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Abstract  8 
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widespread since 9 
2020 and will likely continue to cause substantial recurring epidemics. However, understanding 10 
the underlying infection burden (i.e., including undetected asymptomatic/mild infections) and 11 
dynamics, particularly since late 2021 when the Omicron variant emerged, is challenging due to 12 
the potential for asymptomatic and repeat SARS-CoV-2 infection, changes in testing practices, 13 
and changes in disease reporting. Here, we leverage extensive surveillance data available in 14 
New York City (NYC) and a comprehensive model-inference system to reconstruct SARS-CoV-2 15 
dynamics therein from the pandemic onset in March 2020 to August 2023, and further validate 16 
the estimates using independent wastewater surveillance data. The validated model-inference 17 
estimates indicate a very high infection burden totaling twice the population size (>5 times 18 
documented case count) but decreasing infection-fatality risk (a >10-fold reduction) during the 19 
first 3.5 years. The detailed estimates also reveal highly complex variant dynamics and immune 20 
landscape, changing virus transmissibility, and higher infection risk during winter in NYC over 21 
this time period. These transmission dynamics and drivers, albeit based on data in NYC, may be 22 
relevant to other populations and inform future planning to help mitigate the public health 23 
burden of SARS-CoV-2.  24 
 25 
INTRODUCTION 26 
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019. 27 
Within months, it quickly spread worldwide, prompting the World Health Organization (WHO) 28 
to declare coronavirus disease 2019 (COVID-19) a global public health emergency on January 29 
30, 2020, a designation lasting for 3+ years through May 5, 2023 (1).  Populations worldwide 30 
have experienced multiple COVID-19 pandemic waves, and will likely continue to endure 31 
recurring epidemics, even after the declared ending of the pandemic phase. Given the disease’s 32 
historical importance, high potential to cause future epidemics, and long-term health impacts 33 
(e.g., long-COVID (2)), it is important to better understand its transmission dynamics, infection 34 
burden, and severity over time.  35 
 36 
Many studies have reported SARS-CoV-2 transmission dynamics during the initial and 37 
subsequent pandemic waves (3). However, transmission dynamics after the Omicron BA.1 wave 38 
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remain less characterized.  Many Omicron subvariants have emerged after BA.1, causing 39 
outbreaks with varying magnitude and quickly supplanting one another (4). While surveillance 40 
systems (e.g., registries of laboratory-reported cases and death certificates) can provide 41 
invaluable information, potential biases (e.g., due to differential test-seeking behaviors) could 42 
limit the understanding of epidemic dynamics (5-7).  For example, underlying SARS-CoV-2 43 
infection rates were not completely captured by surveillance based on clinical testing due to 44 
high rates of asymptomatic and mild infection (8, 9) and use of at-home testing, the results of 45 
which are not reported to health departments (10), nor were they captured by serologic 46 
surveys due to high rates of reinfection. Due to these limitations, to what extent populations 47 
are (re)infected by each subvariant and what drives the Omicron-subvariant waves – e.g., 48 
increased transmissibility and/or immune evasion – remain unclear.   49 
 50 
In this study, we leverage extensive surveillance data available in New York City (NYC) and a 51 
comprehensive model-inference system to reconstruct the underlying SARS-CoV-2 transmission 52 
dynamics therein during March 2020 – August 2023.  NYC is a densely populated, large, urban 53 
center with 8+ million people that became one of the first pandemic epicenters in March 2020. 54 
We have previously reported model-inference estimates for the first two pandemic waves (11-55 
13). Here, we fit a more detailed model to age- and neighborhood-specific data of COVID-19 56 
cases, emergency department (ED) visits, and deaths, and validate model-inference estimates 57 
using independent SARS-CoV-2 wastewater viral load data, i.e., measurements of population-58 
level SARS-CoV-2 fecal shedding that are less subject to testing biases. The validated model-59 
inference estimates allow quantification of weekly infection rates by each (sub)variant and key 60 
epidemiologic features including the underlying population susceptibility, variant-specific 61 
transmissibility, and infection-fatality risk (IFR) over time since the pandemic onset.  Overall, we 62 
estimate a very high infection burden totaling twice the population size (>5 times the case 63 
count) but decreasing IFRs (a >10-fold reduction across all age groups), and highlight several 64 
key factors driving transmission dynamics, during the initial 3.5 years of SARS-CoV-2 circulation. 65 
 66 
RESULTS 67 
The model-inference system reconstructed underlying SARS-CoV-2 infection dynamics that 68 
are consistent with independent SARS-CoV-2 wastewater surveillance data.  69 
The model-inference system is able to recreate the epidemic curves of weekly cases, ED visits, 70 
and deaths, combining all ages (Fig 1A) and for individual age groups (Fig S1). Given the large 71 
uncertainty due to changes in clinical testing and reporting requirements, we further validate 72 
the estimates using independent SARS-CoV-2 wastewater surveillance data not used for model 73 
inference. As shown in Fig 1B, the estimated number of infectious people per 100,000 74 
population per week closely tracked the measured SARS-CoV-2 load in wastewater. This close 75 
agreement is evident for all three major periods, i.e., the 2nd wave mostly due to the ancestral 76 
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and Iota variants during Fall 2020/Winter 2021 (Fig 1B, 1st panel; Pearson correlation coefficient 77 
r = 0.91, 95% confidence interval [CI]: 0.84-0.95), the Delta wave during Summer/Fall 2021 (Fig 78 
1B, 2nd panel; r = 0.64, 95% CI: 0.29-0.84), and the Omicron period since late November 2021 79 
(Fig 1B, 3rd panel and inset for recent months; r = 0.89, 95% CI: 0.84-0.93).  These results 80 
