP. They utilize contextualized 

embeddings that account for both the prior and subsequent contexts of a token, adjusting its weight 

vector accordingly. By analyzing relationships between all pairs of words, LLMs introduce 

context-awareness, addressing the weakness of previous models. LLMs also have the ability to 

transfer previously acquired knowledge, thus are more efficient and have achieved state-of-the-art 

(SOTA) performance in many general downstream tasks with minimal to no need to modify 

architecture [21]. They can be further fine-tuned on specific corpus for specific-domain tasks. This 
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has enabled them to be successfully fine-tuned for various complex applications. Previous studies 

have demonstrated that LLMs can be trained on medical corpus to achieve high reliability in 

medical diagnoses and predictions [22-24]. While LLMs have demonstrated their utility in 

extracting data from public health data sets, their practical application in specific clinical tasks 

within real clinical settings, using clinic data, remains limited [25, 26]. 

1.4 RoBERTa 

RoBERTa is a robust encoder-based LLM that is further optimized from its predecessor BERT 

model for better performance on a variety of NLP tasks [20]. It has achieved SOTA performance 

after being trained with massive text data with increased parameters, larger batch size and learning 

rate. RoBERTa utilizes byte-level tokenization instead of word tokenization in BERT. In addition, 

it randomizes the masking place, which eliminates the chance for the model to memorize the 

training data. Previous studies found that encoder-based LLMs such as RoBERTa outperform or 

at least are as effective as decoder-based LLMs, e.g. ChatGPT, in classification task [27, 28]. 

RoBERTa’s architecture is highly suitable for fine-tuning on domain specific data sets. It has 

smaller model size, requires less computational power and memory, and often provides faster 

inference times compared to larger models like Llama model [29] or ChatGPT [30]. These make 

it more feasible for deployment in various health systems and devices [31]. Therefore, we choose 

RoBERTa as the candidate model for our task of generating knowledge about nutrition care in 

RACFs over other models. 

1.5 Objective 

Since, to date, there are no models that have been reported to be specifically fine-tuned for 

classifying and predicting malnutrition in older people, this study aimed to conduct NLP on free-
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text notes in the RAC EHR for two downstream tasks: (1) identifying malnutrition notes and (2) 

malnutrition prediction. We fine-tuned an encoder-based LLM, RoBERTa checkpoint, to produce 

a nutrition domain-specific LLM in Australian RAC setting. We evaluated the performance of our 

model in comparison with other baseline models, including BioClinicalBERT and RoBERTa. In 

addition, free text nursing notes within EHR often contain extensive and detailed documentation, 

however RoBERTa has a maximum sequence length limitation of only 512 tokens. To address this 

challenge, we developed a new method for processing long notes with length over the 512 token 

limit. 

2. Methodology 

2.1 Dataset 

The dataset was obtained from 40 aged care facilities in the state New South Wales (NSW), 

Australia. Overall, 4,405 de-identified clients’ data was included in this analysis. The data was 

extracted from 1,616,820 notes of dietitians and nursing care staff recorded between Jan 2019 and 

October 2020, with an average number of 366 notes for each client. The Human research ethics 

approval for this study was granted by the Human Research Ethics Committee, the University of 

Wollongong and the Illawarra Shoalhaven Local Health District (Year 2020). 

Table 1:The proportion of malnourished clients in the studied population (n = 4,405) 

 Well-nourished (n=3,204) Malnourished (n = 1,201) 

Age 

Mean (SD) 

85.2 (8.9) 

Mean (SD) 

85.1 (8.9) 

Female 

Male 

2,071 (74%) 

1,133 (70%) 

726 (26 %) 

475 (30 %) 
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2.2 Data cleaning 

All notes were cleansed of noise, including removing white spaces, special symbols and unwanted 

characters that do not contribute to the meaning of the text.  

