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Abstract 

Stress can adversely impact health, leading to issues like high blood pressure, heart diseases, and a compromised 

immune system. Consequently, using wearable devices to monitor stress is essential for prompt intervention and 

effective management. This study investigates the efficacy of wearable devices in the early detection of 

psychological stress, employing both binary and five-class classification models. Significant correlations were 

observed between stress levels and physiological signals, including Electrocardiogram (ECG), Electrodermal 

Activity (EDA), and Respiration (RESP), establishing these modalities as reliable biomarkers for stress detection. 

Utilizing the publicly available Wearable Stress and Affect Detection (WESAD) dataset, we employed two 

ensemble methods, Majority Voting (MV) and Weighted Averaging (WA), to integrate these signals, achieving 

maximum accuracies of 99.96% for binary classification and 99.59% for five-class classification. This integration 

significantly enhances the accuracy and robustness of the stress detection system. Furthermore, ten different 

classifiers were evaluated, and hyperparameter optimization and K-fold cross-validation ranging from 3-fold to 

10-fold were applied. Both time-domain and frequency-domain features were examined separately. A review of 

commercially available wearable devices supporting these modalities was also conducted, resulting in 

recommendations for optimal configurations for practical applications. Our findings highlight the potential of 

multimodal wearable devices in advancing the early detection and continuous monitoring of psychological stress, 

with significant implications for future research and the development of improved stress detection systems. 

Keywords: Wearable devices, psychological stress detection, Electrocardiogram (ECG), Electrodermal Activity 

(EDA), Respiration (RESP), ensemble methods, multimodal integration. 

1. Introduction 

Stress, a condition of mental strain or pressure due to upsetting conditions, is a major contributor to human 

physiology and pathophysiology. It has been linked to several conditions, such as autoimmune diseases, metabolic 

syndrome, sleep disorders, and suicidal thoughts and inclination [1] Over 70% of Americans regularly experience 

stress. Chronic stress can severely impact physical, mental, and social behaviors, potentially leading to numerous 

serious human disorders [2]. It is associated with the development of cancer, cardiovascular disease, depression, 

and diabetes, and thus is deeply detrimental to physiological health and psychological wellbeing [3], [4]. 

The response to stressful stimuli is based on a complex brain network, which requires well-tuned, functional 

neuroanatomical processing to detect and interpret the event as a potential threat to humans. However, the 

difficulty with the diagnosis and treatment of stress disorders lies in the complexity of the system and in the fact 

that stressors trigger different structures of the brain network [1]. Traditional diagnostic methods, such as self-

reported questionnaires and physiological measurements, often lack the accuracy and objectivity needed for 

effective stress management [5]. Furthermore, these methods provide spontaneous measures, and they are not best 

suited for long-term monitoring. 

Research indicates stress significantly contributes to cardiovascular disease by triggering pathophysiological 

changes such as increased sympathetic activation, heightened blood pressure, and inflammatory responses. These 

stress-induced mechanisms are particularly critical in individuals with pre-existing cardiovascular conditions, 

emphasizing the need for targeted preventive measures [6]. 

Given the prevalence and impact of stress, developing robust methods for the rapid and accurate detection of 

human stress is of paramount importance. This is where Artificial Intelligence (AI) and Machine Learning (ML) 

come into play. AI and ML have been able to predict stress and detect the brain’s normal states vs. abnormal states 

(notably, in post-traumatic stress disorder (PTSD) with an accuracy around 90% [1], [7]. Recent advancements in 
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ML techniques have further enhanced their predictive capabilities, making them valuable tools for stress detection 

[8]. 

Despite these advancements, several challenges and limitations exist in implementing ML for stress detection. 

Issues such as data privacy, the requirement for large and diverse datasets, and potential biases in algorithms need 

to be addressed [9]. Given that physiological signals have been demonstrated to be dependable indicators of stress 

[10], integrating multi-modal data (e.g., physiological signals, behavioral data, and environmental factors) could 

improve the robustness and accuracy of ML models [11]. 

The potential benefits of accurate stress detection using ML are extensive, including early intervention, 

personalized treatment plans, and improved mental health outcomes. To fully realize these benefits, future research 

should focus on refining ML algorithms, addressing ethical concerns, and developing user-friendly applications 

for both clinicians and patients [12]. In summary, while the application of ML in stress detection is promising, 

continuous research and development are crucial to overcome existing limitations and fully leverage these 

technologies to improve mental health care [13]. 

Given the critical importance of accurate stress detection and the potential of AI and ML technologies, it is 

essential to review the existing literature on these topics. The following section will provide a comprehensive 

examination of current research, highlighting key findings, methodological approaches, and the evolving 

landscape of AI and ML applications in stress detection. This review will also identify gaps in the literature and 

propose directions for future research, setting the stage for a deeper understanding of how these technologies can 

be harnessed to address the complexities of stress and its impact on human health. 

2. Literature Review 

Smets et al. (2016) [14] explores the application of machine learning techniques in detecting psychophysiological 

stress by analyzing various physiological signals. The research, conducted in a controlled laboratory setting, 

examines Electrocardiogram (ECG), Galvanic Skin Response (GSR), temperature, and respiration during a stress 

test. By comparing six different machine learning techniques, the study identifies personalized dynamic Bayesian 

networks as the most effective, achieving a prediction accuracy of 84.6%. The study's approach of using both 

general and personal models to enhance classification accuracy is noteworthy. However, the research is confined 

to a controlled environment, which may not accurately represent real-world stress conditions. Furthermore, the 

study does not investigate the impact of stressor intensity or the potential for real-time stress monitoring outside 

the laboratory setting. Despite these limitations, the findings underscore the potential of machine learning in 

improving the precision of stress detection tools and contributing to the development of responsive stress 

management strategies. 

Gjoreski et al. (2017) [15] explored a novel method for detecting stress using a wrist-worn device in real-life 

settings, combining machine learning with a context-based approach. This study employed multiple classifiers, 

including a Support Vector Machine (SVM) classifier, which achieved a 71% accuracy within a six-minute 

window. It tested three-class classification and utilized leave-one-subject-out (LOSO) cross-validation to ensure 

robustness. The research integrated data from a laboratory stress detector, an activity recognizer, and a context-

based stress detector, aiming to provide continuous and unobtrusive stress monitoring that adapts to various 

activities and environmental factors. Despite its promising approach, the study acknowledges the challenges of 

accurately detecting stress in diverse real-life conditions and suggests the need for further refinement and broader 

testing. 

Schmidt et al. (2018) [16] provide a significant contribution to affect recognition by offering a publicly available 

dataset specifically tailored for wearable stress detection. This multimodal dataset includes physiological and 

motion data collected from both wrist- and chest-worn devices during a controlled lab study involving 15 subjects. 

Key modalities encompassed include blood volume pulse (BVP), electrocardiogram (ECG), electrodermal activity 

(EDA), electromyogram (EMG), respiration (RESP), body temperature (TEMP), and three-axis acceleration 

(ACCE). Notably, the dataset was designed to bridge gaps in available standard datasets by including multiple 

affective states, such as neutral, stress, and amusement, and supports the development of automated stress 

monitoring systems. To validate their approach, the researchers employed the LOSO cross-validation method. 

They report a classification accuracy of 93.12% using a linear discriminant analysis classifier (LDA) for binary 

stress detection. This high level of accuracy highlights the robustness of the dataset and the effectiveness of the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 21, 2024. ; https://doi.org/10.1101/2024.07.19.24310732doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.19.24310732


3 

 

LDA classifier in stress and affect detection. However, the study does present certain limitations. It does not 

explore the impact of varying window sizes for data analysis, which could affect the performance and applicability 

of the classification algorithms in real-world scenarios where stress levels can fluctuate over different periods. 

Can et al. (2019) [17] developed a portable stress detection system that utilizes physiological data gathered from 

discreet smart wearables. The system incorporates techniques for artifact removal and feature extraction tailored 

for real-world applications. They gathered physiological signals and questionnaire data from 21 participants using 

Samsung Gear S, S2, and Empatica E4 sensors. The analysis, employing a 10-fold cross-validation for robustness, 

revealed that the Multilayer Perceptron (MLP) algorithm yielded the highest accuracy of 92.19% using heart rate 

(HR) and ACCE data from the Empatica E4. However, a limitation of this study is its focus on binary stress 

classification, rather than employing a multi-class classification approach that could potentially offer a more 

nuanced understanding of stress levels. 

Siirtola et al. (2020) [18] utilizes the publicly available AffectiveROAD dataset, which includes data collected via 

the Empatica E4 sensor. In their experiments, the integration of features from blood volume pulse (BVP) and skin 

temperature (SKT) yielded the most favorable results. Using LOSO cross-validation, the study achieved an 

average accuracy of 82.3% with a bagged tree-based ensemble. However, a notable limitation of the study is the 

absence of class-balancing techniques, which could potentially affect the reliability and generalizability of the 

findings. 