indicate the model-inference system adequately accounted for changing infection-detection 81 
rates over time, and accurately reconstructed the underlying SARS-CoV-2 infection rates and 82 
transmission dynamics during the study period.  83 
 84 
Overview of the COVID-19 pandemic/epidemic dynamics through August 2023 85 
During the study period (the week starting March 1, 2020, to the week starting August 27, 86 
2023), 3.2 million confirmed and probable cases were reported to the NYC Department of 87 
Health and Mental Hygiene (NYC Health Department) (or 38.2% of the size of the city’s 88 
population; Table 1).  However, estimated infections totaled 17.4 million [95% credible interval 89 
(CrI): 14.2-21.5], more than five times the documented case count.  During the pre-Omicron 90 
period (March 2020 – November 2021), the model-inference system estimated cumulative 91 
infections totaling 53.7% (95% CrI: 43.7-64.6%) of the size of the city’s population; these 92 
estimates include all infections, and do not distinguish between initial and subsequent 93 
infections for the same individual. Most of these infections were caused by the ancestral and 94 
Iota variants during the 1st and 2nd waves (estimated 38.0% of the size of the city’s population, 95 
95% CrI: 19.7-75.4%), followed by Delta (8.4%, 95% CrI: 4.9-21.3%) and Alpha (2.9%, 95% CrI: 96 
1.5-5.6%).  97 
 98 
During the Omicron period (November 2021 – August 2023), (re)infections by the Omicron 99 
subvariants alone tripled, totaling 12.9 million (95% CrI: 10.5-16.1), or 153.3% (95% CrI: 124.8-100 
192.0%) of the size of the city’s population. The BA.1 wave was the largest Omicron-subvariant 101 
wave thus far, infecting around 40% of the size of the city’s population, or 3.5 million people 102 
(95% CrI: 2.2-5.6), within roughly two months (Table 1 and Fig 2A). After BA.1 subsided, 103 
multiple Omicron subvariants circulated in NYC. By the end of August 2023, at least 14 Omicron 104 
subvariants including BA.1 had an estimated cumulative infection rate surpassing 1% of the 105 
city’s population size (vs. only four such variants prior to Omicron; Table 1).  Multiple smaller 106 
Omicron-subvariant waves occurred, often with several subvariants cocirculating (Fig 2A). Most 107 
notably, the BA.2/BA.2.12.1 wave occurred during Spring/Summer 2022, the BA.5 wave during 108 
Summer/Fall 2022, and the XBB.1.5 wave during Winter 2023, each infecting around 20% of the 109 
size of the city’s population (Table 1 and Fig 2A).  110 
 111 
Key factors driving SARS-CoV-2 transmission dynamics.  112 
SARS-CoV-2 transmission dynamics have been driven by multiple factors, including use of 113 
nonpharmaceutical interventions (NPIs), population immunity (due to prior infection and/or 114 
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vaccination), new variants, and seasonal risk of infection (11-13), all of which were accounted 115 
by the model-inference system (see Methods). Since NPIs have become less prevalent during 116 
more recent waves (e.g., mask mandate in NYC schools was lifted in March 2022 (14)), here we 117 
focus on reporting the impact of the other aforementioned factors.  118 
 119 
First, population susceptibility varies following surges in infections, vaccinations, and 120 
circulations of immune evasive variants (Fig 2B), and in turn determines the epidemic 121 
trajectory.  Before the Delta wave, mixed immunity from both prior infections and vaccinations 122 
collectively lowered population susceptibility such that the sums (stacked bars, from top to 123 
bottom, in Fig 2B; see details in Methods) closely tracked the complement of estimated 124 
susceptibility (i.e., the estimated composite population immunity against infection; see blue 125 
line and shaded area in Fig 2B). The Delta variant partially evaded both infection- and vaccine-126 
induced immunity (15, 16) such that the estimated susceptibility substantially increased during 127 
the Delta wave; the estimated population immunity was lower than the sum of prior infections 128 
and vaccinations (note this sum would roughly reflect the maximum of expected population 129 
immunity, should there be no immune evasion; see the stacked bars dipping below the blue 130 
line in Fig 2B). Nonetheless, strong mixed immunity at the time (>50%; see stacked bars and 131 
blue lines in Fig 2B) likely helped to temper the intensity of the Delta wave in Summer 2021.  132 
 133 
Omicron BA.1 was highly immune evasive against all pre-existing variants (17-19). After 134 
adjusting for the lower vaccine effectiveness and weaker immunity from pre-Omicron 135 
infections (see Methods), the combined mixed immunity (stacked bars) closely matched the 136 
complement of estimated susceptibility (blue line) during the BA.1 wave (Fig 2B). It is evident 137 
from Fig 2B that rapid accumulation of BA.1 infection (pink bars) along with fast uptake of the 138 
3rd vaccine dose (open bars) at the time substantially increased population immunity, which 139 
likely accelerated the decline of BA.1. The large BA.1-infection-induced immunity also appeared 140 
to curb immediate surge of subsequent Omicron subvariants – particularly, BA.2/BA.2.12.1 and 141 
BA.5, even though these subvariants were able to partially evade that prior immunity (20, 21) 142 
(Fig 2B, see the stacked bars dipping below the blue line during Summer 2022). However, in Fall 143 
2022/Winter 2023, infection-induced immunity appeared to come from a large number of post-144 
BA.1 subvariants, accumulated through their continued spread (see increasing number of 145 
colors, each representing one subvariant, during the last part of the study period in Fig 2 A and 146 
B).  147 
 148 
Second, virus transmissibility (RTX) can increase, helping newer variants to outcompete pre-149 
existing ones. Here, to capture virus-specific transmissibility (17, 22), we separated the effects 150 
of changing population susceptibility, NPIs, and seasonal risk of infection. Unlike the effective 151 
reproduction number Rt (i.e., the average number of secondary infections (23)), which can 152 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 22, 2024. ; https://doi.org/10.1101/2024.07.19.24310728doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.19.24310728