2.3 Overview of the methodology 

Figure 1 depicts our NLP pipeline. It consists of three pathways: Path 1, fine-tuning a domain 

specific LLM; Path 2, finetuning a malnutrition note identification model; Path 3, finetuning 

malnutrition prediction model. 

 
Fig. 1: An overview of the model development pathway. 

 Path 1: Fine-tuning a RAC domain-specific model 

Path 2: Fine-tuning a malnutrition note identification model 

Path 3: Fine-tuning a malnutrition prediction model 
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2.4 Path 1: Fine-tuning domain-specific embedding model 

2.4.1 Dataset construction 

We randomly selected 500,000 free-text nursing notes with an average token length of 64. The 

training dataset included 21,969,925 words, which we considered adequate for domain-specific 

fine-tuning as more notes do not necessarily lead to better results [32]. We then extracted the raw 

text to a single text file and processed it into chunks of 512 tokens. This chunking procedure 

resulted in a training set containing 62,273 text chunks (rows). 

2.4.2 Model fine-tuning 

The weights of the baseline RoBERTa model checkpoint (“roberta-base”) downloaded from the 

Huggingface transformer library [33] contain substantial information regarding the English 

language corpus. This substantially reduces the fine-tuning time adapting RoBERTa to our specific 

task than training a model entirely from scratch. However, the corpus of nursing progress notes 

contains many RAC domain-specific terms, abbreviations and unconventional expressions that do 

not present in general English, which could affect the performance of the baseline RoBERTa 

model. Therefore, we chose to train a RAC domain-specific model initialized from RoBERTa on 

our nursing note dataset to improve the model’s ability to understand the words and phrases used 

in the RAC nursing corpus. The task for the model is to predict words randomly masked out of an 

input chunk. The knowledge of the resulting model can be transferred and further trained with an 

additional output layer to create models for various downstream tasks. 

Tokenization was conducted on the nursing text corpus using a pre-trained byte-level 

tokenizer to fit with the RoBERTa model. We randomly split the dataset into 80% training and 

20% validation sets. Then, we set the masking probability to 15% of the words in each input 
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sequence, like the original RoBERTa training. We used whole word masking instead of token 

masking for better results [34] (Supplementary Table S1). In addition, we randomize the masking 

with each batch to avoid over-memorization. After that, we trained the model with the following 

hyperparameters: learning rate of 1e-4, batch size of 32, and weight decay of 0.01. The model was 

trained until validation loss started to converge (Supplementary Figure S1). The embeddings of 

this model were then utilized for the two downstream tasks: malnutrition note identification and 

malnutrition prediction. 

2.5 Path 2: Downstream task 1: Fine-tuning a malnutrition note identification model 

2.5.1 Dataset construction 

Transformer models need a considerable amount of labelled data to boost their performance. 

However, to the best of our knowledge, there is not any publicly available, malnutrition-labelled 

data; therefore, we engaged three nursing domain experts to build a malnutrition-specific labelled 

dataset. To accomplish this, we developed process to identify and label records with malnutrition 

[35]. We first constructed a rule-based model to identify all malnutrition notes in the dataset. Using 

these rules, we extracted 2,474 notes belonging to 1,283 clients. Manual analysis and screening of 

all extracted notes identified 196 notes that did not fit the malnutrition definition, but either 

reported planned weight loss or invalid weight recording due to scale or typing errors. At the end, 

our manually labelled ground truth training dataset contained 2,278 notes reporting malnutrition 

(labelled: 1) and 15,000 notes with normal nutrition status (labelled: 0).  

2.5.2 Model finetuning 

We further fine-tuned our model with the embeddings from the RAC domain-specific LLM that 

we built in Path 1 to identify notes related to malnutrition (see Figure 1). We divided the dataset 
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into 85% training and validation datasets, and 15% for hold-out testing set. The hyperparameters 

included learning rate of 3e-5, batch size of 16, weight decay of 0.01 and 50% of dropout rate. We 

used binary cross-entropy loss with positive weights and the mean pooling output of the last hidden 

state. 

