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Blood metabolomic shift links diet and gut microbiota to multiple health outcomes among
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Highlights

e A substantial proportion of identified blood metabolites differ between U.S.-born and
foreign-born Hispanics/Latinosin the U.S.

e Food and gut microbiota are the major modifiable contributors to blood metabolomic
difference between U.S.-born and foreign-born Hispanics/Latinos.

e U.S nativity related metabolites collectively correlate with a spectrum of clinical traits

and chronic diseases.
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Summary

Immigrants from less industrialized countries who are living in the U.S. often bear an elevated
risk of multiple disease due to the adoption of a U.S. lifestyle. Blood metabolome holds valuable
information on environmental exposure and the pathogenesis of chronic diseases, offering
insgghtsinto the link between environmental factors and disease burden. Analyzing 634 serum
metabolites from 7,114 Hispanics (1,141 U.S.-born, 5,973 foreign-born) in the Hispanic
Community Health Study/Study of Latinos (HCHS/SOL), we identified profound blood
metabolic shift during acculturation. Machine learning highlighted the prominent role of non-
genetic factors, especially food and gut microbiota, in these changes. Immigration-related
metabolites correlated with plant-based foods and beneficial gut bacteria for foreign-born
Hispanics, and with meat-based or processed food and unfavorable gut bacteriafor U.S.-born
Hispanics. Cardiometabolic traits, liver, and kidney function exhibited a link with immigration-
related metabolic changes, which were also linked to increased risk of diabetes, severe obesity,

chronic kidney disease, and asthma.

Keywords

Blood metabolome, U.S. lifestyle, acculturation, gut microbiota, cardiometabolic traits, obesity,
diabetes, chronic kidney disease


https://doi.org/10.1101/2024.07.19.24310722

medRxiv preprint doi: https://doi.org/10.1101/2024.07.19.24310722; this version posted July 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

I ntroduction

Immigrantsto the U.S. from less industrialized countries or U.S. territories face an elevated risk
of obesity, diabetes, liver diseases and other chronic diseases compared to individuals of the
same ethnicity who continue to reside in their countries of birth [1-4]. Additionally, longer
residence in the U.S. is associated with worse health condition. This health disparity might be
predominantly attributed to adoption of the U.S. lifestyle habit, which is afeature of
acculturation [5]. After relocating to the U.S. 50 states/DC, immigrants often experience
substantial shiftsin food habits, lifestyles, socioeconomic status, access to medical care, and
overall environment [5]. However, a comprehensive examination to determine the exact risk
factors contributing to this elevated chronic disease burden during thelir transition to lifein the
U.S. isyet to be fully conducted.

The blood metabolome (i.e. the complete set of small moleculesin blood) may represent a
unique tool to understand the effects of U.S. acculturation on health. The blood metabolome
contains rich systemic information crucial for understanding physiology and predicting various
chronic illnesses [6]. In addition, blood metabolites are influenced by a multitude of
environmental and genetic factors [7-9]. Among these, diet and gut microbiota have been noted
as the main sources of blood metabolites[7, 8, 10-12]. For U.S. immigrants, the shift towards
U.S. lifestyles often entails diets enriched in processed foods, added sugars and unhealthy fats,
with reduced intake of nutrient-dense whole foods [13-15]. U.S. acculturation can also shape gut
microbiota, leading to reduced microbiome diversity and function [16]. Other factors that can
impact blood metabolites, like lifestyle factors[7, 17-19], socio-economic status (SES) [20] and
drug intake [21] are subjected to change after arriving to the U.S. [1, 22, 23]. Therefore,
examining the interplay between blood metabolome, various factors, and health outcomes may
help advance our understanding of elevated disease risk among immigrants during the

acculturation.