 5 

fluctuate due to the aforementioned effects, changes in RTX closely followed the surge of major 153 
variants (see large drops in Rt around the pandemic onset due to NPIs in Fig S2A vs. the relative 154 
stable RTX in Fig 2C). That is, here RTX is akin to the basic reproduction number R0 (i.e., the 155 
average number of secondary infections in a naïve population (23)) that measures the inherent 156 
transmissibility of a virus, and can be tracked over time for, e.g., new variants (vs. R0 being 157 
estimated only at the pandemic onset when the entire population is susceptible; see Methods 158 
and refs (17, 22)).   159 
 160 
In the above context, we estimate that virus transmissibility (RTX) has increased by nearly 3-fold 161 
in three years, but has appeared to level off since the latter half of 2022 (Fig 2C). Consistent 162 
with previous estimates (13, 24), Iota and Alpha increased virus transmissibility, allowing them 163 
to outcompete the ancestral variant during the 2nd wave. In NYC, RTX increased by ~20% during 164 
the 2nd wave largely due to the mixed circulation of Iota and Alpha (Table 2). The Delta variant 165 
further increased virus transmissibility by another ~30% (or ~60% compared to the ancestral 166 
variant; Table 2), which, along with its immune evasive ability, allowed it to spread during 167 
Summer and Fall 2021 despite the relatively high population immunity at the time (Fig 2B).  The 168 
Omicron BA.1 subvariant further increased virus transmissibility. In NYC, average RTX during the 169 
BA.1 wave was 2.3 times the 1st (ancestral variant) wave and further increased by ~20% post-170 
BA.1. Importantly, RTX remained around the same level through August 2023 (Table 2 and Fig 171 
2C), suggesting immune evasion and waning immunity (Fig S2D) have been stronger drivers of 172 
the subvariant turnover since Summer 2022.  173 
 174 
Third, seasonal conditions such as humidity and temperature may modulate the transmission of 175 
respiratory viruses including SARS-CoV-2 (25-28); in particular, low humidity and low 176 
temperature conditions commonly seen during the winter are conducive for SARS-CoV-2 177 
survival (25).  In addition, indoor crowding with reduced ventilation may also facilitate 178 
transmission (29). While infection rates could surge during summer months when new variants 179 
emerge, higher infection rates have occurred during winter months, peaking in December or 180 
January in NYC during the 3.5-year study period (Fig 3A). This pattern is further evident from Fig 181 
3B, where the scaled infection rates during winter months were often more than twice as high 182 
as the summer months. This timing, despite multiple concurrent drivers including new variant 183 
emergence, highlights higher SARS-CoV-2 infection risk during the winter months in NYC during 184 
this study period.  185 
 186 
Changes in infection-detection rate 187 
The infection-detection rate (i.e., case ascertainment rate) represents the proportion of 188 
infections detected as cases, and is crucial for accurate estimation of specific outcomes (e.g., 189 
infection rates and infection-fatality risk) to inform public health response (30). Estimating the 190 
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infection-detection rate of SARS-CoV-2 has been challenging due to multiple factors (e.g., 191 
undetected asymptomatic/mild infections) (5, 6, 30).  Here we resolved these challenges by 192 
comprehensive model inference (see Methods) and validated estimated infection-detection 193 
rates in NYC using independent wastewater surveillance data (Fig 1).  In NYC, estimated 194 
infection-detection rates were very low at the onset of the 1st pandemic wave and the Omicron 195 
BA.1 wave – only 2.1% (95% CrI: 0.2-4.5%) and 3.0% (95% CrI: 1.1-5.4%) of infections were 196 
detected as cases, respectively (Fig 3C). Estimated infection-detection rate increased 197 
substantially after the initial weeks of the pandemic but fluctuated over time (Fig 3C); the 198 
highest rates were estimated during the week of January 3, 2021 (42.7%, 95% CrI: 27.9-56.2%) 199 
before the Omicron variant emerged, and during the week of December 12, 2021 following the 200 
emergence of Omicron BA.1 (45.7%, 95% CrI: 28.4-67.2%). However, estimated infection-201 
detection rate decreased steadily over time after Spring 2022 and was just ~5% since Summer 202 
2023 (Fig 3C), which is comparable to the initial weeks of the pandemic.   203 
 204 
Changes in infection-fatality risk (IFR) 205 
IFR is a key indicator of COVID-19 severity. As reported previously, IFR of SARS-CoV-2 increased 206 
log-linearly with age (31, 32), particularly before mass-vaccination. Thus, we estimated IFR by 207 
age group (see Fig 4, Table 2 and Table S1).  Consistent with previous reports (12, 13, 33, 34), 208 
estimated IFR in NYC was highest during the 1st wave (March – May 2020). By the 2nd wave 209 
(roughly October 2020 – May 2021), IFR had declined by more than half for most age groups, 210 
even though it increased transiently due to circulation of variants such as Iota and Alpha (Fig 4 211 
D and E for those older than 65 years; and Table S2). During the latter half of 2021, IFR 212 
continued to decline, which likely was influenced by greater population immunity (Fig 2B). 213 
Another substantial decline in IFR occurred following the circulation of Omicron BA.1, which 214 
was milder than pre-existing variants as reported previously (35). In NYC, estimated IFR during 215 
the Omicron BA.1 wave (December 2021- February 2022) declined by around half compared to 216 
the Delta wave (July – November 2021), for most age groups (Fig 4 and Table S1). After the 217 
Omicron BA.1 wave, overall IFR continued to decline, mostly driven by the lowering IFR among 218 
those aged 75 or older (Fig 4 E and F; Table 2 and Table S1).  Starting the week of April 23, 2023, 219 
COVID-19 deaths were classified in NYC per a revised definition (see Methods). To examine the 220 
potential impact due to this change, we have also computed IFR including only weeks before 221 
the April 23, 2023 revision. The stratified IFR estimates were similar to those through the week 222 
of August 27, 2023 (Table S1).   223 
 224 
DISCUSSION 225 
Using comprehensive model inference and data, we have reconstructed the transmission 226 
dynamics of SARS-CoV-2 in NYC during March 2020 – August 2023. The detailed model-227 
inference estimates, further validated using independent SARS-CoV-2 wastewater surveillance 228 
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data (Fig 1), can be used to inform future planning in the city (e.g., to gauge future SARS-CoV-2 229 
infection burden and related health care needs). In addition, these estimates help to reveal the 230 
highly complex infection dynamics of SARS-CoV-2 and illustrate the key drivers in its continued 231 
spread, which may be shared by other populations. Below we focus on highlighting the general 232 
SARS-CoV-2 dynamics and key driving mechanisms.   233 
 234 
By the end of August 2023, the estimated infection rate totaled twice the population size, 235 
indicating the majority of NYC residents may have had at least 2 (re)infections during the first 236 
3.5 years. In addition, 81% of the population received the primary COVID-19 vaccine series, 40% 237 
have had an additional monovalent dose, and 23% have had either two additional monovalent 238 
doses or a bivalent vaccine (NYC vaccination data; as of 8/31/2023). In combination, these 239 
estimates and data suggest a high mixed population immunity. The high mixed population 240 
immunity would likely help mitigate the severity of future epidemics. Estimated IFR dropped by 241 
more than 10-fold for most age groups by August 2023, potentially attributable to multiple 242 
factors, including accumulated mixed immunity, access to improved treatment, and circulation 243 
of the milder Omicron subvariants. The potential long-term population health impact of this 244 
high infection rate is uncertain given the possibility of post-acute sequelae of SARS-CoV-2 245 
infection (i.e., long-COVID (2, 36)).  246 
 247 
As noted previously (3), the ability of SARS-CoV-2 to sustain continued spread in an already 248 
highly infected/vaccinated population has largely come from new variants, which can evade 249 
prior immunity and/or increase transmissibility. However, the dynamics and relative 250 
importance of these drivers have changed over time. Here, our estimates for NYC help to 251 
inform the interaction of these drivers during the first 3.5 years.  When the underlying infection 252 
rate was relatively low (e.g., the first two waves), our estimates showed increased virus 253 
transmissibility predominantly drove SARS-CoV-2 variant dynamics (e.g., Alpha outcompeting 254 
pre-existing variants). As infections and immunity accumulated, we found stronger immune 255 
evasion allowed new variants to outcompete pre-existing and co-circulating subvariants, 256 
though transmissibility could also increase (Delta and BA.1 are both exemplars). By mid-2022, 257 
virus transmissibility appeared to stabilize after a nearly 3-fold increase (Fig 2C). Meanwhile, 258 
immune evasion continued but appeared to occur across multiple subvariants, each with a 259 
smaller subset of mutations, which may have allowed them to co-circulate and traverse pockets 260 
of resusceptible subpopulations (Fig 2B, see small changes in susceptibility after the Omicron 261 
BA.1 wave, despite substantial infections by 10+ Omicron subvariants). Whether this is a typical 262 
pathway of viral evolution to endemicity or whether another major Omicron BA.1-like new 263 
variant would emerge due to the nearly saturated immune landscape remains unknown.  264 
 265 
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The decrease in COVID-19 testing and data collection since early 2022 has raised concerns of 266 
timely situational awareness including new variant detection (37-39). Since late 2022/early 267 
2023, the United States national surveillance strategy (40, 41) has further shifted to mainly 268 
monitoring infection trends and severity (e.g., hospitalizations and mortality), along with 269 
genomic surveillance and wastewater surveillance.  Here, we estimated very low initial 270 
infection-detection rates – roughly, only 1 in 50 infections were detected – at the onset of the 271 
first pandemic wave and Omicron BA.1 wave in NYC. In addition, we found that population 272 
mobility (an indicator of community mitigation via social distancing (11, 42-44)) was inversely 273 
correlated with infection-detection rates during the initial weeks – that is, the lack of 274 