2.6 Path 3: Downstream task 2: Fine-tuning a malnutrition prediction model 

2.6.1 Dataset construction  

The dataset for this task consisted of the original weekly nursing review notes and the malnutrition 

risk factors extracted from these notes. Since malnutrition is a health condition that develops over 

time, to capture each client’s health changes over time, we approached this task as a time series 

data analysis by extracting weekly review notes of each malnourished client recorded in the 30 

days prior to the onset of malnutrition. We organized each client’s notes chronologically, with the 

earliest note appearing first in the sequence and the most recent note appearing last. We followed 

the same procedures to organize data for clients without malnutrition.  

In addition to text-based notes, we also extracted malnutrition risk factors for each client from 

the notes using the SciBert model for named entity recognition with UMLS linker [36]. In our 

previous study, we identified 46 malnutrition risk factors in each client’s notes such as poor 

appetite, suboptimal oral intake and dysphagia [35]. Moreover, we applied a negation technique 

to distinguish whether a factor mentioned in a note was confirmed or negated [37]. For instance, 

if a note has the following sentence "no sign of cancer", the algorithm will correctly identify this 

as a negation and not a confirmed factor. Finally, we combined each client’s notes and the risk 

factors into one file. We added the notes as raw text data and the risk factors as one-hot encoding 
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tensor, with '0' indicating the absence of the factor and '1' indicating its presence. After that, we 

used notes and factors as the dataset for the malnutrition prediction model. 

2.6.2 Model finetuning 

Our model was initialized from the RAC domain-specific model fine-tuned in Path 1. The training 

dataset consisted of 862 aggregated notes (rows) of malnourished clients and 2,298 aggregated 

notes (rows) of well-nourished clients. We split the data into 85% for training and validation, and 

15% for hold-out testing. Hyperparameters included a learning rate of 3e-5, batch size of 16, 

weight decay of 0.01 and 50% dropout rate. We used binary cross-entropy loss with positive 

weights. We concatenated the output with the structured data (malnutrition risk factors). We added 

to the concatenated data a fully connected layer, with a Sigmoid activation function applied to 

obtain the final output (Supplementary Figure S2). 

2.6.3 Addressing the 512 maximum length challenge 

In this downstream task, as opposed to Task 1, the notes were longer due to the inclusion of 

information gathered over a four-week period. Therefore, we encountered long notes spanning a 

four-week duration, with an average 644 token length (95% confidence interval:627.17 -  663.31). 

Therefore, the length of certain records exceeded the maximum sequence length accepted by 

RoBERTa and BERT, which is 512 tokens.  

For these long records, we truncated and padded the text sequence into equal 512 token parts. 

Each part starts with a start sequence token and concludes with an end sequence token. Padding 

token was added if the last part has less than 512 tokens. Attention masks were also manually 

added as (1), informing the model to pay attention to the token, or (0), suggesting the model to 

ignore the token. 
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In the model forward function, the last hidden state embeddings of each token, generated by 

the model, are selectively emphasized through an attention mask. Then the sum of the masked 

embeddings is calculated. Only tokens with an attention mask value of 1 are considered; tokens 

with an attention mask of 0, which indicated padding token, are ignored. In addition, the model 

keeps track of the number of tokens. To capture the main ideas of a note, for short notes, 

embeddings are averaged across all tokens (Figure 2A). Conversely, as longer notes are divided 

into several parts with equal length of 512 tokens, embedding tokens are aggregated across all 

parts (Figure 2B). 

All tasks were evaluated using precision, recall, F1-score, specificity, the area under the 

precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve 

(AUROC). To better assess the model’s robustness, generalizability and avoid finetuning 

instability [38], we performed 5-fold cross-validation in each downstream task. We kept the 

number of epochs in each fold to a low number (four) to avoid the possibility of overfitting the 

data. In each fold, the model with the least validation loss was utilized for testing on the test dataset. 