Hispanicg/Latinos are the largest minority population in the U.S. [24]. By examining differences
in the blood metabolome between U.S.-born Hispanicg/Latinos and foreign-born
Hispanics/Latinos, and the determinants of those differences, we can potentially uncover

valuable insightsinto the contribution of acculturation to immigrant health. Here, we used
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machine learning to scrutinize the blood metabolome-mediated link between lifestyle risk factors
and multiple health outcomes, among 1,141 U.S.-born (i.e., born in U.S. 50 states/D.C.) and
5,973 foreign-born Hispanics/Latinos from the Hispanic Community Health Study/Study of
Latinos (HCHS/SOL).
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M ethods
Study cohort

The HCHS/SOL is a prospective study of Hispanic/Latino populationsin the U.S. From 2008 to
2011, 16,415 adults aged 18—74 years, self-identified as having Cuban, Dominican, Puerto
Rican, Mexican, Central American or South American heritage, were recruited from arandom
sample of households in four communities (Bronx, NY; Chicago, IL; Miami, FL; and San Diego,
CA). 2,863 participants were born in the 50 U.S. states, and 13,479 were born in the nations of
Latin America or the territories of the U.S. Participants were recruited by using a 2-stage
probability sample design, and datain the current study was collected at the baseline visit and
six-year follow-up visit. The study protocol was approved by the institutional review boards of

all collaborating institutions, and written informed consent was obtained for all participants.

Based on the visit when blood samples were collected and the batch when blood metabolome
was profiled, the datafor the entire cohort were divided into three datasets: discovery dataset
(N=3,941. Blood samples from baseline visit; metabolome was profiled at the first batch),
replication dataset 1 (N=2,368. Blood samples from baseline visit; metabolome was profiled at
the second batch), and replication dataset 2 (N=810. Blood samples from follow-up visit;
metabolome was profiled at the second batch). This divison aimed to address the potential batch
effects in metabolomic profiling caused by profiling batch and this visit. More details about
blood sample collection and data splitting are included in Supplemental methods.

Discovery dataset and replication dataset 1 served to identify and confirm U.S. nativity related
blood metabolites. To minimize the well-known impact of age on blood metabolome, we
conducted age matching at 1:1 ratio within discovery dataset and 1:2 ratio within replication
dataset 1, according to the proportion of U.S.-born and foreign-born participants. The procedure
aimed to create sub-datasets for specific analyses. Replication dataset 2 specially served to
compare the association of different types of determents with blood metabalites, as blood sample

from metabolome profiling and stool sample for metagenome were collected at the same visit.
M etabolomic profiling of blood samples and Metagenomic profiling of stool samples

Blood metabolomic profiling was performed using an untargeted liquid chromatography-mass
spectrometry (LC-MS) based protocol on discovery HD4 platform at Metabolon (Durham, North
6
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Carolina, USA). Participants were asked to fast for >8 h before the examination. Detailed
procedures have been described elsewhere [25] and Supplemental methods. M etabolomic data
was normalized using Quantile Normalization. After removing unknown metabolites and the
metabolites which were undetected in greater than 20% samples, 634 metabolites were finally

obtained for the following analyses in the current study.

M etagenomics Sequencing was performed on DNA extracted from fecal samples collected by
FTA card using anovel shallow-coverage method of shotgun sequencing-based Illumina
NovaSeq platforms. Microbiome bioinformatics analyses, taxonomic assignment, and functional
components identification were performed using the SHOGUN pipeline as described previously
[26] and in Supplemental methods. Metagenomic data was normalized and transformed using
Centered Log-Ratio method (CRL). After removing these genus which were prevalent in less
than 20% samples or whose average read counts across samples were less than 10, 87 genus

were included in the following analyses.
Identification of US-related metabolites and derivation of metabolomic score

Multiple linear regression model with each metabolite as dependent variable was used to identify
different metabolites between U.S.-born participants and foreign-born participants while
controlling for age, sex, visit center, Hispanic background, and five principal components of
population structure. These metabolites which were identified in the matched discovery dataset
(P<0.05 after False Discovery Rate [FDR] correction) and confirmed in the matched replication
dataset 1 (P<0.05) were defined as U.S. nativity related metabolites. The rest metabolites were
considered as U.S. nativity unrelated metabolites.