community mitigation coincided with low infection-detection rates at the time (see preliminary 275 
analysis in Table S2). The low infection-detection rates may have facilitated unchecked silent 276 
spread of SARS-CoV-2 during those initial weeks, as it likely did in other places (45). While the 277 
infection-detection rate increased by more than 10-fold during the pandemic, it has again 278 
declined to a very low level (Fig 3C). A fuller appreciation of under-detection in the design and 279 
implementation of surveillance systems is thus needed, as are innovative approaches to 280 
increase detection and awareness (e.g., wastewater surveillance with timely data sharing (46)).   281 
 282 
Lastly, we note several study limitations. First, we did not account for population migration, 283 
which could lead to overestimation of the increase in susceptibility. In particular, the increase in 284 
population susceptibility after the Omicron BA.1 wave could be in part due to incoming 285 
population with a higher susceptibility than local residents (as NYC likely had a larger Omicron 286 
BA.1 wave and higher vaccination coverage than elsewhere), rather than entirely due to 287 
immune evasion of subsequent Omicron subvariants. Second, due to the discontinuation of 288 
SafeGraph mobility data (47), for weeks in 2023, we used mobility trends constructed based on 289 
historical data during the pandemic years 2020-2022 (vs. real-time mobility data for weeks 290 
before 2023; see Methods) to account for the impact of NPIs. However, we do not expect this 291 
to substantially affect the model-inference estimates, as the historical mobility trend was 292 
consistent with real-time subway ridership data (Fig S3). Third, the variant proportions among 293 
sequenced samples were used to estimate the variant-specific infection rates. However, as 294 
these samples may not be representative of the NYC population, estimates may reflect biases in 295 
the populations for which SARS-CoV-2 testing and sequencing were conducted. Lastly, per 296 
recommendation of the Council of State and Territorial Epidemiologists (CSTE), COVID-19-297 
associated deaths were classified using a revised definition based solely on cause of death listed 298 
on the death certificate, for weeks from April 23, 2023 onwards. This revised definition could 299 
lead to missing COVID-19-associated deaths and thus underestimation of IFR afterwards. 300 
Nonetheless, a similar decline in IFR was estimated in the stratified analysis excluding weeks 301 
after the revision (Table S1), indicating a true continued decline in IFR after the Omicron BA.1 302 
wave.   303 
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 304 
In summary, using comprehensive epidemiological data and model inference, we have 305 
described potential transmission dynamics of SARS-CoV-2 during its first 3.5 years of circulation 306 
in NYC, a large, urban center. Study findings highlight immune evasion, transmissibility 307 
increases, and higher infection risk during winter as key transmission drivers during the study 308 
period; these may be observed in other populations and could inform future planning to help 309 
mitigate the public health burden of SARS-CoV-2.  310 
 311 
METHODS 312 
Data sources and processing.  313 
For the model-inference system, we utilized multiple sources of epidemiologic data, including 314 
confirmed and probable COVID-19 cases, ED visits, deaths, vaccination, and variant proportions. 315 
As done and described previously (11-13), we aggregated all COVID-19 confirmed and probable 316 
cases (48, 49), COVID-19-associated ED visits (13, 50), and COVID-19-associated deaths (49) 317 
reported to the NYC Health Department by age group (<1, 1-4, 5-14, 15-24, 25-44, 45-64, 65-74, 318 
and 75+ year-olds), neighborhood of residence (42 United Hospital Fund neighborhoods in NYC 319 
(51)), and week of occurrence (13). For mortality, we note a change in COVID-19-associated 320 
death definitions. From March 1, 2020 – April 2, 2023, COVID-19-associated deaths included 1) 321 
deaths occurring in persons with laboratory-confirmed SARS-CoV-2 infection (i.e., confirmed 322 
COVID-19-associated death) at any point (March 1, 2020 – July 23, 2020), within 60 days (July 323 
24, 2020 – August 2, 2021), or within 30 days (August 3, 2021 – April 2, 2023) of diagnosis; and 324 
2) deaths with COVID-19, SARS-CoV-2 or a similar term listed on the death certificate as an 325 
immediate, underlying, or contributing cause of death but without laboratory-confirmation of 326 
COVID-19 (i.e., probable COVID-19-associated death) (52). From April 3, 2023 through the week 327 
of August 27, 2023 (i.e., end of this study), COVID-19-associated deaths included any death 328 
where the death certificate included COVID-19 or a common variation of COVID-19, SARS-CoV-329 
2, coronavirus, etc. (53).  For vaccinations, we included all available vaccine doses to date (i.e., 330 
1st to 5th dose), and aggregated data for each vaccine dose to the same age/neighborhood 331 
strata, by date of vaccination (54). 332 
 333 
To model the impact of NPIs, as done previously (11-13), we used mobility data from SafeGraph 334 
(47) to adjust SARS-CoV-2 transmission rate. Note, however, the model-inference system also 335 
included a parameter to capture the overall impacts of NPIs not limited to mobility reduction 336 
(e.g., additional interventions such as masking; see below). The SafeGraph data were 337 
aggregated to the neighborhood level by week without age stratification, and available from 338 
the week of March 1, 2020 to the week of December 19, 2022. For the week of December 26, 339 
2022 to the week of August 27, 2023 (i.e., end of our study period), a comparison of historical 340 
SafeGraph data (i.e., weeks during March 2020 – December 2022, using the maximum mobility 341 
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recorded for the corresponding week of year to account for seasonal changes) showed a close 342 
agreement with real-time subway ridership data (Fig S3). Thus, we used historical SafeGraph 343 
data for those weeks. 344 
 345 
To compute the variant-specific estimates, we used reported weekly percentage of individual 346 
variants among sequenced samples (55, 56). Variant proportion data started from the week of 347 
December 27, 2020, and likely did not fully capture the share of Iota, a major variant that 348 
emerged around Fall 2020. Therefore, we combined the ancestral and Iota variants when 349 
computing the total number of cases or infections attributable to these variants.  350 
 351 
For model validation, we used SARS-CoV-2 wastewater surveillance data, available from August 352 
31, 2020 onward. Specifically, SARS-CoV-2 RNA concentrations were measured at each of the 353 
city’s 14 wastewater treatment plants, often twice per week, using quantitative reverse 354 
transcription polymerase chain reaction (RT-qPCR) assays during August 31, 2020 – April 11, 355 
2023 and reverse transcription digital PCR (RT-dPCR) assays from November 1, 2022 through 356 
the week of August 27, 2023 (i.e., end of this study).  For weeks after April 11, 2023 when the 357 
samples were measured using RT-dPCR alone, we converted the RT-dPCR measurements to RT-358 
qPCR equivalents, by multiplying a simple conversion ratio (i.e., the mean of all RT-qPCR 359 
measurements dividing the mean of all RT-dPCR measurements during November 1, 2022 – 360 
April 11, 2023 when both assays were conducted). To compute the citywide weekly per-capita 361 
SARS-CoV-2 wastewater concentrations, we first averaged the per-capita SARS-CoV-2 362 
concentrations (i.e., normalized by sewershed flow rate and population size) for each week and 363 
sewershed, and then further aggregated the sewershed-level measurements to the city level 364 
(i.e., weighted mean per the population size). 365 
 366 
This activity was classified as public health surveillance and exempt from ethical review and 367 
informed consent by the Institutional Review Boards of both Columbia University and NYC 368 
Health Department.  369 
 370 
Model inference to estimate key epidemiological variables and parameters 371 
We used a model-inference system to estimate epidemiological variables and parameters 372 
based on case, ED visit, and mortality data, accounting for NPIs, vaccinations, under-detection 373 
of infection, and seasonal changes. Built on an approach described in Yang et al. (13), here the 374 
model-inference system additionally tracks the number of vaccinated individuals and accounts 375 
for all vaccine doses as done in ref (57). Briefly, the model-inference system uses a 376 
metapopulation network SEIRSV (Susceptible-Exposed-Infectious-(re)Susceptible-Vaccination) 377 
model (Eq. 1) to simulate the transmission of SARS-CoV-2 by age group and neighborhood:  378 
 379 
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 380 
where Si, Ei, Ii, Ri, Vi, and Ni are the number of susceptible, exposed (but not yet infectious), 381 
infectious, recovered and immune (i.e., protected against infection), vaccinated and immune 382 
individuals, and the total population (58), respectively, from a given age group (i.e., <1, 1-4, 5-383 
14, 15-24, 25-44, 45-64, 65-74, or 75+ years) in neighborhood-i (i = 1,…42, for the 42 384 
neighborhoods in the city).  𝛽$!%& is the average citywide transmission rate; bs is the estimated 385 
seasonal trend (12). The term bi represents the neighborhood-level transmission rate relative to 386 
the city average. The term mij represents the changes in contact rate in each neighborhood (for 387 
i=j) or spatial transmission from neighborhood-j to i (for i≠j) and was computed based on the 388 
mobility data (12).  Here, we did not explicitly model the impact of individual NPI such as 389 
masking, due to the lack of data and the minor impact of masking at the population level 390 
(estimated 5-20% reduction (11, 42, 59)).  Rather, to account for the overall impact of NPIs 391 
including masking, we scaled the mobility data by a multiplicative factor to capture the overall 392 
NPI effectiveness when computing mij (12).  Z, D, and L are the latency period, infectious period, 393 
and immunity period, respectively.  Note that as all state variables and parameters are time 394 
varying and for each age group separately, Eq. 1 omits time (t) and age in the subscripts.  395 
 396 
To account for vaccination, 𝜐!,. is the number of neighborhood-i residents who were 397 
immunized after the k-th dose (k = 1, 2, …, 5 here for up to 5 doses of vaccines to date) at the 398 
time step (t), and was computed using vaccination data adjusting for vaccine effectiveness (VE) 399 
against infection (60-64). Thus, the term  ∑ 𝑣!,..'/