Kaczor et al. (2020) [19] address physician stress in emergency medicine through the objective monitoring of 

physiological indicators and digital biomarkers using wearable sensors. Their innovative approach deviates from 

traditional subjective self-reports by employing machine learning algorithms, to determine stress episodes. The 

study achieves a prediction accuracy of 64.5% using a Naive Bayes classifier within a 20-minute pre-stress episode 

window. Notably, the research employs robust validation techniques, including 10-fold cross-validation and 

Receiver Operating Characteristic (ROC) curve analysis, and tests multiple classifiers to ensure reliability. 

However, the study is limited by its exclusive use of binary classification, failing to account for varying stress 

levels. It does not explore the effects of different time window sizes on prediction accuracy. Despite these 

limitations, the findings highlight the potential of wearable sensors in facilitating real-time stress interventions 

and improving the well-being of high-stress professionals. 

Iqbal et al. (2021) [20] investigated the utility of wearable sensors for the real-time monitoring of stress. The study 

utilized the WESAD dataset. The study applied logistic regression to assess features derived from 

electromyography (EMG), electrodermal activity (EDA), respiration (RESP), and heart rate (HR). The logistic 

regression model achieved an accuracy of 85.71% in binary classification of stress states. This high level of 

accuracy demonstrates the potential of wearable devices in effectively identifying stress. Additionally, the validity 

of the approach was confirmed through 14-fold cross-validation, underlining the efficacy of logistic regression in 

processing complex bio physiological data for stress detection. 

Iqbal et al. (2022) [21] delve into advanced strategies for continuous and real-time stress monitoring. Their 

research emphasizes the use of wearable sensor technology, with a particular focus on heart rate (HR) as a vital 

physiological parameter. Employing a Random Forest classifier integrated with 10-fold cross-validation, they 

analyze the SWELL-KW dataset. This technique not only enhances the robustness of their findings but also 

facilitates a significant binary classification of stress, achieving an accuracy of 75%. 

Ehrhart et al. (2022) [22] highlight the significant advancements in human-centered applications leveraging 

wearable sensors and machine learning, particularly deep learning, for stress detection through physiological 

signals. They specifically utilized a stacked Long Short-Term Memory (LSTM) and a Fully Convolutional 

Network (FCN) classifier, employing features based on Galvanic Skin Response (GSR) and Skin Temperature 

(SKT), to achieve an impressive binary classification accuracy of 86.76% using tests on unseen cross-validation. 

The authors discuss the challenges of acquiring large, labeled datasets in this domain, which often leads to 

imbalanced data for training robust models. To address these limitations, they explored the use of a Conditional 

Generative Adversarial Network (cGAN) to augment the dataset, effectively enhancing its volume and diversity. 

This approach not only mitigated data imbalance but also significantly improved classifier performance, 

demonstrating that the synthetic data are indistinguishable from real data in their application. Despite these 

advancements, the study is limited by the absence of multi-class classification capabilities, which could potentially 

enhance the applicability of the stress detection models further. 
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Kuttala et al. (2023) [23] conducted a pivotal study on binary stress classification utilizing advanced deep learning 

techniques. The research spotlighted a critical issue: individuals experiencing stress often fail to recognize their 

stress levels, thus underlining the necessity for early and precise stress detection mechanisms. In their innovative 

approach, they harnessed multimodal hierarchical CNN feature fusion, significantly enhancing stress detection 

capabilities. This technique involved the integration of low, mid, and high-level features from Convolutional 

Neural Networks (CNNs), with concatenated multi-level CNN features for each of two key physiological signals: 

Electrodermal Activity (EDA) and Electrocardiogram (ECG). These features were then synergistically fused using 

the Multimodal Transfer Module (MMTM). Their comprehensive analysis spanned both raw frequency domain 

data and targeted frequency band features to ascertain the model’s effectiveness. The empirical testing of the 

model across four benchmark datasets—ASCERTAIN, CLAS, MAUS, and WAUC—involved an initial training 

phase with 36, 18, 43, and 42 subject samples, respectively, followed by a testing phase comprising 9, 4, 16, and 

16 subject samples from each dataset. The results were impressive, demonstrating high accuracies of 97.61% on 

ASCERTAIN, 95.94% on CLAS, 88.75% on MAUS, and 83.96% on WAUC. Despite these promising outcomes, 

the study acknowledged the need to expand the studies on hierarchical feature fusion and different multi-modal 

fusion techniques on hierarchical features. 

Kalra et al. (2023) [24] conducted a study on pulse rate variability (PRV) using photoplethysmography (PPG) to 

monitor 15 subjects across five cognitive states: relaxation, deep breathing, and three varying levels of stress-

related tasks. They discovered 18 significant features, split evenly between the time and frequency domains, which 

all showed statistical significance (p < 0.05) according to the Friedman test. Initially, a multi-layer perceptron 

(MLP) model was employed, achieving a classification accuracy of 85.1%±1.1%. This was further improved to 

91%±1.1% when deep neural networks (DNN) were applied. A potential limitation is its broader focus on multiple 

cognitive states rather than exclusively on stress. This may dilute the specific insights and nuances related to stress 

detection and analysis, potentially impacting the specificity of the findings related to stress-related pulse rate 

variability. 

Greco et al. (2023) [25]  developed a novel methodology for detecting acute stress using only electrodermal 

activity (EDA) signals. This approach utilized a Support Vector Machine with a Recursive Feature Elimination 

algorithm (SVM-RFE) for classifying stress at an individual level. Employing a single-sensor system, the method 

demonstrated robustness to noise, incorporated rigorous phasic decomposition, and implemented unbiased 

multiclass classification. The methodology was tested on 65 volunteers subjected to various acute stress stimuli 

through a modified Trier Social Stress Test. For binary classification, the authors reported successful stress 

detection with an average accuracy of 94.62%. Furthermore, they proposed a four-class pattern recognition system 

capable of distinguishing between non-stressed states and three different stress conditions, achieving an average 

accuracy of 75% using leave-one-subject-out (LOSO) cross-validation. These results, obtained under controlled 

conditions, lay the groundwork for future applications in more ecological settings. 

Richer et al. (2024) [26] explored the association between acute psychosocial stress and body movements using 

inertial measurement unit (IMU)-based motion capture suits. Data were gathered from 59 participants over two 

studies, in which participants experienced both the Trier Social Stress Test (TSST) and a control condition 

(friendly-TSST; f-TSST) in a randomized sequence. The research revealed a consistent freezing behavior in 

response to acute stress, marked by decreased overall movement and longer periods of immobility. Utilizing a 

Random Forest (RF) classifier with five-fold cross-validation, the study achieved a 73.4% accuracy in identifying 

acute stress from movement data. However, the study was limited by its binary classification approach, which did 

not address multiple stress levels. This study demonstrates the potential of using body posture and movement 

analysis as reliable indicators of acute psychosocial stress, presenting an alternative to conventional stress 

assessment methods. 

In light of the gaps identified in the current literature, this paper aims to investigate the validity of using wearable 

devices for the early detection of psychological stress in both binary and five-class classifications. We employ 

machine learning techniques, testing various classifiers with optimized hyperparameters and cross-validation, 

using ECG, EDA, and RESP biometrics individually and in ensemble. Our study uniquely contributes by 

exploring five-class stress classification and an ensemble system using multiple biometrics, aiming to improve 

quality of life through more reliable and nuanced stress monitoring. 
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3. Methodology 

To address the research gaps identified earlier, this study aims to explore the feasibility of robust psychological 

stress detection employing systematic signal segmentation and feature extraction to comprehensively characterize 

physiological responses, a rigorous machine learning pipeline involving feature selection, diverse classifiers, and 

hyperparameter optimization, a meticulous performance evaluation utilizing K-fold cross-validation (K-CV) as 

well as binary and multi-class detection. A comprehensive overview of our workflow is presented in Fig. 1. 

3.1. Data Acquisition 

This study employs the Wearable Stress and Affect Detection (WESAD) dataset, a publicly available resource for 

stress classification research (https://ubicomp.eti.uni-siegen.de/home/datasets/icmi18/) [16].  Within WESAD, 

data for 15 subjects was collected across three experimental conditions designed to elicit varying stress levels: 

baseline, stress, and amusement. This study utilizes an electrocardiogram (ECG), electrodermal activity (EDA), 

and respiration (RESP) collected from the chest-worn RespiBAN Professional device, all sampled at 700 Hz. The 

labels used in this study were from the Positive and Negative Affect Schedule questionnaire (PANAS) available 

in WESAD, more specifically the 21st item (Stressed) with its five possible responses (1 = Not at all, 2 = A little 

bit, 3 = Somewhat, 4 = Very much, 5 = Extremely) in case of multi-class. For binary classification, responses of 

'Not at all' were considered class 0 (no stress) with remaining response levels considered class 1 (stressed). 