We calculated the cross-validation performance by taking the average of the k performance 

estimates of all measures (F1-score, recall, etc.) obtained from the testing sets using the arithmetic 

mean. Additionally, we calculated the confidence interval for each measure. 

This study was implemented using Python 3.10.11, PyTorch 2.0.1, transformers 4.29.2 

(Huggingface) and Scikit-learn 1.2.2. Our models were trained on the NVIDIA Tesla T4-16GB 

graphics processing unit (GPU).  
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Fig. 2: Methods developed for processing long notes with more than 512 tokens. (A) Example of a nursing note with 

sequence length less than 512 tokens; (B) Example of a nursing note with sequence length of 1536 tokens. This note 

is truncated into 3 parts each with a sequence of 512 tokens.  

 

A 

B 
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3. Result 

We compared the results of our domain specific LLM to the baseline models, RoBERTa, and 

BioClinicalBERT. In the first downstream task (malnutrition note identification), LLMs had very 

similar results, with RAC domain specific LLM producing a slightly better F1-score of 0.966, 

followed by RoBERTa, which achieved a comparable F1-score of 0.964. Then, BioClinicalBERT 

had an F1-score of 0.960 (Table 2). 

Table 2: Performance of the five machine learning models on the task of identifying malnutrition notes 

In the second downstream task of malnutrition prediction, LLMs demonstrated superior 

performance to the older techniques. RAC domain specific LLM with the risk factor layer was the 

top-performing model with an F1-score of 0.687. It was followed by our domain specific LLM 

without the risk factors, which had an F1-score of 0.655. Next, RoBERTa had an F1-score of 

0.614. Then, BioClinicalBERT achieved an F1-score of 0.582 (Table 3). Supplementary Figures 

(S3 – S9) show the area under the curve plots for each model. 

 

 

Model 
Precision 

(95% CI) 

Recall 

(95% CI) 

F1-Score* 

(95% CI) 

Specificity 

(95% CI) 

AUPRC* 

(95% CI) 

AUROC* 

(95% CI) 

BioClinicalBERT 
0.932 

(0.91 – 0.95) 

0.988 

(0.98 – 0.99) 

0.960 

(0.95 – 0.97) 

0.990 

(0.99 – 0.99) 

0.966 

(0.95 – 0.98) 

1.0 

(1.0 – 1.0) 

roberta-base 
0.934 

(0.92 – 0.95) 

0.994 

(0.99 – 1.0) 

0.964 

(0.96 – 0.97) 

0.990 

(0.99 – 0.99) 

0.958 

(0.94 – 0.97) 

1.0 

(1.0 – 1.0) 

RAC domain-specific 

LLM 

0.942 

(0.94 – 0.95) 

0.994 

(0.99 – 1.0) 

0.966 

(0.96 – 0.97) 

0.990 

(0.99 – 0.99) 

0.978 

(0.97 – 0.99) 

1.0 

(1.0 – 1.0) 

* F1-score computed using 0.5 threshold 

* AUPRC and AUCROC computed across various threshold values 
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Table 3: Results of the malnutrition prediction model 

4. Discussion 

The aim of this study was to develop an encoder-based RAC domain specific LLM to accurately 

identify clients with malnutrition in EHR and develop a model capable of predicting malnutrition 

in older people one month before its onset. We first utilized our RAC domain-specific LLM, 

initialized from the well-known RoBERTa model and further fine-tuned on nursing progress notes. 