.'*  represents the total number of 400 
neighborhood-i residents immunized by any dose of vaccine at the time step.  The term 401 
∑ 𝜌+𝑉!,%-++'2
+'1  accounts for the waning of vaccine protection against infection, where Vi,t-τ is the 402 

number of neighborhood-i residents who got vaccinated τ days ago and lost protection on day-403 
t, and ρτ is the VE waning probability computed based on VE duration data (63). Note, here we 404 
focused on modeling the impact of vaccination on population susceptibility, and that the 405 
posterior estimates of population susceptibility were made along with other factors (e.g., 406 
infection) using several data streams and model inference as described below.    407 
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 408 
Using the model-simulated number of infections occurring each day, we further computed the 409 
number of cases, ED visits, and deaths each week to match with the observations, as described 410 
in (12, 13). Using cases as an example, we multiplied the model-simulated number of new 411 
infections per day by the infection-detection rate (i.e., case ascertainment rate, or the fraction 412 
of infections reported as cases), and further distributed these estimates in time per a 413 
distribution of time-from-infection-to-case-detection (Table S3); we then aggregated the daily 414 
lagged, simulated estimates to weekly totals for model inference. 415 
 416 
Each week, the system uses the ensemble adjustment Kalman filter (EAKF) (65) to compute the 417 
posterior estimates of model state variables and parameters based on the model (prior) 418 
estimates and observed case, ED visit, and mortality data per Bayes’ rule (12, 13).  In particular, 419 
model posterior estimates include 1) the underlying infection rate including those not reported 420 
as cases, for each week (Fig 2A and C); 2) the number of susceptible individuals (i.e., Si), which 421 
provides estimates of population susceptibility over time (Fig 2B); 3) the citywide transmission 422 
rate (𝛽$!%&) and infectious period (see estimates in Fig S2 B and C), which we multiplicatively 423 
combined to compute the time-varying virus transmissibility (RTX, as measure of variant-specific 424 
infectiousness as described in (17, 22); Fig 2C); and 4) other key parameters such as the 425 
infection-detection rate (Fig 3C), IFR (Fig 4), and the real-time production number (Rt; see 426 
estimates in Fig S2A).   427 
 428 
We ran the model-inference system for the pre-Omicron and Omicron periods, separately.  For 429 
the pre-Omicron period, we initiated the system at the week of March 1, 2020 (i.e., the week 430 
the first cases were detected in NYC), and ran it continuously through the week of December 5, 431 
2021 (i.e., the week before the Omicron BA.1 variant was detected in >50% of sequenced 432 
cases). For the Omicron period, we reinitiated the system at the week of November 21, 2021 433 
and ran it continuously through the end of the study period; given the initial overlap with the 434 
Delta variant in November/December 2021, we computed the number of cases, ED visits, and 435 
deaths due to Omicron based on the variant proportion data and used those variant-specific 436 
estimates for inference. To account for model uncertainty, we ran the model-inference system 437 
10 times, each with 500 ensemble members randomly drawn from the initial prior ranges 438 
(Table S3), and combined the posteriors from all runs, as done in (12).   439 
 440 
Model validation using SARS-CoV-2 wastewater surveillance data 441 
To validate model-inference estimates, we compared the infection prevalence estimates (i.e., 442 
the estimated number of infectious individuals, including those not detected as cases, in the 443 
population each week) to independent SARS-CoV-2 wastewater concentration data (i.e., the 444 
collective SARS-CoV-2 viral shedding of the population, regardless of clinical testing practices). 445 
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While both quantities represent the presence of SARS-CoV-2 in the population, the 446 
measurements are on different scales and viral shedding per infection could vary by the 447 
infecting variant. Thus, for comparison, we separated the data into three periods: i) August 31, 448 
2020 (i.e., the first day of wastewater surveillance) – June 26, 2021, predominantly the 449 
ancestral and Iota variants; ii) June 27, 2021 (i.e., the first week the share of Delta exceeding 450 
50% among the sequenced samples) – November 20, 2021, predominantly the Delta variant; 451 
and iii) November 21, 2021 (i.e., the first week Omicron BA.1 was detected) – August 29, 2023 452 
(i.e., the last wastewater sample during the study period), predominantly the Omicron 453 
subvariants. We scaled the wastewater measurements by multiplying the ratio of mean 454 
infection prevalence estimates and mean wastewater concentrations across all weeks of each 455 
period, and overlay the two time series for visual inspection (see Fig 1B). 456 
 457 
Estimating variant-specific infection rates 458 
The weekly infection rate estimates from the model-inference system are based on surveillance 459 
data combining all reported variants and thus represent infections by any variant circulating 460 
during the week. To estimate the variant-specific infection rates for each week, we multiplied 461 
the overall infection rate estimate by the proportion among the sequenced samples for each 462 
variant during that week. To compute the total variant-specific infection rate, we then summed 463 
the weekly estimates across all weeks that a given variant was detected. For each variant, to 464 
identify the main circulation period (i.e., calendar weeks when 95% of all infections occurred), 465 
we recorded the first week that the cumulative infection rate surpassed 2.5% (i.e., the start) 466 
and 97.5% (i.e., the end) of the total.  467 
 468 
Qualitative illustration of immunity from vaccinations and infections by different variants.  469 
The model-inference system accounted for immunity conferred by prior infection and 470 
vaccination and waning (Eq. 1) to compute the posterior estimates of population susceptibility, 471 
using epidemiological data and the EAKF inference algorithm as described above. However, 472 
because the two immune components overlap (e.g., a recoveree could subsequently get 473 
vaccinated and have mixed immunity for both) and the EAKF may not perfectly preserve mass 474 
balance, it is difficult to separately quantify their contributions.  Thus, to qualitatively examine 475 
the population immunity landscape, we used the rolling sum of prior infection as a proxy of 476 
infection-induced immunity and that of vaccinations as a proxy of vaccine-induced immunity 477 
(shown in Fig 2B).  Specifically, the rolling sum of prior infection was computed by adding all 478 
estimated infections during the preceding 0.5Trs days (i.e., the estimated half time of immunity 479 
period; see Fig S2D). The rolling sum of vaccinations was computed by adding vaccinations of 480 
the primary series, 3rd, and 4th, 5th dose during the preceding 0.5Tvax days (Tvax is the estimated 481 
vaccine-induced immunity period) and further multiplying the estimated variant-specific VE 482 
(Table S3).  483 
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Figures 
Fig 1. Model fit and validation. (A) Model fit to weekly number of COVID-19 cases, emergency 
department (ED) visits, and deaths, during the week starting 03/01/20 (mm/dd/yy) to the week 
starting 08/27/23 (see x-axis). Blue lines show the median estimates and blue areas show 50% 
(darker) and 95% (lighter) credible intervals (CrIs); dots show the corresponding observations. 
(B) Model validation using wastewater surveillance data, for the 2nd wave (left panel), Delta 
wave (middle panel), the Omicron period (right panel). Lines and shaded areas show the 
estimated infection prevalence (i.e., the number of all infectious individuals including those not 
detected as cases; median, 50% and 95% CrIs; left y-axis). Dots show measured SARS-CoV-2 
concentrations in wastewater (right y-axis, in million copies per day per population) for the 
corresponding weeks (black dots show measurements using RT-qPCR and red dots show 
measurements using RT-dPCR but converted to RT-qPCR equivalents; note that the wastewater 
concentrations are scaled for each wave/period to facilitate comparison with model estimates; 
see Methods for details).  
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Fig 2. Estimated infection rates (A), population immunity dynamics (B), and virus transmissibility 
(C). In (A), colored bars show estimated median weekly infection rates, for each variant (see 
legends). In (B), we overlay estimated population susceptibility [left y-axis; blue line = median, 
blue areas = 50% (darker) and 95% (lighter) CrIs], and proxies of cumulative infection (colored 
stacked bars from top to bottom, right y-axis; same legends as in A for different variants) and 
vaccine-induced immunity against infection (open bars; see Methods). In (C), we show 
estimated virus transmissibility [left y-axis; blue line = median, blue areas = 50% (darker) and 
95% (lighter) CrIs] and infection rates [boxplot and right y-axis; middle bar = median, edges = 
50% CrIs, and whiskers = 95% CrIs] for the corresponding weeks.  
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Fig 3.  Infection annual pattern and detection rates. (A) shows estimated infection rates (light 
blue bars, full height; i.e., not stacked) and reported case rates (darker blue portion) by month; 
error bars show estimated 95% CrIs. To examine the infection annual pattern, (B) shows the 
monthly infection rates scaled to the annual maximum (here, a year starts in September, the 
start of fall/cold months in the Northern hemisphere, and ends in the next August, the end of 
winter/cold months in Southern hemisphere). March – August 2020 is not shown due to the 
incompleteness. (C) shows estimated infection-detection rate [blue line = median, blue areas = 
50% (darker) and 95% (lighter) CrIs], for each week. Note the vertical dashed line indicates the 
week starting 11/21/21 when Omicron BA.1 was first detected in NYC, and estimates to the 
right of the dashed line are for Omicron (sub)variants alone.   
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Fig 4. Estimated infection-fatality risk (IFR) over time, by age group (A-E) and overall (F). Blue 
lines and shaded areas show the median estimates and 50% (darker blue) and 95% (lighter 
blue) CrIs, for each week (see date of week start in mm/dd/yy in the x-axis). For clarity, insets 
show estimates during the most recent months.  
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Table 1. Estimated cumulative infection rate, by variant. For ease of comparison, we convert the number of detected cases and 
estimated infections to percentage relative to the size of NYC’s population (columns labeled “% population”), i.e., this percentage 
does not refer to unique individuals detected as cases or estimated to experience infections.    
Variant Main circulation period Cases detected Estimated infections 

n (×1000)a % populationb n (×1000)a % populationb 
All 

 
3,207 38.2% 17,383 (14,154, 21,549) 207% (168.5%, 256.6%) 