3.2. Pre-processing 

We utilized the BioSPPy library, an open-source tool for biosignal processing. This library provided us with robust 

and efficient algorithms for the analysis and filtering of Electrocardiogram (ECG), Electrodermal Activity (EDA), 

and Respiration (RESP) signals. For this study, we used the default parameters provided by the library. For 

additional information, documentation, and code examples, we recommend visiting the official BioSPPy GitHub 

repository (https://github.com/PIA-Group/BioSPPy). 

To thoroughly investigate the impact of temporal signal length on stress classification, this study employed a 

strategic segmentation approach inspired by previous research [16], [27].  Window sizes were tested in increments, 

exploring durations of 60, 120, 210, 300, and 390 seconds.   Additionally, to examine the effect of overlap, shifts 

of 10, 20, 30, 60, 120, 210, 300, and 390 seconds were applied to each window size appropriately to a total of 31 

combinations, including the original unsegmented signal. 

To ensure feature compatibility and improve machine learning model performance, the extracted features were 

normalized using Z-score. This process involved subtracting the mean and dividing by the standard deviation of 

each feature. 

3.3. Feature Extraction 

Feature extraction targeted both time-domain and frequency-domain characteristics across modalities. The 

statistical results were obtained directly from preprocessed signal segments.  To analyze frequency patterns, a Fast 

Fourier Transform (FFT) and power spectral density (PSD) calculations were performed. The same set of 

statistical features was then derived from the power spectrum to enable comparative analysis across domains 

(Table 1) 

Table 1: Extracted Features, including time and frequency domain features. 

Modality Time Domain Features Frequency Domain Features 

ECG/ EDA/ 

RESP 

Mean PSD Mean 

Variance PSD Variance 

Standard Deviation PSD Standard Deviation 

Median PSD Median 

Maximum PSD Maximum 

Minimum PSD Minimum 

First Quartile  PSD First Quartile  

Third Quartile  PSD Third Quartile  

Skewness PSD Skewness 

Kurtosis PSD Kurtosis 
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3.4. Feature Selection 

In our study, feature selection was performed using the Select From Model (SFM) method [28], which employs a 

Random Forest classifier as a meta-transformer. Specifically, we utilized a Random Forest with n=100 trees to 

determine feature importance scores, following a methodology analogous to that described in [26]. 

3.5. Classifiers and Hyperparameter Optimization 

To ensure a comprehensive evaluation and the potential to uncover unexpected relationships; we tested ten 

different classifiers: Random Forest (RF), Extreme Gradient Boosting (XGB), k-nearest Neighbors (kNN), 

Logistic Regression (LR), Decision Tree (DT), AdaBoost (AB), Extra Trees (ET), Bagging (BAG), Quadratic 

Discriminant Analysis (QDA), and Linear Discriminant Analysis (LDA). We also applied hyperparameter 

optimization using grid search. 

3.6. Class Distribution Balancing 

Addressing class imbalance within the dataset was essential in mitigating potential classifier bias, Generative 

Adversarial Networks (GANs) have demonstrated effectiveness in creating novel data samples, making them a 

valuable technique for augmenting datasets. This augmentation is particularly beneficial for enhancing classifier 

performance on datasets that are small or imbalanced [22], [29]. Hence, we employed a multi-step Generative 

Adversarial Network (GAN) based data augmentation strategy.  First, class representation was calculated, and 

classes exceeding the mean representation were truncated through random subsampling.  Under-represented 

classes were targeted for augmentation with dedicated GANs [30]. These GANs were trained to learn underlying 

feature distributions, enabling the generation of synthetic samples mimicking the real data's characteristics. 

Augmentation continued until each under-represented class matched the mean class frequency, creating a more 

balanced dataset for training. 
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Fig. 1: Comprehensive binary and multi-class stress classification workflow for preprocessing, segmentation, feature 

engineering, and classifier selection with hyperparameter optimization of ECG, EDA, and RESP modalities from the WESAD 

dataset. 
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3.7. Evaluation 

The best-performing optimized model for each modality was utilized. To ensure a robust evaluation and mitigate 

potential performance variance due to data splits, K-fold cross-validation (K-CV) with K values ranging from 3 

to 10 was employed [31]. This approach provides a more reliable estimate of performance compared to a single 

train/test split, as it reduces the risk of overfitting and helps assess the model's generalization to unseen data. 

Ensemble methods, specifically majority voting (MV) and weighted averaging (WA), were applied to the outputs 

of ECG, EDA, and RESP. This investigation aimed to determine potential performance gains from a multi-modal 

approach compared to evaluating each modality independently. Accuracy (ACC) quantifies the proportion of 

correct predictions, while Precision (P) measures the accuracy of identifying positive labels correctly. Recall (R) 

indicates the percentage of actual positive cases the model successfully identifies. The F-measure (F1) score, the 

harmonic mean of precision and recall, provides a single metric balancing these two aspects. Additionally, the 

Area Under the Receiver Operating Characteristic Curve (AUC) was used to evaluate the model's performance, 

reflecting its ability to distinguish between positive and negative classes. These five evaluation metrics were 

calculated for each fold and averaged across K-CV runs, offering a comprehensive assessment of model 

performance. The equations are defined below. 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹1 = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
 (4) 

4. Results 

This study evaluated the efficacy of time-domain and frequency-domain statistical features including common 

features such as mean, variance, and others extracted from ECG, EDA, and RESP for the early detection of 

psychological stress (binary and multi-class classification). Ten different machine learning (ML) models were 

tested across these modalities to identify the most effective configurations for stress detection. K-fold cross-

validation (K-CV) with K ranging from 3 to 10 was employed to enhance the generalizability and robustness of 

the results by evaluating performance on multiple non-overlapping data splits. To further leverage the information 

contained in each modality, we explored the performance of two ensemble methods: MV and WA. These methods 

combine predictions from individual modalities to potentially achieve improved classification.  

4.1. Time-domain 

Ensemble methods demonstrably outperformed individual modalities across various configurations for both 

binary and multiclass classification, as visually depicted in Fig. 2 and Fig. 3 respectively. Fig. 4 depicts the ROC 

curve for non-overlap WA average binary classification. Table 2 provides a consolidated overview of the peak 

performance achieved for each modality, classification type, and ensemble method.  

4.1.1 Performance Evaluation of ECG Modality 

As presented in Table 2, the performance of the ECG modality was assessed across different segmentation 

strategies and classifiers for binary classification. With unsegmented ECG data, the optimized XGB classifier 

achieved the highest accuracy of 69.31% using 8-CV. For segmentations with over 50% overlap, a window of 300 

seconds with a 10-second shift yielded the highest accuracy of 99.63% using an optimized BAG classifier and 8-

CV. In cases of segmentation with 50% and under overlap, a window of 390 seconds with a 210-second shift 

resulted in the highest accuracy of 89.94% with an optimized ET classifier and 8-CV. For segmentation with no 

overlap, a window of 120 seconds provided the highest accuracy of 80.34% using an optimized XGB classifier 

and 7-CV. These results are illustrated in Fig. 2, providing a visual summary of the performance across different 

segmentation strategies. 
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As detailed in Table 2, the evaluation of the ECG modality for multi-class classification revealed varying 

performance across different segmentation approaches and classifiers. With unsegmented ECG data, the optimized 

BAG classifier achieved the highest accuracy of 53.38% using 7-CV. For segmentations with over 50% overlap, 

a window of 390 seconds with a 10-second shift yielded the highest accuracy of 96.03% using an optimized XGB 

classifier and 9-CV. In cases of segmentation with 50% and under overlap, a window of 120 seconds with a 60-

second shift resulted in the highest accuracy of 76.65% with an optimized XGB classifier and 9-CV. For 

segmentation with no overlap, a window of 120 seconds provided the highest accuracy of 68.72% using an 

optimized RF classifier and 9-CV. Fig. 3 visually summarizes these results, highlighting the performance 

variations across different segmentation strategies. 

4.1.2 Performance Evaluation of EDA Modality 

As presented in Table 2, the performance of the EDA modality was assessed across different segmentation 

strategies and classifiers for binary classification. With unsegmented EDA data, the optimized RF classifier 

achieved the highest accuracy of 68.75% using 10-CV. For segmentations with over 50% overlap, a window of 

300 seconds with a 10-second shift yielded the highest accuracy of 99.84% using an optimized ET classifier and 

10-CV. In cases of segmentation with 50% and under overlap, a window of 390 seconds with a 210-second shift 

resulted in the highest accuracy of 92.35% with an optimized kNN classifier and 6-CV. For segmentation with no 

overlap, a window of 120 seconds provided the highest accuracy of 86.79% using an optimized kNN classifier 

and 6-CV. These results are illustrated in Fig. 2, providing a visual summary of the performance across different 

segmentation strategies. 