Least Absolute Shrinkage and Selection Operator (LASSO) was applied to predict U.S. nativity
status (U.S.-born as 1 and foreign-born as 0) with U.S. nativity related metabolites using glmnet
package, from which the predictive value was generated and used as metabolomic score. The
training and testing of LASSO model were performed in different datasets. The predictive
performance of metabolomic score in discriminating U.S.-born and foreign-born participant was

measured by calculating Area Under the Receiver Operating Characteristic (AUROC).
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Association between deter minant categories and metabolites

The potential determinants of blood metabolites were classified into seven categories, including
genetics, aget+sex, food groups (19 food groups), gut microbiota (87 microbes at the genus level),
lifestyle (factorsrelated to smoking, drinking, physical activity, sedentary time, and sleep
duration), socioeconomic status (SES), and medication use (20 drugs). Explained variance (EV)
was calculated to measure the association between each metabolite and each determinant
category using exXtreme Gradient Boosting (X GBoost) implemented in xgboost package. All
XGBoost models were trained using 80% samples in the dataset and testing in 20% samples. EV
from testing dataset were used for the following statistical analysis and visualization. Adjusted
EV (EV4g) was additionally calculated for food groups and gut microbiota. The detailed
determinants in each category and algorithm of EV calculation were described in Supplemental
methods.

For genetics, we calculated SNP-based heritability of metabolites, instead of EV, to measure its
association with each metabolite. Genotyping and imputation protocols and heritability

estimation have been described previously [27] and in Supplementary methods.

To measure the feature importance of each determinant and find specific associations between
features and metabolite levels, Shapley additive explanations (SHAP) values were calculated
based a full model including all non-genetic determinants using SHAPforxgboost package as
described in Supplement methods.

Predictive power of determinantson overall U.S. nativity related metabolites

Predictive power on each metabolite was estimated for each determinant category using
XGBoost, except genetic factors which used heritability instead of predictive power. To estimate
the predictive power of different determinant category (separated model) and all determinants
(full model), we first applied PCA over all U.S. nativity related metabolites data to get the first
100 PCs which constitute more than 98% of the total variance in the data. XGBoost was used to
predict the PCs on the basis of the determinant categories independently. EV of each PCs were
calculated separately and then combined as predictive power for each determinant category:

¥ EV, x PC;

L .PC;

8
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where EV;isthe EV that XGBoost recovered for the i"PC. PC; isthefraction of variance that the

i PC explains out of the overall variation of 100 PCs. n is the total number of PCs.

A full model which included all non-genetic determinants was built to predictive power for al
non-genetic determinants. Relative predictive power was the percentage of predictive power of
each category model in the full-model predictive power.

Association between metabolites and clinical traits

Theinvestigated clinical traits include continuous variables from cardiometabolic traits, chronic
inflammation marker, blood cell counts, liver function indices, kidney function indices, and lung
function indices, as described in Supplemental methods. The EV of each clinical trait was
calculated using XGBoost with U.S. nativity related metabolites or U.S. nativity unrelated
metabolites as the estimate of association between metabolites and clinical traits. All traits were
standardized before entering the model. To compare the predictive performance of two group
metabolites while controlling the bias caused by the number of input variables, Bootstrap
sampling was applied to obtain 1000 metabolite set with 25 metabolites from two groups,
respectively. Thus, 1000 EV values for U.S. nativity metabolites and 1000 EV for U.S. nativity
unrelated metabolites were finally harvested to compare the predictive performance using

permutation test for each clinical trait.
Association between metabolites and disease outcomes

Five representative diseases were investigated in the study, including type 2 diabetes (T2D),
obesity, chronic kidney disease (CKD), asthma, and Metabolic dysfunction-associated fatty liver
disease (MAFLD) as described in Supplemental methods. The principle of Gene Set Enrichment
Analysis (GSEA) was used to test the enrichment of U.S. nativity related metabolitesin all
metabolites which were ranked by their association with diseases to reflection the overall
association between U.S. nativity related metabolites and a certain disease. Firstly, Poisson
regression model was fitted with the incidence of disease as output and individual metabolite as
input with adjustment for age, sex, visit center, Hispanic background, and the first 5 PCs of
population structure. As the metabolite level was normalized and comparable, the beta values of
metabolite were used to rank all metabolites in the descending order. Next, the ranked metabolite
list and 135 U.S. nativity related metabolites were used as the input for the MSEA algorithm

9
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implemented by fgsea package. Normalized enrichment score and P-value were given for U.S.
nativity related metabolites with each disease. P-value was determined by permutation testing,
comparing the observed enrichment score to scores obtained from randomly permuting the gene
labels. The results of MESA were visualized using enrichment plots, showing the enrichment

score and leading-edge subset of genes contributing to the enrichment signal.