Pre-Omicron  1,162 13.8% 4,509 (3,673, 5,423) 53.7% (43.7%, 64.6%) 
Omicron 

 
2,046 24.4% 12,875 (10,481, 16,126) 153.3% (124.8%, 192%) 

BA.1 12/12/2021 - 02/05/2022 1,024 12% 3,468 (2,188, 5,624) 41.3% (26.1%, 67%) 
Ancestral/Iota 03/08/2020 - 04/17/2021 834 9.9% 3,195 (1,653, 6,334) 38% (19.7%, 75.4%) 
BA.5 06/05/2022 - 12/03/2022 289 3.4% 2,107 (1,148, 4,589) 25.1% (13.7%, 54.6%) 
XBB.1.5 11/27/2022 - 08/12/2023 175 2.1% 1,783 (790, 5,018) 21.2% (9.4%, 59.7%) 
BA.2.12.1 04/10/2022 - 07/16/2022 145 1.7% 881 (462, 1,948) 10.5% (5.5%, 23.2%) 
Delta 06/27/2021 - 12/11/2021 225 2.7% 704 (327, 1,792) 8.4% (3.9%, 21.3%) 
BA.2 02/13/2022 - 07/23/2022 128 1.5% 621 (332, 1,375) 7.4% (4%, 16.4%) 
BQ.1 10/02/2022 - 01/07/2023 61 0.73% 591 (311, 1,338) 7% (3.7%, 15.9%) 
BQ.1.1 10/09/2022 - 01/28/2023 58 0.7% 566 (295, 1,287) 6.7% (3.5%, 15.3%) 
XBB 10/23/2022 - 09/02/2023 37 0.44% 439 (214, 1,181) 5.2% (2.5%, 14.1%) 
FL.1 05/07/2023 - 09/02/2023 13 0.16% 243 (117, 709) 2.9% (1.4%, 8.4%) 
Alpha 01/17/2021 - 06/12/2021 77 0.92% 240 (128, 471) 2.9% (1.5%, 5.6%) 
BA.4.6 06/19/2022 - 11/19/2022 32 0.39% 238 (130, 523) 2.8% (1.5%, 6.2%) 
XBB.1.16 04/23/2023 - 09/02/2023 13 0.16% 234 (100, 802) 2.8% (1.2%, 9.5%) 
BA.4 05/22/2022 - 09/24/2022 32 0.39% 223 (121, 481) 2.7% (1.4%, 5.7%) 
EG.5 05/21/2023 - 09/02/2023 11 0.14% 209 (99, 617) 2.5% (1.2%, 7.3%) 
BA.2.75 09/04/2022 - 08/19/2023 13 0.15% 124 (62, 310) 1.5% (0.7%, 3.7%) 
XBB.1.9 03/05/2023 - 09/02/2023 5 0.056% 75 (30, 268) 0.9% (0.4%, 3.2%) 
BF.7 08/07/2022 - 12/24/2022 8 0.1% 74 (38, 172) 0.9% (0.5%, 2%) 
Epsilon 12/27/2020 - 04/17/2021 10 0.11% 25 (15, 45) 0.3% (0.2%, 0.5%) 
Gamma 03/21/2021 - 07/17/2021 4 0.052% 16 (8, 38) 0.2% (0.1%, 0.5%) 
Mu 04/11/2021 - 09/25/2021 3 0.035% 12 (6, 33) 0.1% (0.1%, 0.4%) 

aThe numbers are shown in thousands (i.e., ×1000). bThe percentages are relative to the city’s population size of 8.39 million 
residents.   
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Table 2. Estimated virus transmissibility (RTX) and overall infection-fatality risk (IFR) during each wave/period. Numbers show the 
median estimate (and 95% credible intervals). Note the calendar periods here were chosen based on the rough timing of pandemic 
waves (March – May 2020 for the 1st wave, October 2020 – May 2021 for the 2nd wave, July – November 2021 for the Delta wave, 
and December 2021 – August 2023 for Omicron subvariants; see Fig 1), matching with the weekly intervals (hence the listed start 
dates) and excluding weeks with mixed circulation of variants (hence the missing weeks) in order to obtain more variant-specific 
estimates.  
Wave/variants Calendar period RTX IFR (%) 
1st wave (ancestral) 03/01/20 - 05/30/20 2.4 (1.33-3.68) 1.429 (0.979-1.903) 
2nd wave 
(ancestral/Iota/Alpha) 

10/04/20 - 05/29/21 2.86 (1.73-
4.29) 

0.397 (0.246-0.6) 

Delta 07/04/21 - 12/04/21 3.75 (2.12-
5.75) 

0.241 (0.094-0.602) 

Omicron BA.1 12/12/21 - 02/26/22 5.46 (3.73-
7.35) 

0.095 (0.047-0.166) 

After BA.1 03/06/22 - 09/02/23 6.38 (4.15-
9.37) 

0.056 (0.022-0.136) 
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Supplemental Figures and Tables 
Fig S1. Model fits by age group. Boxplots show model estimates of COVID-19 cases (A and B), 
ED visits (C and D), and deaths (E and F) per 100,000 population (middle bar = median, edges = 
50% CrIs, and whiskers = 95% CrIs), for each age group (see subtitle) and week (see x-axis, 
mm/dd/yy). Red dots show the corresponding observations.  
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Fig S2. Estimates for key epidemiological variables: (A) the real-time effective reproduction 
number Rt, (B) citywide transmission rate (𝛽$!%& in Eq. 1) (C) infectious period, and (D) immunity 
period (Trs in Eq. 1).  Blue lines and shaded areas show the median estimates and 50% (darker 
blue) and 95% (lighter blue) CrIs, for each week (see date of week start in mm/dd/yy in the x-
axis). The vertical dashed line indicates the week starting 11/21/21 when Omicron BA.1 was 
first detected in NYC. 
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Fig S3. Trends in population mobility during the study period. Relative mobility for each week is 
computed by dividing the mobility for each week by that during the week starting March 1, 
2020 (i.e., the pandemic onset in NYC). SafeGraph data were available from the week of March 
1, 2020 to the week of December 19, 2022 (red solid line), and used in this study. For the week 
of December 26, 2022 to the week of August 27, 2023, we used trends constructed with 
historical SafeGraph data (i.e., weeks during March 2020 – December 2022, using the maximum 
mobility recorded for the corresponding week of year to account for seasonal changes; red 
dashed line). Real-time subway ridership data (blue line) are shown for comparison.  
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Table S1. Estimated infection-fatality risk (IFR, %), for individual age groups, during each wave/period. Numbers show the median 
estimate (and 95% credible intervals). The last two rows show stratified estimates for weeks post-BA.1, before and after the revision 
of COVID-19 death definition following the recommendation of the Council of State and Territorial Epidemiologists (CSTE).  

Wave/variants Calendar 
period 

all ages <25 years 25-44 years 45-64 years 65-74 years 75+ years 

1st wave (ancestral) 03/01/20 - 
05/30/20 

1.4291 
(0.9793-1.903) 

0.0099 
(0.0046-
0.0151) 

0.1117 
(0.0706-
0.1466) 

1.1992 
(0.8047-
1.5056) 

4.6334 
(2.7199-
6.9133) 

12.2835 
(7.3515-
16.9023) 

2nd wave 
(ancestral/Iota/Alpha) 

10/04/20 - 
05/29/21 

0.3965 
(0.2461-
0.6004) 

0.0047 
(0.0019-
0.0088) 

0.0379 
(0.0174-
0.0673) 

0.324 
(0.2013-
0.5231) 

1.9044 
(0.9849-
3.1934) 

5.5573 (3.238-
7.5487) 

Delta 07/04/21 - 
12/04/21 

0.2406 
(0.0936-
0.6016) 

0.004 (0.0019-
0.0061) 

0.04 (0.0209-
0.0598) 

0.3436 
(0.1906-
0.5516) 

0.9821 
(0.2883-
2.6949) 

2.4551 
(0.9768-
5.4612) 

Omicron BA.1 12/12/21 - 
02/26/22 

0.0945 
(0.0474-
0.1663) 

0.0017 (6e-04-
0.0029) 

0.0106 
(0.0042-
0.0202) 

0.0842 
(0.0441-
0.147) 

0.3921 
(0.2286-
0.5353) 

1.5588 
(0.9388-
2.1269) 