As detailed in Table 2, the evaluation of the EDA modality for multi-class classification revealed varying 

performance across different segmentation approaches and classifiers. With unsegmented EDA data, the optimized 

XGB classifier achieved the highest accuracy of 46.78% using 4-CV. For segmentations with over 50% overlap, 

a window of 300 seconds with a 10-second shift yielded the highest accuracy of 98.16% using an optimized ET 

classifier and 9-CV. In cases of segmentation with 50% and under overlap, a window of 60 seconds with a 30-

second shift resulted in the highest accuracy of 81.12% with an optimized kNN classifier and 6-CV. For 

segmentation with no overlap, a window of 60 seconds provided the highest accuracy of 76.44% using an 

optimized ET classifier and 4-CV. Fig. 3 visually summarizes these results, highlighting the performance 

variations across different segmentation strategies. 

4.1.3 Performance Evaluation of RESP Modality 

As presented in Table 2, the performance of the RESP modality was assessed across different segmentation 

strategies and classifiers for binary classification. With unsegmented RESP data, the optimized LDA classifier 

achieved the highest accuracy of 60.71% using 10-CV. For segmentations with over 50% overlap, a window of 

300 seconds with a 10-second shift yielded the highest accuracy of 99.43% using an optimized XGB classifier 

and 9-CV. In cases of segmentation with 50% and under overlap, a window of 300 seconds with a 210-second 

shift resulted in the highest accuracy of 84.13% with an optimized BAG classifier and 6-CV. For segmentation 

with no overlap, a window of 300 seconds provided the highest accuracy of 77.74% using an optimized RF 

classifier and 6-CV. These results are illustrated in Fig. 2, providing a visual summary of the performance across 

different segmentation strategies. 

As detailed in Table 2, the evaluation of the RESP modality for multi-class classification revealed varying 

performance across different segmentation approaches and classifiers. With unsegmented RESP data, the 

optimized kNN classifier achieved the highest accuracy of 44.29% using 10-CV. For segmentations with over 

50% overlap, a window of 390 seconds with a 10-second shift yielded the highest accuracy of 94.28% using an 

optimized XGB classifier and 7-CV. In cases of segmentation with 50% and under overlap, a window of 60 

seconds with a 30-second shift resulted in the highest accuracy of 66.76% with an optimized ET classifier and 8-

CV. For segmentation with no overlap, a window of 300 seconds provided the highest accuracy of 70.82% using 

an optimized RF classifier and 6-CV. Fig. 3 visually summarizes these results, highlighting the performance 

variations across different segmentation strategies. 

4.1.4 Performance Evaluation of Modalities MV Ensemble Method 

As presented in Table 2, the performance of the modalities MV ensemble was assessed across different 

segmentation strategies and classifiers for binary classification. With unsegmented MV Ensemble data, the 

optimized XGB, RF, and LDA classifiers for ECG, EDA, and RESP respectively achieved the highest accuracy 
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of 74.17% using 8-CV. For segmentations with over 50% overlap, a window of 300 seconds with a 10-second 

shift yielded the highest accuracy of 99.96% using optimized BAG, ET, and XGB classifiers for ECG, EDA, and 

RESP respectively, and 4-CV. In cases of segmentation with 50% and under overlap, a window of 210 seconds 

with a 120-second shift resulted in the highest accuracy of 92.41% with optimized RF, DT, and kNN classifiers 

for ECG, EDA, and RESP respectively, and 5-CV. For segmentation with no overlap, a window of 210 seconds 

provided the highest accuracy of 89.88% using optimized BAG, kNN, and QDA classifiers for ECG, EDA, and 

RESP respectively, and 4-CV. These results are illustrated in Fig. 2, providing a visual summary of the 

performance across different segmentation strategies. 

As detailed in Table 2, the evaluation of the modalities MV ensemble for multi-class classification revealed 

varying performance across different segmentation approaches and classifiers. With unsegmented MV Ensemble 

data, the optimized BAG, XGB, and kNN classifiers for ECG, EDA, and RESP respectively achieved the highest 

accuracy of 57.33% using 5-CV. For segmentations with over 50% overlap, a window of 300 seconds with a 10-

second shift yielded the highest accuracy of 99.43% using optimized ET, ET, and XGB classifiers for ECG, EDA, 

and RESP respectively, and 9-CV. In cases of segmentation with 50% and under overlap, a window of 60 seconds 

with a 30-second shift resulted in the highest accuracy of 81.82% with optimized XGB, kNN, ET classifiers for 

ECG, EDA, and RESP respectively, and 10-CV. For segmentation with no overlap, a window of 60 seconds 

provided the highest accuracy of 73.70% using optimized XGB, ET, and kNN classifiers for ECG, EDA, and 

RESP respectively, and 7-CV. Fig. 3 visually summarizes these results, highlighting the performance variations 

across different segmentation strategies. 

4.1.5 Performance Evaluation of Modalities WA Ensemble Method 

As presented in Table 2, the performance of the modalities WA ensemble was assessed across different 

segmentation strategies and classifiers for binary classification. With unsegmented WA Ensemble data, the 

optimized XGB, RF, and LDA classifiers for ECG, EDA, and RESP respectively achieved the highest accuracy 

of 74.10% using 5-CV. For segmentations with over 50% overlap, a window of 300 seconds with a 10-second 

shift yielded the highest accuracy of 99.96% using optimized BAG, XGB, and kNN classifiers for ECG, EDA, 

and RESP respectively, and 4-CV. In cases of segmentation with 50% and under overlap, a window of 390 seconds 

with a 210-second shift resulted in the highest accuracy of 94.70% with optimized ET, kNN, LR classifiers for 

ECG, EDA, and RESP respectively, and 6-CV. For segmentation with no overlap, a window of 210 seconds 

provided the highest accuracy of 91.67% using optimized BAG, kNN, and QDA classifiers for ECG, EDA, and 

RESP respectively and 8-CV, additionally ROC is depicted in Fig. 4. These results are illustrated in Fig. 2, 

providing a visual summary of the performance across different segmentation strategies. 

As detailed in Table 2, the evaluation of the modalities WA ensemble for multi-class classification revealed 

varying performance across different segmentation approaches and classifiers. With unsegmented WA Ensemble 

data, the optimized BAG, XGB, and kNN classifiers for ECG, EDA, and RESP respectively achieved the highest 

accuracy of 65.28% using 8-CV. For segmentations with over 50% overlap, a window of 300 seconds with a 10-

second shift yielded the highest accuracy of 99.59% using optimized ET, ET, and XGB classifiers for ECG, EDA, 

and RESP respectively, and 9-CV. In cases of segmentation with 50% and under overlap, a window of 120 seconds 

with a 60-second shift resulted in the highest accuracy of 87.94% with optimized XGB, kNN, kNN classifiers for 

ECG, EDA, and RESP respectively, and 9-CV. For segmentation with no overlap, a window of 120 seconds 

provided the highest accuracy of 81.67% using optimized RF, BAG, and kNN classifiers for ECG, EDA, and 

RESP respectively, and 8-CV. Fig. 3 visually summarizes these results, highlighting the performance variations 

across different segmentation strategies. 
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Fig.  2: Best binary classification results based on time domain features 

 
Fig.  3: Best multi-class classification results based on time domain features 
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Fig.  4: Binary classification WA 210_210  ROC curve based on time domain features 

Table 2: Best results based on time domain features 

Modality Type 
Segmentation 

(Window_Shift) 
Model K-CV Fold ACC% P% R% F1% 

ECG 

Binary 

Unsegmented (Fold) XGB 7 6 90.00 100 80.00 88.89 

Unsegmented (Avg.) XGB 8 Avg. 69.31 75.83 59.38 63.96 

300_10 (Fold) BAG 5 2 99.80 99.59 100 99.80 

300_10 (Avg.) BAG 8 Avg. 99.63 99.59 99.67 99.63 

390_210 (Fold) ET 5 1 96.15 92.86 100 96.30 

390_210 (Avg.) ET 8 Avg. 89.94 88.87 92.19 90.29 

120_120 (Fold) XGB 10 2 94.44 90.00 100 94.74 

120_120 (Avg.) XGB 7 Avg. 80.34 79.96 81.08 80.31 

Multi 

Unsegmented (Fold) BAG 9 9 87.50 91.67 87.50 86.67 

Unsegmented (Avg.) BAG 7 Avg. 53.38 58.05 53.38 52.67 

390_10 (Fold) XGB 10 1 98.87 98.93 98.87 98.87 

390_10 (Avg.) XGB 9 Avg. 96.03 96.09 96.03 96.03 

120_60 (Fold) XGB 10 10 87.69 87.89 87.69 87.74 

120_60 (Avg.) XGB 9 Avg. 76.65 77.42 76.65 76.51 

300_300 (Fold) kNN 10 5 84.62 88.46 84.62 83.66 

120_120 (Avg.) RF 9 Avg. 68.72 71.05 68.72 68.41 

EDA 

Binary 

Unsegmented (Fold) RF 9 2 88.89 80.00 100 88.89 

Unsegmented (Avg.) RF 10 Avg. 68.75 76.67 61.67 64.95 

300_10 (Fold) ET 3 1 99.88 100 99.75 99.88 

300_10 (Avg.) ET 10 Avg. 99.84 99.92 99.75 99.84 

210_120 (Fold) DT 6 3 97.92 96.00 100 97.96 

390_210 (Avg.) kNN 6 Avg. 92.35 88.72 96.97 92.61 

300_300 (Fold) ET 5 1 96.15 100 92.31 96.00 

120_120 (Avg.) kNN 9 Avg. 86.79 83.25 93.30 87.71 

Multi 
Unsegmented (Fold) XGB 9 1 66.67 61.11 66.67 59.26 

Unsegmented (Avg.) XGB 4 Avg. 46.78 45.68 46.78 43.86 
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Modality Type 
Segmentation 