Afterwards, we employed the embedding weights generated from the proposed model for two 

subsequent downstream tasks. We compared the performance of different parameters on three 

models, BioClinicalBERT, roberta-base and our domain-specific LLM. The results demonstrated 

the advantage of utilizing domain-specific embeddings. It is worthy to note that this is the first 

study to utilize LLMs on free text nursing notes to predict malnutrition in older people, although 

it has been a health risk that has long plagued the care staff members and has casted a negative 

impact on care quality [1]. This study has also developed a method for processing long notes (> 

Model 
Precision 

(95% CI) 

Recall 

(95% CI) 

F1-Score* 

(95% CI) 

Specificity 

(95% CI) 

AUPRC* 

(95% CI) 

AUROC* 

(95% CI) 

BioClinicalBERT 
0.554 

(0.51 – 0.59) 

0.617 

(0.54 – 0.70) 

0.582 

(0.54 – 0.62) 

0.787 

(0.74 – 0.84) 

0.613 

(0.56 – 0.67) 

0.771 

(0.74 – 0.80) 

roberta-base 
0.579 

(0.50 – 0.66) 

0.662 

(0.59 – 0.74) 

0.614 

(0.58 – 0.65) 

0.789 

(0.71 – 0.87) 

0.677 

(0.66 – 0.70) 

0.803 

(0.79 – 0.82) 

RAC domain-specific 

LLM 

0.592 

(0.50 – 0.68) 

0.751 

(0.64 – 0.86) 

0.655 

(0.62 – 0.69) 

0.766 

(0.63 – 0.90) 

0.734 

(0.67 – 0.80) 

0.843 

(0.82 – 0.87) 

RAC domain-specific 

LLM + risk factors 

0.615 

(0.53 – 0.70) 

0.790 

(0.71 – 0.87) 

0.687 

(0.65 – 0.72) 

0.780 

(0.67 – 0.89) 

0.735 

(0.68 – 0.79) 

0.858 

(0.83 – 0.88) 

* F1-score computed using 0.5 threshold 

* AUPRC and AUCROC computed across various threshold values 
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512 tokens), which is crucial and particularly relevant in health contexts where it is typical to 

encounter long and detailed documentation. 

For the first downstream task, there have been very few attempts to identify malnutrition notes 

in EHR in the literature. One attempt to classify malnutrition notes applies conditional random 

fields technique to nursing notes [39]. However, the study reported that the model performed 

poorly on malnutrition and had a low F1-score of 0.39. The authors of the study stated that 

classifying malnutrition notes was very challenging which led to the low accuracy of their model. 

Another attempt is our previous work to classify the malnutrition notes using a rule-based model 

which achieved a high-level performance; however, the development of the rule-base method was 

time-consuming and labor-intensive [35]. To address this limitation, we adopted a specific domain 

LLM in this study. The process of fine-tuning and evaluating the model was much more efficient 

than the rule-based method. 

In accordance with the previous reports [22, 40, 41], LLMs significantly outperformed other 

comparative models with our RAC domain-specific LLM achieving an F1-score of 0.966. 

However, all LLMs models yielded comparable performance in this task. We argue that this can 

be attributed to the notable difference in notes between the positively labelled and negatively 

labelled instances in the dataset compared to those in the second task.  

For the second downstream task of malnutrition prediction, to our knowledge, this is the first 

study in predicting malnutrition for older people in RACFs applying a transfer learning approach 

to EHR. Once again, our RAC domain-specific LLM notably outperformed other LLMs and had 

the highest F1-score of 0.655. This illustrates the importance of fine-tuning a foundational LLM 

on a domain-specific corpus. In addition, combining a layer of structured data with the output of 

the note-based model increased the performance of the model, as evidence by an increased F1-
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score (0.687). Despite that, the model did not achieve a high F1-score like in the first task, which 

is arguably because malnutrition is a health risk that is influenced by various factors, many of 

which are prevalent in all clients and are not specific for clients with malnutrition. Therefore, 

accurately predicting malnutrition is still a complex and challenging mission [6, 42].  

Our findings in this study will be practically and clinically important for the malnutrition 

management of older people in RACFs. We would also stress that our LLM is not a replacement 

for already existing reliable screening tools. Instead, it could be incorporated into the nursing care 

process to help nurses and clinicians efficiently identify clients at risk of malnutrition by automatic 

screening of their EHR data. This will enable them to implement the tailored malnutrition 

prevention and intervention actions accordingly. In addition, our study demonstrates the feasibility 

of using a robust, well-known LLM such as RoBERTa can facilitate researchers to produce the 

optimal model for various downstream tasks.  