After BA.1 (all weeks) 03/06/22 - 
09/02/23 

0.0561 
(0.0219-
0.1355) 

0.0018 (5e-04-
0.0032) 

0.0098 
(0.0016-
0.0208) 

0.0352 
(0.0071-
0.1249) 

0.1457 
(0.0471-
0.3591) 

0.4927 
(0.2496-
1.0303) 

After BA.1 (before 
revision of COVID-19 
death definition)a 

03/06/22 - 
04/22/23 

0.0621 
(0.0274-
0.1349) 

0.0018 (5e-04-
0.0032) 

0.0095 
(0.0018-
0.0202) 

0.0357 
(0.0083-
0.1207) 

0.1587 
(0.0588-0.358) 

0.5885 
(0.3186-
1.0814) 

After BA.1 (after 
revision of COVID-19 
death definition)b 

04/23/23 - 
09/02/23 

0.0373 
(0.0048-
0.1375) 

0.0017 (3e-04-
0.0034) 

0.0109 
(0.0012-
0.0227) 

0.0337 
(0.0036-
0.138) 

0.1055 
(0.0107-
0.3625) 

0.1951 
(0.0355-
0.8716) 

aBefore April 22, 2023, COVID-19-associated deaths included deaths occurring in persons with laboratory-confirmed SARS-CoV-2 
infection, and deaths with COVID-19, SARS-CoV-2, or a similar term listed on the death certificate as an immediate, underlying, or 
contributing cause of death but did not have laboratory-confirmation of COVID-19.  
bFrom April 23, 2023 onward, COVID-19-associated deaths included any death where the death certificate includes COVID-19 or a 
common variation of COVID-19, SARS-CoV-2, coronavirus, etc.  
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Table S2. Correlation between infection-detection rate and population mobility, during the early weeks of the 1st pandemic wave 
and the Omicron BA.1 wave. Numbers show the mean (and 95% confidence intervals [CI]) of Pearson’s correlation coefficients 
during the first 4, 6, and 8 weeks (column “First N weeks”) of the two pandemic waves. These results show estimated infection-
detection rates were negatively correlated with observed population mobility during the early weeks of both pandemic waves; that 
is, initial increases in community mitigation via social distancing (as indicated by decreases in population mobility) coincided with 
increases in infection-detection rate.  Note the Omicron BA.1 wave spread rapidly, peaked ~1 month following the initial 
introduction, and subsided within ~2 months; thus, the inverse association was the strongest during the first 4 weeks (vs. the first 8 
weeks for the 1st pandemic wave).  
Wave First N 

weeks 
Calendar period Correlation (95% CI) P-value 

1st wave  4 03/01/2020 - 04/04/2020 -0.8 (-1, 0.69) 0.2 
6 03/01/2020 - 04/18/2020 -0.82 (-0.98, -0.02) 0.046 
8 03/01/2020 - 05/02/2020 -0.81 (-0.96, -0.24) 0.015 

Omicron 
BA.1 wave 

4 11/21/2021 - 12/25/2021 -0.96 (-1, -0.05) 0.035 
6 11/21/2021 - 01/08/2022 -0.29 (-0.89, 0.68) 0.58 
8 11/21/2021 - 01/22/2022 -0.28 (-0.82, 0.53) 0.5 
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Table S3. Prior ranges for model parameters and variables.   
Period Parameter Symbol Age group Range Note  

Vaccine efficacy 
(VE) 

 All Before Delta: VE1=85%, VE2 = 95%; 
Delta: VE1 = 35.6%, VE2 = 88%, VE3 = 
90%; 
Omicron: VE1 = 35%, VE2 = 70%, VE3 = 
70%, VE4 = 70%, VE5 (bivalent) = 90% 

Based on VE against 
symptomatic disease 

 
VE waning 𝜌 All rho(t) = 1/(1+exp(-k * (t - tm.imm/2); 

for wildtype: k = 0.026; tm.imm = 322; 
for Delta: k = 0.025; tm.imm = 280; for 
Omicron: k = 0.024; tm.imm = 256 

Parameter in the logistic 
function fitted based on data 
from UKHSA (ref 63) 

Pre-
Omicron 

Citywide 
transmission rate 
(per day) 

𝛽$!%& <1 year U [0.25, 0.5] Uniform distribution, based on 
an overall transmission rate of 
0.5–1 and adjusting for contact 
rate for the age group (same 
below) 

Pre-
Omicron 

Citywide 
transmission rate 
(per day) 

𝛽$!%& 1-4 years U [0.26, 0.52] - 

Pre-
Omicron 

Citywide 
transmission rate 
(per day) 

𝛽$!%& 5-14 years U [0.33, 0.67] - 

Pre-
Omicron 

Citywide 
transmission rate 
(per day) 

𝛽$!%& 15-24 
years 

U [0.38, 0.77] - 

Pre-
Omicron 

Citywide 
transmission rate 
(per day) 

𝛽$!%& 25-44 
years 

U [0.69, 1.4] - 

Pre-
Omicron 

Citywide 
transmission rate 
(per day) 

𝛽$!%& 45-64 
years 

U [0.5, 1] - 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 22, 2024. ; https://doi.org/10.1101/2024.07.19.24310728doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.19.24310728


 33 

Pre-
Omicron 

Citywide 
transmission rate 
(per day) 

𝛽$!%& 65-74 
years 

U [0.25, 0.5] - 

Pre-
Omicron 

Citywide 
transmission rate 
(per day) 

𝛽$!%& 75+ years U [0.25, 0.5] - 

Pre-
Omicron 

Latency period 
(days) 

Z All U [2, 5] - 

Pre-
Omicron 

Infectious period 
(days) 

D All U [2, 5] - 

Pre-
Omicron 

Immunity period 
(days) 

L <1 year U [180, 550] - 

Pre-
Omicron 

Immunity period 
(days) 

L 1-4 years U [910, 1300] - 

Pre-
Omicron 

Immunity period 
(days) 

L 5-14 years U [910, 1300] - 

Pre-
Omicron 

Immunity period 
(days) 

L 15-24 
years 

U [910, 1300] - 

Pre-
Omicron 

Immunity period 
(days) 

L 25-44 
years 

U [910, 1300] - 

Pre-
Omicron 

Immunity period 
(days) 

L 45-64 
years 

U [910, 1300] - 

Pre-
Omicron 

Immunity period 
(days) 

L 65-74 
years 

U [910, 1300] - 

Pre-
Omicron 

Immunity period 
(days) 

L 75+ years U [910, 1300] - 

Pre-
Omicron 

Time-to-detection, 
mean (days) 

Td, mean All U [3, 8] - 

Pre-
Omicron 

Time-to-detection, 
SD (days) 

Td,sd All U [1, 3] - 

Pre-
Omicron 

Infection-detection 
rate 

IDR <1 years U [0.001, 0.05] - 
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Pre-
Omicron 

Infection-detection 
rate 

IDR 1-4 years U [1e-04, 0.05] - 

Pre-
Omicron 

Infection-detection 
rate 

IDR 5-14 years U [1e-04, 0.05] - 

Pre-
Omicron 

Infection-detection 
rate 

IDR 15-24 
years 

U [1e-04, 0.05] - 

Pre-
Omicron 

Infection-detection 
rate 

IDR 25-44 
years 

U [0.001, 0.05] - 

Pre-
Omicron 

Infection-detection 
rate 

IDR 45-64 
years 

U [0.001, 0.05] - 

Pre-
Omicron 

Infection-detection 
rate 

IDR 65-74 
years 

U [0.001, 0.05] - 

Pre-
Omicron 

Infection-detection 
rate 

IDR 75+ years U [0.001, 0.05] - 

Pre-
Omicron 

Infection-fatality 
risk 

IFR <1 years U [5e-05, 0.00015] - 

Pre-
Omicron 

Infection-fatality 
risk 

IFR 1-4 years U [5e-05, 0.00015] - 

Pre-
Omicron 

Infection-fatality 
risk 

IFR 5-14 years U [5e-05, 0.00015] - 

Pre-
Omicron 

Infection-fatality 
risk 

IFR 15-24 
years 

U [5e-05, 0.00015] - 

Pre-
Omicron 

Infection-fatality 
risk 

IFR 25-44 
years 

U [5e-04, 0.0015] - 

Pre-
Omicron 

Infection-fatality 
risk 

IFR 45-64 
years 

U [0.005, 0.015] - 

Pre-
Omicron 

Infection-fatality 
risk 

IFR 65-74 
years 

U [0.01, 0.1] - 

Pre-
Omicron 

Infection-fatality 
risk 

IFR 75+ years U [0.02, 0.2] - 

Pre-
Omicron 

Infection-to-ED 
ratio 

EDR <1 years U [0.005, 0.1] - 
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Pre-
Omicron 