(Window_Shift) 
Model K-CV Fold ACC% P% R% F1% 

300_10 (Fold) ET 7 2 99.43 99.44 99.43 99.43 

300_10 (Avg.) ET 9 Avg. 98.16 98.19 98.16 98.15 

300_210 (Fold) RF 8 5 89.47 91.58 89.47 89.16 

60_30 (Avg.) kNN 6 Avg. 81.12 81.38 81.12 80.93 

390_390 (Fold) RF 9 8 90.00 93.33 90.00 89.33 

60_60 (Avg.) ET 4 Avg. 76.44 78.17 76.44 76.33 

RESP 

Binary 

Unsegmented (Fold) LDA 8 2 90.00 100 80.00 88.89 

Unsegmented (Avg.) LDA 10 Avg. 60.71 59.17 51.67 54.83 

300_10 (Fold) XGB 4 2 99.84 99.67 100 99.84 

300_10 (Avg.) XGB 9 Avg. 99.43 99.67 99.18 99.42 

210_120 (Fold) kNN 10 3 96.55 100 92.86 96.30 

300_210 (Avg.) BAG 6 Avg. 84.13 83.96 86.75 84.89 

390_390 (Fold) LR 9 6 90.91 83.33 100 90.91 

300_300 (Avg.) RF 6 Avg. 77.74 79.56 75.45 77.29 

Multi 

Unsegmented (Fold) kNN 9 9 75.00 66.67 75.00 68.75 

Unsegmented (Avg.) kNN 10 Avg. 44.29 38.45 44.29 38.15 

390_20 (Fold) ET 10 4 97.80 97.86 97.80 97.80 

390_10 (Avg.) XGB 7 Avg. 94.28 94.35 94.28 94.27 

390_300 (Fold) DT 9 9 90.91 93.94 90.91 90.91 

60_30 (Avg.) ET 8 Avg. 66.76 67.74 66.76 66.76 

300_300 (Fold) RF 9 4 86.67 88.33 86.67 86.48 

300_300 (Avg.) RF 6 Avg. 70.82 75.26 70.82 70.48 

All 

(MV) 

Binary 

Unsegmented (Fold) XGB+RF+LDA 8 2 90.00 100 80.00 88.89 

Unsegmented (Avg.) XGB+RF+LDA 8 Avg. 74.17 83.13 64.38 70.82 

120_10 (Fold) XGB+ET+XGB 5 4 99.87 100 99.74 99.87 

300_10 (Avg.) BAG+ET+XGB 4 Avg. 99.96 100 99.92 99.96 

390_210 (Fold) ET+kNN+LR 4 4 96.88 94.12 100 96.97 

210_120 (Avg.) RF+DT+kNN 5 Avg. 92.41 93.75 91.03 92.22 

120_120 (Fold) XGB+kNN+DT 8 1 97.78 100 95.45 97.67 

210_210 (Avg.) BAG+kNN+QDA 4 Avg. 89.88 91.91 88.10 89.65 

Multi 

Unsegmented (Fold) BAG+XGB+kNN 8 8 88.89 92.59 88.89 88.15 

Unsegmented (Avg.) BAG+XGB+kNN 5 Avg. 57.33 61.93 57.33 55.79 

300_10 (Fold) ET+ET+XGB 4 4 99.84 99.84 99.84 99.84 

300_10 (Avg.) ET+ET+XGB 9 Avg. 99.43 99.43 99.43 99.43 

210_120 (Fold) RF+kNN+kNN 8 4 94.44 95.68 94.44 94.33 

60_30 (Avg.) XGB+kNN+ET 10 Avg. 81.82 84.04 81.82 82.08 

300_300 (Fold) kNN+RF+RF 9 4 93.33 95.00 93.33 93.14 

60_60 (Avg.) DT+ET+kNN 7 Avg. 73.70 78.39 73.70 74.37 

All 

(WA) 

Binary 

Unsegmented (Fold) XGB+RF+LDA 5 1 93.33 88.89 100 94.12 

Unsegmented (Avg.) XGB+RF+LDA 5 Avg. 74.10 72.28 74.64 72.99 

210_10 (Fold) BAG+kNN+BAG 3 1 99.90 99.81 100 99.90 

300_10 (Avg.) BAG+XGB+kNN 4 Avg. 99.96 100 99.92 99.96 

120_60 (Fold) XGB+RF+ET 10 7 98.46 96.97 100 98.46 

390_210 (Avg.) ET+kNN+LR 6 Avg. 94.70 92.99 96.97 94.78 

120_120 (Fold) XGB+kNN+DT 8 1 97.78 100 95.45 97.67 

210_210 (Avg.) BAG+kNN+QDA 8 Avg. 91.67 89.65 95.23 91.99 

Multi 

Unsegmented (Fold) BAG+XGB+kNN 7 2 90.91 93.18 90.91 90.04 

Unsegmented (Avg.) BAG+XGB+kNN 8 Avg. 65.28 64.81 65.28 61.89 

300_10 (Fold) ET+ET+XGB 4 4 99.84 99.84 99.84 99.84 

300_10 (Avg.) ET+ET+XGB 9 Avg. 99.59 99.60 99.59 99.59 

210_120 (Fold) RF+kNN+kNN 8 4 97.22 97.57 97.22 97.21 

120_60 (Avg.) XGB+kNN+kNN 9 Avg. 87.94 88.67 87.94 87.91 

120_120 (Fold) RF+BAG+kNN 9 9 94.87 95.48 94.87 94.86 

120_120 (Avg.) RF+BAG+kNN 8 Avg. 81.67 83.37 81.67 81.31 
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4.2. Frequency-domain 

Ensemble methods mostly maintained their dominance in the frequency domain for both binary and multiclass 

classification, as depicted in Fig. 5 and Fig. 6 respectively. Fig. 7 depicts the ROC curve for non-overlap WA 

average binary classification. Table 3 summarizes the peak performance achieved for each modality, classification 

type, and ensemble method. 

4.2.1 Performance Evaluation of ECG Modality 

As presented in Table 3, the performance of the ECG modality was assessed across different segmentation 

strategies and classifiers for binary classification. With unsegmented ECG data, the optimized LDA classifier 

achieved the highest accuracy of 72.78% using 3-CV. For segmentations with over 50% overlap, a window of 390 

seconds with a 10-second shift yielded the highest accuracy of 97.28% using an optimized kNN classifier and 9-

CV. In cases of segmentation with 50% and under overlap, a window of 210 seconds with a 120-second shift 

resulted in the highest accuracy of 84.48% with an optimized RF classifier and 10-CV. For segmentation with no 

overlap, a window of 300 seconds provided the highest accuracy of 76.15% using an optimized ET classifier and 

8-CV. These results are illustrated in Fig. 5, providing a visual summary of the performance across different 

segmentation strategies. 

As detailed in Table 3, the evaluation of the ECG modality for multi-class classification revealed varying 

performance across different segmentation approaches and classifiers. With unsegmented ECG data, the optimized 

BAG classifier achieved the highest accuracy of 56.07% using 4-CV. For segmentations with over 50% overlap, 

a window of 300 seconds with a 20-second shift yielded the highest accuracy of 90.41% using an optimized ET 

classifier and 10-CV. In cases of segmentation with 50% and under overlap, a window of 60 seconds with a 30-

second shift resulted in the highest accuracy of 73.66% with an optimized ET classifier and 5-CV. For 

segmentation with no overlap, a window of 210 seconds provided the highest accuracy of 73.50% using an 

optimized XGB classifier and 7-CV. Fig. 6 visually summarizes these results, highlighting the performance 

variations across different segmentation strategies. 