In addition to M SEA, Poisson regression model was fitted between disease outcomes and
metabolomic score with adjustment for age, sex, visit center, Hispanic background, and the first
5 PCs of population structure to measure the association (represented by RR and 95% ClI)

between each U.S. nativity related metabolite and the incidence of each disease outcome.
Quantification and Statistical Analysis

R 4.1.2. and related packages were used for all statistical analysis, machine learning, and
visualization of results. Age matching was performed using Matchit 4.4.0. Multiple regression
model and LASSO regression were carried out using base 4.1.2 and glmnet 4.1.4, respectively.
pROC 1.18.0 was used to calculate the discriminative power of metabolomic score. SNP-based
heritability and EV were calculated usng GENESIS 2.24.2 and xgboost 1.6.0.1, respectively.
SHAP feature importance was extracted from X GBoost model with SHAPforxgboost 0.1.1.
MSEA agorithm was implemented in fgsea 1.20.0. ggplot2 3.3.6 and ComplexHeatmap 2.10.0.

were used for visualization. Adjusted and raw P values <0.05 were considered to be significant.
Results
Overview of the study Cohorts

In the discovery dataset (N=3,941), mean age was 36.5 years among 732 U.S.-born participants
(53.1% females), and mean age was 48.0 years among 3,209 foreign-born participants (58.1%
females) (Table S1). In the replication dataset 1 (N=2,368), mean age was 44.9 years and 53.5
years, and 59.6% and 65.2% were females for U.S.-born (N=267) and foreign-born participants
(N=2,101), respectively (T able S1). After being matched by age to minimize its impact on
identifying U.S. nativity related metabolites, there was no difference in age between in U.S.-born
and foreign-born participants in both discovery (N=1,464) and replication dataset 1 (N=801)
(Table S2). For analysis of identifying potential determinants of blood metabolites, especially
food and gut microbiota, we formed replication dataset 2 which included 810 participants with a
10
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mean age of 45.9 years, and 60.5% of these participants were females (T able S1). Other basic
characteristics for U.S.-born and foreign-born participants in unmatched and matched datasets

areshown in Table S1 and Table S2, respectively.
Blood metabolomic differ ences between U.S.-born and foreign-born Hispanics

We employed multiple linear regression to identify metabolites associated with U.S. nativity
(U.S.-born vs. foreign-born) in the age matched discovery dataset and the age-matched
replication dataset 1. These analyses adjusted for multiple covariates including age, sex, study
sites, Hispanic background, and the first five principal components (PCs) of continental ancestry.
The results on the associations of metabolites with U.S. nativity were highly consistent between
two datasets. (Pearson’s r=0.85) (Figure 1A). We identified 158 metabolites associated with
U.S. nativity in the discovery dataset (FDR<0.05), and then confirmed 135 of them with the
same directions of associations with U.S. nativity in the replication dataset 1 (raw P<0.05)
(Figure 1A). Most of these confirmed U.S. nativity related metabolites were amino acids (44;
32%), lipids (40; 29.6%) and xenobiotics (19; 14.1%) (Figure 1B). Less lipids were found to be
related to U.S. nativity compared to total number of profiled lipids (P<0.05) (Figure 1B). In
contrast, amino acids, xenobiotics, nucleotides, aswell as cofactors and vitamins, were more
presented in U.S. nativity related metabolites compared to total profiled metabolites, although
Fisher’s exact test did not show significant enrichment of U.S. nativity related metabolitesin
these super-pathways (Figur e 1B). The top 50 metabolites associated with U.S. nativity are
shown in Figure 1C, and the association for all metabolites can be found in Table S3. Beta-
cryptoxanthin, S-methylcysteine sulfoxide, carotene diol, 3-phenylpropionate, and hydroxy-
CMPF were the top five metabolites that were higher in foreign-born participants compared to
U.S.-born participants, and gamma-tocopherol/beta-tocopherol, piperine, orotate,
ursodeoxycholate, and 2-hydroxyoctanoate were the top five metabolites that were higher in

U.S.-born participants compared to foreign-born participants.
Discrimination of U.S.-born and foreign-born Hispanics by blood metabolomic profile

The next step of analysis was to define a nativity-related metabol omic score which reflected
overall blood metabolomic differences between U.S.-born Hispanics (i.e., higher score) and

foreign-born US Hispanics (lower score). We performed LASSO analysisto predict U.S.