Infection-to-ED 
ratio 

EDR 1-4 years U [0.005, 0.1] - 

Pre-
Omicron 

Infection-to-ED 
ratio 

EDR 5-14 years U [1e-04, 0.02] - 

Pre-
Omicron 

Infection-to-ED 
ratio 

EDR 15-24 
years 

U [0.001, 0.03] - 

Pre-
Omicron 

Infection-to-ED 
ratio 

EDR 25-44 
years 

U [0.001, 0.03] - 

Pre-
Omicron 

Infection-to-ED 
ratio 

EDR 45-64 
years 

U [0.001, 0.06] - 

Pre-
Omicron 

Infection-to-ED 
ratio 

EDR 65-74 
years 

U [0.01, 0.2] - 

Pre-
Omicron 

Infection-to-ED 
ratio 

EDR 75+ years U [0.01, 0.3] - 

Omicron Citywide 
transmission rate 
(per day) 

𝛽$!%& <1 years U [0.61, 0.8] - 

Omicron Citywide 
transmission rate 
(per day) 

𝛽$!%& 1-4 years U [0.66, 0.85] - 

Omicron Citywide 
transmission rate 
(per day) 

𝛽$!%& 5-14 years U [0.91, 1.2] - 

Omicron Citywide 
transmission rate 
(per day) 

𝛽$!%& 15-24 
years 

U [1, 1.3] - 

Omicron Citywide 
transmission rate 
(per day) 

𝛽$!%& 25-44 
years 

U [1.6, 2.1] - 

Omicron Citywide 
transmission rate 
(per day) 

𝛽$!%& 45-64 
years 

U [1.2, 1.6] - 
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Omicron Citywide 
transmission rate 
(per day) 

𝛽$!%& 65-74 
years 

U [0.6, 0.76] - 

Omicron Citywide 
transmission rate 
(per day) 

𝛽$!%& 75+ years U [0.58, 0.75] - 

Omicron Latency period 
(days) 

Z <1 years U [2.2, 3.8] - 

Omicron Latency period 
(days) 

Z 1-4 years U [2.1, 3.6] - 

Omicron Latency period 
(days) 

Z 5-14 years U [2, 3.5] - 

Omicron Latency period 
(days) 

Z 15-24 
years 

U [2.1, 3.6] - 

Omicron Latency period 
(days) 

Z 25-44 
years 

U [2.3, 3.8] - 

Omicron Latency period 
(days) 

Z 45-64 
years 

U [2.2, 3.6] - 

Omicron Latency period 
(days) 

Z 65-74 
years 

U [2.2, 3.7] - 

Omicron Latency period 
(days) 

Z 75+ years U [2.2, 3.7] - 

Omicron Infectious period 
(days) 

D <1 years U [2.2, 2.9] - 

Omicron Infectious period 
(days) 

D 1-4 years U [2.7, 3.5] - 

Omicron Infectious period 
(days) 

D 5-14 years U [2.9, 3.7] - 

Omicron Infectious period 
(days) 

D 15-24 
years 

U [3.5, 4.5] - 

Omicron Infectious period 
(days) 

D 25-44 
years 

U [3.2, 4.1] - 
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Omicron Infectious period 
(days) 

D 45-64 
years 

U [3.3, 4.2] - 

Omicron Infectious period 
(days) 

D 65-74 
years 

U [2.5, 3.2] - 

Omicron Infectious period 
(days) 

D 75+ years U [2.7, 3.5] - 

Omicron Immunity period 
(days) 

L <1 years U [360, 470] - 

Omicron Immunity period 
(days) 

L 1-4 years U [360, 1000] - 

Omicron Immunity period 
(days) 

L 5-14 years U [360, 1100] - 

Omicron Immunity period 
(days) 

L 15-24 
years 

U [360, 1000] - 

Omicron Immunity period 
(days) 

L 25-44 
years 

U [360, 850] - 

Omicron Immunity period 
(days) 

L 45-64 
years 

U [360, 1100] - 

Omicron Immunity period 
(days) 

L 65-74 
years 

U [360, 990] - 

Omicron Immunity period 
(days) 

L 75+ years U [360, 960] - 

Omicron Time-to-detection, 
mean (days) 

Td, mean <1 years U [3.7, 5.2] - 

Omicron Time-to-detection, 
mean (days) 

Td, mean 1-4 years U [3.7, 5] - 

Omicron Time-to-detection, 
mean (days) 

Td, mean 5-14 years U [3.8, 4.9] - 

Omicron Time-to-detection, 
mean (days) 

Td, mean 15-24 
years 

U [3.3, 4.3] - 

Omicron Time-to-detection, 
mean (days) 

Td, mean 25-44 
years 

U [4, 4.9] - 
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Omicron Time-to-detection, 
mean (days) 

Td, mean 45-64 
years 

U [3.9, 4.8] - 

Omicron Time-to-detection, 
mean (days) 

Td, mean 65-74 
years 

U [4.2, 5.2] - 

Omicron Time-to-detection, 
mean (days) 

Td, mean 75+ years U [4, 4.8] - 

Omicron Time-to-detection, 
SD (days) 

Td,sd <1 years U [1.5, 2.1] - 

Omicron Time-to-detection, 
SD (days) 

Td,sd 1-4 years U [1.6, 2.2] - 

Omicron Time-to-detection, 
SD (days) 

Td,sd 5-14 years U [1.7, 2.3] - 

Omicron Time-to-detection, 
SD (days) 

Td,sd 15-24 
years 

U [1.6, 2.2] - 

Omicron Time-to-detection, 
SD (days) 

Td,sd 25-44 
years 

U [1.9, 2.5] - 

Omicron Time-to-detection, 
SD (days) 

Td,sd 45-64 
years 

U [2, 2.5] - 

Omicron Time-to-detection, 
SD (days) 

Td,sd 65-74 
years 

U [1.7, 2.2] - 

Omicron Time-to-detection, 
SD (days) 

Td,sd 75+ years U [1.7, 2.1] - 

Omicron Infection-detection 
rate 

IDR All U [0.01, 0.05] - 

Omicron Infection-fatality 
risk 

IFR <1 years U [6.1e-06, 2.8e-05] - 

Omicron Infection-fatality 
risk 

IFR 1-4 years U [6.2e-06, 2.8e-05] - 

Omicron Infection-fatality 
risk 

IFR 5-14 years U [6.2e-06, 2.8e-05] - 

Omicron Infection-fatality 
risk 

IFR 15-24 
years 

U [6e-06, 2.7e-05] - 
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Omicron Infection-fatality 
risk 

IFR 25-44 
years 

U [4.3e-05, 0.00024] - 

Omicron Infection-fatality 
risk 

IFR 45-64 
years 

U [0.00039, 0.0021] - 

Omicron Infection-fatality 
risk 

IFR 65-74 
years 

U [0.0015, 0.005] - 

Omicron Infection-fatality 
risk 

IFR 75+ years U [0.0037, 0.014] - 

Omicron Infection-to-ED 
ratio 

EDR <1 years U [0.0035, 0.029] - 

Omicron Infection-to-ED 
ratio 

EDR 1-4 years U [0.0019, 0.013] - 

Omicron Infection-to-ED 
ratio 

EDR 5-14 years U [0.00061, 0.0047] - 

Omicron Infection-to-ED 
ratio 

EDR 15-24 
years 

U [0.001, 0.0083] - 

Omicron Infection-to-ED 
ratio 

EDR 25-44 
years 

U [0.00097, 0.0069] - 

Omicron Infection-to-ED 
ratio 

EDR 45-64 
years 

U [0.0028, 0.019] - 

Omicron Infection-to-ED 
ratio 

EDR 65-74 
years 

U [0.0024, 0.017] - 

Omicron Infection-to-ED 
ratio 

EDR 75+ years U [0.006, 0.041] - 
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