4.2.2 Performance Evaluation of EDA Modality 

As presented in Table 3, the performance of the EDA modality was assessed across different segmentation 

strategies and classifiers for binary classification. With unsegmented EDA data, the optimized kNN classifier 

achieved the highest accuracy of 78.29% using 5-CV. For segmentations with over 50% overlap, a window of 390 

seconds with a 10-second shift yielded the highest accuracy of 95.19% using an optimized XGB classifier and 7-

CV. In cases of segmentation with 50% and under overlap, a window of 210 seconds with a 120-second shift 

resulted in the highest accuracy of 86.89% with an optimized DT classifier and 9-CV. For segmentation with no 

overlap, a window of 60 seconds provided the highest accuracy of 83.88% using an optimized BAG classifier and 

6-CV. These results are illustrated in Fig. 5, providing a visual summary of the performance across different 

segmentation strategies. 

As detailed in Table 3, the evaluation of the EDA modality for multi-class classification revealed varying 

performance across different segmentation approaches and classifiers. With unsegmented EDA data, the optimized 

LR classifier achieved the highest accuracy of 53.47% using 8-CV. For segmentations with over 50% overlap, a 

window of 300 seconds with a 10-second shift yielded the highest accuracy of 80.37% using an optimized ET 

classifier and 9-CV. In cases of segmentation with 50% and under overlap, a window of 300 seconds with a 210-

second shift resulted in the highest accuracy of 71.24% with an optimized XGB classifier and 9-CV. For 

segmentation with no overlap, a window of 120 seconds provided the highest accuracy of 70.99% using an 

optimized BAG classifier and 10-CV. Fig. 6 visually summarizes these results, highlighting the performance 

variations across different segmentation strategies. 

4.2.3 Performance Evaluation of RESP Modality 

As presented in Table 3, the performance of the RESP modality was assessed across different segmentation 

strategies and classifiers for binary classification. With unsegmented RESP data, the optimized LR classifier 

achieved the highest accuracy of 73.93% using 10-CV. For segmentations with over 50% overlap, a window of 

390 seconds with a 10-second shift yielded the highest accuracy of 92.59% using an optimized ET classifier and 

9-CV. In cases of segmentation with 50% and under overlap, a window of 300 seconds with a 210-second shift 

resulted in the highest accuracy of 78.95% with an optimized BAG classifier and 8-CV. For segmentation with no 
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overlap, a window of 300 seconds provided the highest accuracy of 79.95% using an optimized XGB classifier 

and 9-CV. These results are illustrated in Fig. 5, providing a visual summary of the performance across different 

segmentation strategies. 

As detailed in Table 3, the evaluation of the RESP modality for multi-class classification revealed varying 

performance across different segmentation approaches and classifiers. With unsegmented RESP data, the 

optimized LDA classifier achieved the highest accuracy of 37.82% using 6-CV. For segmentations with over 50% 

overlap, a window of 390 seconds with a 20-second shift yielded the highest accuracy of 79.78% using an 

optimized ET classifier and 9-CV. In cases of segmentation with 50% and under overlap, a window of 120 seconds 

with a 60-second shift resulted in the highest accuracy of 64.73% with an optimized RF classifier and 8-CV. For 

segmentation with no overlap, a window of 390 seconds provided the highest accuracy of 69.44% using an 

optimized ET classifier and 6-CV. Fig. 6 visually summarizes these results, highlighting the performance 

variations across different segmentation strategies. 

4.2.4 Performance Evaluation of Modalities MV Ensemble Method 

As presented in Table 3, the performance of the modalities MV ensemble was assessed across different 

segmentation strategies and classifiers for binary classification. With unsegmented MV Ensemble data, the 

optimized LDA, kNN, and LR classifiers for ECG, EDA, and RESP respectively achieved the highest accuracy 

of 78.14% using 4-CV. For segmentations with over 50% overlap, a window of 390 seconds with a 10-second 

shift yielded the highest accuracy of 98.42% using optimized kNN, XGB, and ET classifiers for ECG, EDA, and 

RESP respectively, and 6-CV. In cases of segmentation with 50% and under overlap, a window of 210 seconds 

with a 120-second shift resulted in the highest accuracy of 90.70% with optimized RF, DT, and LR classifiers for 

ECG, EDA, and RESP respectively, and 9-CV. For segmentation with no overlap, a window of 300 seconds 

provided the highest accuracy of 83.78% using optimized ET, RF, and XGB classifiers for ECG, EDA, and RESP 

respectively, and 4-CV. These results are illustrated in Fig. 5, providing a visual summary of the performance 

across different segmentation strategies. 

As detailed in Table 3, the evaluation of the modalities MV ensemble for multi-class classification revealed 

varying performance across different segmentation approaches and classifiers. With unsegmented MV Ensemble 

data, the optimized BAG, LR, and LDA classifiers for ECG, EDA, and RESP respectively achieved the highest 

accuracy of 52.14% using 6-CV. For segmentations with over 50% overlap, a window of 390 seconds with a 20-

second shift yielded the highest accuracy of 90.94% using optimized ET, RF, and ET classifiers for ECG, EDA, 

and RESP respectively, and 8-CV. In cases of segmentation with 50% and under overlap, a window of 60 seconds 

with a 30-second shift resulted in the highest accuracy of 74.36% with optimized ET, BAG, and kNN classifiers 

for ECG, EDA, and RESP respectively, and 6-CV. For segmentation with no overlap, a window of 120 seconds 

provided the highest accuracy of 77.46% using optimized ET, BAG, and ET classifiers for ECG, EDA, and RESP 

respectively, and 5-CV. Fig. 6 visually summarizes these results, highlighting the performance variations across 

different segmentation strategies. 

4.2.5 Performance Evaluation of Modalities WA Ensemble Method 

As presented in Table 3, the performance of the modalities WA ensemble was assessed across different 

segmentation strategies and classifiers for binary classification. With unsegmented WA Ensemble data, the 

optimized LDA, kNN, and LR classifiers for ECG, EDA, and RESP respectively achieved the highest accuracy 

of 78.22% using 3-CV. For segmentations with over 50% overlap, a window of 390 seconds with a 10-second 

shift yielded the highest accuracy of 98.36% using optimized kNN, XGB, and ET classifiers for ECG, EDA, and 

RESP respectively, and 10-CV. In cases of segmentation with 50% and under overlap, a window of 210 seconds 

with a 120-second shift resulted in the highest accuracy of 90.35% with optimized RF, DT, and LR classifiers for 

ECG, EDA, and RESP respectively, and 6-CV. For segmentation with no overlap, a window of 120 seconds 

provided the highest accuracy of 86.53% using optimized BAG, RF, and RF classifiers for ECG, EDA, and RESP 

respectively and 10-CV, additionally ROC is depicted in Fig. 7. These results are illustrated in Fig. 5, providing a 

visual summary of the performance across different segmentation strategies. 

As detailed in Table 3, the evaluation of the modalities WA ensemble for multi-class classification revealed 

varying performance across different segmentation approaches and classifiers. With unsegmented WA Ensemble 

data, the optimized BAG, LR, and LDA classifiers for ECG, EDA, and RESP respectively achieved the highest 

accuracy of 57.50% using 8-CV. For segmentations with over 50% overlap, a window of 300 seconds with a 20-

second shift yielded the highest accuracy of 96.26% using optimized ET, XGB, and ET classifiers for ECG, EDA, 
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and RESP respectively, and 10-CV. In cases of segmentation with 50% and under overlap, a window of 60 seconds 

with a 30-second shift resulted in the highest accuracy of 83.34% with optimized ET, BAG, and kNN classifiers 

for ECG, EDA, and RESP respectively, and 5-CV. For segmentation with no overlap, a window of 120 seconds 

provided the highest accuracy of 83.38% using optimized ET, BAG, and ET classifiers for ECG, EDA, and RESP 

respectively, and 5-CV. Fig. 6 visually summarizes these results, highlighting the performance variations across 

different segmentation strategies. 