11
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nativity status based on 135 U.S. nativity metabolites (Figure 2). The LASSO model was built in
training dataset including 80% participants in the age-matched discovery dataset (N=1,172),
tested in the remaining 20% participants, and further validated in the replication dataset 1 with
all participants (N=2,368). The discrimination ability for U.S. nativity status was relatively high
in al three sub-datasets (Area Under the Receiver Operating Characteristic (AUROC)=0.837,
0.840, and 0.823, respectively) (Figure 2A).

We further examined associations of the metabolomic score with immigration/acculturation-
related variables (Supplemental method) in both discovery dataset and replication dataset 1,
and found that higher levels of the metabol omics score were associated with younger
immigration age (Pearson’s r=-0.22, P<0.05; r=-0.23, P<0.05), longer yearslived in the U.S.
(Pearson’ s r=0.33, P<0.05; r=0.37, P<0.05), higher dietary acculturation score (Pearson’s r=0.29,
P<0.05; r=0.26, P<0.05), language acculturation score (Pearson’s r=0.42, P<0.05; r=0.38,
P<0.05), and social acculturation score (Pearson’ s r=0.27, P<0.05; r=0.24, P<0.05) (Figure 2B).
We also observed a dose-response rel ationship between the metabolomic score and yearslived in
the U.S. (Figure 2C). Results were highly consistent between the discovery and replication
dataset 1.

Genetic and non-genetic deter minants of U.S. nativity related blood metabolomic

difference

To identify the potential determinants of metabolomic difference between two U.S. nativity
groups, we systematically investigated SNP-based heritability (hzsnp) and the predictive power of
non-genetic determinants (Explained variance, EV) for each individual metabolite (Table $4).
The working hypothesis was that genetic factor did not contribute U.S. nativity related blood
metabol omic difference which were attributed to environmental factors. We first compared h’g,
and EV between 135 U.S. nativity related metabolites and the remaining 499 U.S. nativity
unrelated metabolites. We did not observe significant difference in h’s, between two metabolite
sets but found two metabolite sets had different EV of non-genetic determinants in both
discovery dataset and replication dataset 1 (Figur e 3A-B). In terms of each determinant
category, food groups, gut microbiota, SES, and medication use showed different EV between

12
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two metabolite sets. However, demographics and lifestyles did not show different EV between
two metabolite sets in both datasets (Figur e 3A-B).

We then examined the strength of association with the overall U.S. nativity related metabolite
profile, assessed by the Top 100 principal component of 135 U.S. nativity related metabolites.
This was accomplished by a multivariate model which included all non-genetic factorsin
replication dataset 2 where blood metabolome and gut microbiota data were assessed
concurrently. Among these non-genetic factors, age and sex had the highest predictive power
(39.4% of the full modd!), followed by gut microbiota (23.7%) and food groups (20.8%) (Figure
3C). To examine the contribution of each individual non-genetic determinant to each U.S.
nativity related metabolite, we extracted SHAP values of these non-genetic determinantsin the
full model on each participant for each metabolite, and then averaged SHAP values across all
participants for each individual non-genetic determinant. This process was performed in
discovery dataset, replication dataset 1 and replication dataset 2 (Table S5). Age, sex, and
individual determinants from gut microbiota and food group categories showed higher mean
SHAP values compared to other non-genetic factors, and results were consistent across different
datasets (Figure 3D). Figur e 3E shows mean SHAP values of each individual determinant on
135 U.S. nativity related metabolitesin replication dataset 2.