The area of LLMs is evolving at a rapid pace; recently, the decoding models such as GPT-3.5 

and GPT-4, though with widely doubted hypes, have revolutionized the whole field of NLP. 

However, there remains a paucity of usable models for health care systems [26]. We intend to 

compare the prediction ability of our encoder-based LLM with one of the more recent and 

advanced decoder-based LLMs such as Llama 2 [29]. We will also further gather nursing notes to 

improve the performance of the model, particularly for the second task. 

4.1 Limitation 

This study has two notable limitations. Firstly, LLMs typically require substantial training data to 

achieve high levels of accuracy [15]. In the case of our malnutrition prediction task, the dataset 

size is relatively modest, potentially impacting the model’s predictive performance. The 

availability of a larger dataset could lead to improved accuracy and more robust predictions. 
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Secondly, although our models are trained on data sourced from a diverse array of 40 RACFs, it’s 

crucial to acknowledge that these facilities are all part of a single organization. Consequently, the 

applicability of our models might be constrained when used in RACFs with differing strategies 

and guidelines for electronic data collection. The lack of diversity in institutional practices could 

potentially hinder the models’ generalizability to a broader range of settings.  

5. Conclusion 

To address the critical malnutrition issue in older people, we proposed an encoder-based RAC 

domain-specific LLM that is fine-tuned from the foundation LLM, RoBERTa model, on RAC 

domain-specific nursing text. The resulted embeddings were successfully utilized for two 

downstream tasks: malnutrition note identification and malnutrition prediction. Our findings 

demonstrate that fine-tuning a foundation LLM with domain-specific corpus can improve the 

performance of the foundation models. In addition, combining risk factors as a structured data with 

a text model enhance model performance. This study also developed a method to truncate long 

text into parts that fit into the 512-token limit of RoBERTa model. 
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6. Supplementary materials 

 

Supplementary Table S1: Example of tokenization and 15% whole word masking 

Original 
Client had physical impairment and unsteady gait related to Parkinson disease and has high 

malnutrition risk. 

Toknized 
'ĠClient', 'Ġhad', 'Ġphysical', 'Ġimpairment', 'Ġand', 'Ġunst', 'ead', 'y', 'Ġg', 'ait', 'Ġrelated', 'Ġto', 

'ĠParkinson', 'Ġdisease', 'Ġand', 'Ġhas', 'Ġhigh', 'Ġmalnutrition', 'Ġrisk', '.' 

Masking 

(Whole word 

masking is in red 

colour) 

Client had physical impairment<mask><mask><mask> gait<mask> to Parkinson disease and 

has high malnutrition <mask>. 
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Supplementary Figure S1. The RAC domain-specific LLM training, (A) validation loss, 

(B) train loss 
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Supplementary Figure S2. The Malnutrition 

prediction model 
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Supplementary Figure S3. AUPRC (A) and AUROC (B) of malnutrition note identification model -

BioClinicalBERT  
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Supplementary Figure S4. AUPRC (A) and AUROC (B) of malnutrition note identification model – 

RoBERTa base  
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Supplementary Figure S5. AUPRC (A) and AUROC (B) of malnutrition note identification model - RAC 

domain-specific LLM 
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Supplementary Figure S6. AUPRC (A) and AUROC (B) for malnutrition prediction model - 

BioClinicalBERT 
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Supplementary Figure S7. AUPRC (A) and AUROC (B) for malnutrition prediction model - RoBERTa 

base 
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Supplementary Figure S8. AUPRC (A) and AUROC (B) for malnutrition prediction model - RAC domain-

specific LLM 
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Supplementary Figure S9. AUPRC (A) and AUROC (B) for malnutrition prediction model - RAC domain-

specific LLM with risk factor layer 
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