 
Fig.  5: Best binary classification results based on frequency domain features 

 
Fig.  6: Best multi-class classification results based on frequency domain features 
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Fig.  7: Binary classification WA 120_120  ROC curve  based on frequency domain features 

Table 3: Best results based on frequency domain features  

Modality Type 
Segmentation 

(Window_Shift) 
Model K-CV Fold ACC% P% R% F1% 

ECG 

Binary 

Unsegmented (Fold) LDA 7 3 90.91 100 80.00 88.89 

Unsegmented (Avg.) LDA 3 Avg. 72.78 80.30 58.97 67.78 

390_20 (Fold) ET 7 4 99.22 98.46 100 99.22 

390_10 (Avg.) kNN 9 Avg. 97.28 96.35 98.30 97.31 

390_210 (Fold) XGB 6 1 95.45 91.67 100 95.65 

210_120 (Avg.) RF 10 Avg. 84.48 82.44 88.95 85.26 

120_120 (Fold) BAG 10 10 88.57 93.75 83.33 88.24 

300_300 (Avg.) ET 8 Avg. 76.15 75.49 78.47 76.51 

Multi 

Unsegmented (Fold) BAG 8 2 90.00 93.33 90.00 89.33 

Unsegmented (Avg.) BAG 4 Avg. 56.07 68.49 56.07 55.98 

300_20 (Fold) ET 10 2 94.31 94.52 94.31 94.33 

300_20 (Avg.) ET 10 Avg. 90.41 90.82 90.41 90.39 

390_300 (Fold) ET 10 3 81.82 87.12 81.82 80.35 

60_30 (Avg.) ET 5 Avg. 73.66 74.51 73.66 73.79 

210_210 (Fold) XGB 9 9 94.44 95.56 94.44 94.36 

210_210 (Avg.) XGB 7 Avg. 73.50 76.09 73.50 73.08 

EDA 

Binary 

Unsegmented (Fold) kNN 6 3 91.67 100 83.33 90.91 

Unsegmented (Avg.) kNN 5 Avg. 78.29 84.29 69.29 74.74 

390_30 (Fold) XGB 10 2 98.39 96.88 100 98.41 

390_10 (Avg.) XGB 7 Avg. 95.19 93.12 97.62 95.31 

390_210 (Fold) RF 6 1 95.45 91.67 100 95.65 

210_120 (Avg.) DT 9 Avg. 86.89 87.45 86.81 86.79 

390_390 (Fold) kNN 3 2 96.97 100 93.75 96.77 

60_60 (Avg.) BAG 6 Avg. 83.88 84.52 83.33 83.83 

Multi 
Unsegmented (Fold) LR 9 9 75.00 87.50 75.00 75.00 

Unsegmented (Avg.) LR 8 Avg. 53.47 50.70 53.47 48.47 
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Modality Type 
Segmentation 

(Window_Shift) 
Model K-CV Fold ACC% P% R% F1% 

300_210 (Fold) XGB 9 5 94.12 95.59 94.12 93.95 

300_10 (Avg.) ET 9 Avg. 80.37 80.65 80.37 80.23 

300_210 (Fold) XGB 9 5 94.12 95.59 94.12 93.95 

300_210 (Avg.) XGB 9 Avg. 71.24 75.95 71.24 69.95 

390_390 (Fold) DT 6 6 86.67 90.00 86.67 86.29 

120_120 (Avg.) BAG 10 Avg. 70.99 74.28 70.99 70.36 

RESP 

Binary 

Unsegmented (Fold) LR 7 6 90.00 100 80.00 88.89 

Unsegmented (Avg.) LR 10 Avg. 73.93 80.17 66.67 70.90 

390_10 (Fold) ET 9 5 95.92 95.92 95.92 95.92 

390_10 (Avg.) ET 9 Avg. 92.59 92.13 93.21 92.65 

300_210 (Fold) BAG 10 2 93.75 88.89 100 94.12 

300_210 (Avg.) BAG 8 Avg. 78.95 78.17 84.31 80.05 

210_210 (Fold) XGB 6 5 96.43 93.33 100 96.55 

300_300 (Avg.) XGB 9 Avg. 79.95 77.52 86.31 81.40 

Multi 

Unsegmented (Fold) LDA 6 6 66.67 88.89 66.67 70.56 

Unsegmented (Avg.) LDA 6 Avg. 37.82 46.68 37.82 38.48 

390_20 (Fold) ET 8 3 85.84 85.81 85.84 85.74 

390_20 (Avg.) ET 9 Avg. 79.78 80.72 79.78 79.88 

390_210 (Fold) kNN 7 4 73.68 74.04 73.68 73.43 

120_60 (Avg.) RF 8 Avg. 64.73 66.65 64.73 64.34 

390_390 (Fold) ET 6 5 93.75 95.31 93.75 93.75 

390_390 (Avg.) ET 6 Avg. 69.44 75.02 69.44 69.06 

All 

(MV) 

Binary 

Unsegmented (Fold) LDA+kNN+LR 7 1 90.91 100 83.33 90.91 

Unsegmented (Avg.) LDA+kNN+LR 4 Avg. 78.14 84.15 69.72 75.60 

390_10 (Fold) kNN+XGB+ET 7 5 99.60 100 99.21 99.60 

390_10 (Avg.) kNN+XGB+ET 6 Avg. 98.42 97.78 99.10 98.43 

210_120 (Fold) RF+DT+LR 8 2 97.30 95.00 100 97.44 

210_120 (Avg.) RF+DT+LR 9 Avg. 90.70 89.94 92.40 90.87 

120_120 (Fold) BAG+RF+RF 9 9 94.87 100 90.00 94.74 

300_300 (Avg.) ET+RF+XGB 4 Avg. 83.78 84.55 83.09 83.75 

Multi 

Unsegmented (Fold) BAG+LR+LDA 10 7 71.43 71.43 71.43 66.67 

Unsegmented (Avg.) BAG+LR+LDA 6 Avg. 52.14 62.97 52.14 51.88 

390_120 (Fold) RF+RF+DT 10 10 94.74 95.79 94.74 94.50 

390_20 (Avg.) ET+RF+ET 8 Avg. 90.94 91.73 90.94 90.91 

210_120 (Fold) kNN+XGB+kNN 10 5 86.21 86.50 86.21 86.13 

60_30 (Avg.) ET+BAG+kNN 6 Avg. 74.36 78.07 74.36 74.73 

300_300 (Fold) RF+RF+RF 7 5 94.44 95.56 94.44 94.36 

120_120 (Avg.) ET+BAG+ET 5 Avg. 77.46 80.82 77.46 77.38 

All 

(WA) 

Binary 

Unsegmented (Fold) LDA+kNN+LR 6 3 91.67 100 83.33 90.91 

Unsegmented (Avg.) LDA+kNN+LR 3 Avg. 78.22 80.98 72.65 75.98 

390_10 (Fold) kNN+XGB+ET 9 3 99.49 99.00 100 99.50 

390_10 (Avg.) kNN+XGB+ET 10 Avg. 98.36 97.37 99.44 98.38 

210_120 (Fold) RF+DT+LR 10 2 96.55 93.33 100 96.55 

210_120 (Avg.) RF+DT+LR 6 Avg. 90.35 88.19 93.83 90.70 

120_120 (Fold) BAG+RF+RF 10 8 97.14 94.44 100 97.14 

120_120 (Avg.) BAG+RF+RF 10 Avg. 86.53 83.44 91.60 87.16 

Multi 

Unsegmented (Fold) BAG+LR+LDA 8 8 88.89 94.44 88.89 88.89 

Unsegmented (Avg.) BAG+LR+LDA 8 Avg. 57.50 58.75 57.50 54.98 

390_20 (Fold) ET+RF+ET 7 4 99.22 99.25 99.22 99.22 

300_20 (Avg.) ET+XGB+ET 10 Avg. 96.26 96.45 96.26 96.25 

390_300 (Fold) ET+RF+LR 9 7 90.91 93.94 90.91 90.30 

60_30 (Avg.) ET+BAG+kNN 5 Avg. 83.34 84.50 83.34 83.48 

300_300 (Fold) RF+RF+RF 7 5 94.44 95.83 94.44 94.44 

120_120 (Avg.) ET+BAG+ET 5 Avg. 83.38 85.34 83.38 83.44 
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5. Discussion 

In this study, we investigated the impact of wearable devices on the early detection of psychological stress, 

employing both binary and five-class classifications. Our findings reveal significant correlations between the 

modalities, ECG, EDA, and RESP, and stress levels, suggesting the efficacy of these biomarkers for stress 

detection. Additionally, we employed two ensemble methods that simultaneously integrated these modalities. 

These results are consistent with previous research (e.g., [14], [16], [17], [19], [20], [21], [23], [25]), which also 

highlighted the utility of physiological signals in stress monitoring. Our investigation into five-class stress 

classification and the use of ensemble methods provides a novel contribution to the field. These results suggest 

that wearable devices could significantly enhance stress monitoring and management, improving overall quality 

of life. Future research should aim to address current limitations and refine these models further.  

5.1. Comparative Evaluation of Methodologies 

Table 4 juxtaposes our research findings with relevant studies, delineating comparisons based on the utilization 

of individual modalities, namely, ECG, EDA, and RESP. Each of our employed modalities is juxtaposed against 

corresponding studies employing singular modalities. Additionally, our ensemble methodology is compared 

against studies integrating all three modalities simultaneously.  

Zhu et al (2023) [32] conducted research on binary stress classification utilizing exclusively the EDA modality from four 

distinct datasets: CLAS, UTD, VerBIO, and WESAD. The primary focus is on the WESAD dataset, which our study employed. 

In their investigation, an accuracy of 86.5% was achieved by utilizing segmentation without overlap, employing a 30-second 

window size, and employing the RF classifier with LOSO cross-validation. Conversely, our study attained a slightly higher 

accuracy of 86.79% under similar settings, exclusively utilizing the EDA modality, employing segmentation without overlap, 

employing a 120-second window size, and utilizing the kNN classifier with 9-CV. 

Adarsh et al (2024) [33] investigated binary stress classification by leveraging the ECG modality from two distinct datasets: 

SWELL and WESAD. The primary focus is on the WESAD dataset, which our study employed. In the research conducted by 

the authors, an accuracy of 97.75% was achieved through segmentation with more than 50% overlap, utilizing a window size 

of 5 seconds with a 0.25-second shift, and employing graph convolutional Networks (GCN) with 5-CV. Conversely, the 

investigation conducted in our study yielded a higher accuracy of 99.63% under analogous conditions, exclusively employing 

the ECG modality, employing segmentation with more than 50% overlap, utilizing a window size of 300 seconds with a 10-

second shift, and employing the BAG classifier with 8-CV. 

Schmidt et al (2018) [16] explored binary stress classification by utilizing the Respiration (RESP) modality from the WESAD 

dataset, which was also employed in our study. In the investigation conducted by Schmidt et al, an accuracy of 88.09% was 

achieved through segmentation with more than 50% overlap, employing a window size of 60 seconds with a 0.25-second shift, 

and utilizing LDA with LOSO cross-validation. Conversely, our study attained a higher accuracy of 99.43% under similar 

conditions, exclusively utilizing the RESP modality, employing segmentation with more than 50% overlap, utilizing a window 

size of 300 seconds with a 10-second shift, and employing the XGB classifier with 9-CV. 

Rashid et al (2023) [34] investigated binary stress classification through a multimodal approach incorporating ECG, EDA, and 

RESP modalities from the WESAD dataset, which aligns with the dataset utilized in our study. In their investigation, Rashid 

et al. achieved an accuracy of 81.62% by employing segmentation with more than 50% overlap, utilizing a window size of 60 

seconds with a 5-second shift, and employing AB with LOSO cross-validation. Conversely, our study achieved a notably 

higher accuracy of 99.96% under analogous conditions, employing a multimodal WA ensemble of ECG, EDA, and RESP 

modalities. Our methodology involved segmentation with more than 50% overlap, utilizing a window size of 300 seconds with 

a 10-second shift, and employing BAG, XGB, and kNN classifiers for ECG, EDA, and RESP, respectively, with 4-CV. 
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Table 4: Comparison with related studies 

Paper References Dataset Modality Validation Model ACC% Our Proposal 

Zhu et al (2023) [32] 

CLAS 

EDA 

Non-overlap 
LOSO 

SVM 68.5 EDA 

120_120 

9-CV 

kNN 

86.79 

UTD RF 73.1 

VerBIO SVM 92.9 

WESAD RF 86.5 

Adarsh et al (2024) [33] 

WESAD 
ECG 

Overlap>50% 
5-CV GCN 

97.75 
ECG 

300_10 

8-CV 

BAG 

99.63 
SWELL 94.48 

Schmidt et al (2018) [16] WESAD 
RESP 

Overlap>50% 
LOSO LDA 88.09 

RESP 

300_10 

9-CV 

XGB 

99.43 

Rashid et al (2023) [34] WESAD 

ECG+EDA+RESP 

Overlap>50% 

LOSO AB 

81.62 

WA 

300_10 

4-CV 

BAG+XGB+

kNN 

99.96 

ACCE+ECG+EDA 

Overlap>50% 
86.37 

5.2. Principle Findings 

We utilized three different modalities: ECG, EDA, and RESP. Additionally, we employed two ensemble methods 

that simultaneously integrated these modalities. Our investigation into commercially available wearable devices 

that offer these modalities is summarized in Table 5, derived from Taskasaplidis et al (2024) [35]. 

 Table 5: Commercial wearable devices that provide ECG, EDA, and RESP modalities. 

Device Name Body Location ECG EDA RESP Additional Features 

Fitbit Sense 2 Wrist Yes Yes Yes SpO2, SKT 

Flowtime Head Yes No No 2-channel brainwave 

Movesense Chest Yes No No Motion measurement 

Prana Weist No No Yes Posture 

Sentio Solutions Feel Therapeutics Wrist Yes Yes No Physical activity, SKT 

Based on our findings, we recommend the configurations presented in Table 6 for optimal performance in real-

world applications tailored to the system type and available modalities. 

Table 6: Recommended Configurations for Optimal Performance. 

System Modality Type Features Domain 
Segmentation 

(Window_Shift) 
Model 

Offline 

ECG 
Binary Time 120_120 XGB 

Multi Frequency 210_210 XGB 

EDA 
Binary Time 120_120 kNN 

Multi Time 60_60 ET 

RESP 
Binary Frequency 300_300 XGB 

Multi Time 300_300 RF 

All (WA) 
Binary Time 210_210 BAG+kNN+QDA 

Multi Frequency 120_120 ET+BAG+ET 

Online 

ECG 
Binary Time 300_10 BAG 

Multi Time 390_10 XGB 

EDA 
Binary Time 300_10 ET 

Multi Time 300_10 ET 

RESP 
Binary Time 300_10 XGB 

Multi Time 390_10 XGB 

All (WA) 
Binary Time 300_10 BAG+XGB+kNN 

Multi Time 300_10 ET+ET+XGB 
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6. Conclusion 

This study explored the effectiveness of wearable devices in the early detection of psychological stress, utilizing 

both binary and five-class classification models. Our findings demonstrated significant correlations between stress 

levels and physiological signals from ECG, EDA, and RESP, confirming these modalities as reliable biomarkers 

for stress detection. We tested ten different classifiers: Random Forest (RF), Extreme Gradient Boosting (XGB), 

k-nearest Neighbors (kNN), Logistic Regression (LR), Decision Tree (DT), AdaBoost (AB), Extra Trees (ET), 

Bagging (BAG), Quadratic Discriminant Analysis (QDA), and Linear Discriminant Analysis (LDA). We also 

applied hyperparameter optimization using grid search, incorporating time and frequency domain features 

separately in our analyses. We employed two ensemble methods, Majority Voting (MV) and Weighted Averaging 

(WA), to integrate these modalities, enhancing the accuracy and robustness of the stress detection system. 

Additionally, we reviewed commercially available wearable devices capable of providing these physiological 

measurements. Based on our findings, we recommend the configurations detailed in Table 6 for optimal 

performance in real-world applications. These recommendations are tailored to the specific system types and 

available modalities, ensuring maximum effectiveness and utility. This research underscores the potential of 

multimodal wearable devices in the early detection and monitoring of psychological stress, offering a foundation 

for future research and practical applications in wearable health technology. While our study provides valuable 

insights, future research could benefit from exploring the integration of both time and frequency domain features, 

as well as investigating the potential of deep learning models to enhance detection capabilities further. 
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Appendix: List of Abbreviations 

AB: AdaBoost 

ACC: Accuracy 

ACCE: Three-Axis Acceleration 

AI: Artificial Intelligence 

Avg: Average 

BAG: Bagging 

BVP: Blood Volume Pulse 
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cGAN: Conditional Generative Adversarial Network 

CNN: Convolutional Neural Network 

DL: Deep Learning 

DNN: Deep Neural Network 

DT: Decision Tree 

ECG: Electrocardiogram 

EDA: Electrodermal Activity 

ET: Extra Trees 

F1: F1 Score 

FCN: Fully Convolutional Network 

FFT: Fast Fourier Transform 

GAN: Generative Adversarial Network 

GCN: Graph Convolutional Networks 

GSR: Galvanic Skin Response 

HR: Heart Rate 

HRV: Heart Rate Variability 

IMU: Inertial Measurement Unit 

kNN: k-Nearest Neighbors 

K-CV: K-fold Cross-Validation 

LDA: Linear Discriminant Analysis 

LOSO: Leave-One-Subject-Out 

LR: Logistic Regression 

LSTM: Long Short-Term Memory 

ML: Machine Learning 

MLP: Multi-Layer Perceptron 

MMTM: Multimodal Transfer Module 

MV: Majority Voting 

P: Precision 

PANAS: Positive and Negative Affect Schedule Questionnaire 

PPG: Photoplethysmography 

PRV: Pulse Rate Variability 

PSD: Power Spectral Density 

QDA: Quadratic Discriminant Analysis 

R: Recall 
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RESP: Respiration 

RF: Random Forest 

ROC: Receiver Operating Characteristic 

SFM: Select From Model 

SKT: Skin Temperature 

SVM: Support Vector Machine 

TEMP: Body Temperature 

TSST: Trier Social Stress Test 

WA: Weighted Average 

WESAD: Wearable Stress and Affect Detection Dataset 

XGB: Extreme Gradient Boosting 
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