Food groups and gut microbes associated with U.S. nativity related metabolites

Since food groups and gut microbiotawere major determinants of U.S. nativity related
metabolites, we further examined the associations of food groups and gut microbiota with these
metabolites. Among 135 U.S. nativity related metabolites, we found 71 metabolites (34 higher in
U.S.-born individuals and 37 higher in foreign-born individuals) with EV>2.5% by food groups
and/or gut microbiota (without adjustment for each other) in the replication dataset 2. This
included 45 metabolites primarily associated with food groups (EV range, 2.6%-23.3%), 10
metabolites primarily associated with gut microbiota (EV range, 2.8%-18.8%), and 16
metabolites associated with both (EV range, 3.0%-23.0% for food groups; 3.0%-19.0% for gut
microbiota) (Figure 4A). These results were further confirmed by including both food groups

and gut microbiotain the same modd (i.e., adjustment for each other) (Figure 4B).
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Metabolites primarily associated with food groups (N=45) are from sub-pathways, including
Xanthine Metabolism, Histidine Metabolism, Food Component/Plant, Leucine, Isoleucine and
Valine Metabolism, etc. This set was correlated with multiple individual dietary factors but few
gut bacterial genera (Figure 4C). Metabolites primary associated with gut microbiota (N=10) are
from Secondary Bile Acid Metabolism, Histidine Metabolism, etc., and they were correlated
with multiple gut bacterial genera but few dietary factors (Figure 4C). Metabolites primary
associated with both food groups and gut microbiota (N=16) are from Benzoate M etabolism,
Fatty Acid, Dicarboxylate metabolism, Plasmalogen, Vitamin A Metabolism, etc., and they were
correlated with both multiple dietary factors and gut bacterial genera (Figure 4C). In general,
metabolites higher in foreign-born individuals were positively correlated with Johnsonella,
Lachnoanaerobaculum, Ruminiclostridium, Faecalicoccus, Intestinimonas, Pseudoflavonifractor,
Eubacterium and Holdemania, and were inversaly correlated with Acidaminococcus,
Lachnoclostridium, and Flavonifractor, while metabolites higher in U.S.-born individuals were
correlated with these gut bacterial generain opposite directions (Figure 4C;
Lachnoanaerobaculum and Flavonifractor as examplesin Figure 4D). Significant correlations
were observed for most metabolites primarily determined by gut microbiota and those
determined by both gut microbiota and food groups. Smilarly, metabolites higher in foreign-
born individuals were positively correlated with healthy plant-based food intake (e.g., whole
grain, legumes and nuts, fruits) and inversely correlated with unhealthy food intake (e.g., red
meat and proceed meet, oil fat), while metabolites higher in U.S.-born individuals were also
correlated with these dietary factors in opposite directions (Figur e 4C; whole grain and red

meat/processed meat as examplesin Figure 4D).
Association between U.S. nativity related metabolites and health outcomes

We conducted a thorough examination of various clinical traits (T able S6) and disease
conditions among US Hispanics (Table S7) to investigate their associations with U.S. nativity
related metabolites in the discovery dataset and replication dataset 1, separately. We used 135
U.S. nativity related metabolites to predict each clinical trait and calculated EV for each clinical
trait by these metabolites in the discovery dataset and replication dataset 1. The estimated EV of
clinical traits by these metabolites were highly consistent between two datasets (Figure 5A). The
top clinical traits with EV>50% by these metabolites were related to kidney function (Cystatin C,
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creatinine, eGFR), glycemic traits (fasting glucose, HbA1C), liver function (AST) and blood
lipids (TC) (Figure 5A). We also compared EVs of clinical traits by U.S. nativity related
metabolites and EVsby U.S. nativity unrelated metabolites. As compared to U.S. nativity
unrelated metabolites, U.S. nativity metabolites showed higher EV for BMI, TC, TG, fasting
glucose, and eGFR, but lower EV for AST in both datasets (Figur e 5B-C).

We then examined, during ~6 years of cohort follow up, the prospective associations of the
metabolomic score and risk of diabetes, obesity, chronic kidney disease (CKD), asthma, and
MAFLD. The metabolomic score was significantly associated with higher risk of diabetes
(Relativerisk [RR]=1.22, 95% confidence interval [95% Cl]=[1.12-1.33], per SD increment),
obesity (RR [95% CI]=1.16 [1.05-1.29]), CKD (RR [95% CI]=1.15, [1.06-1.25]), and asthma
(RR [95% Cl]=1.42, [1.18-1.71]), but was not associated with risk of MAFLD (RR [95%
Cl]=1.08 [0.86-1.36]). To further examine the associ ations between U.S. nativity-related
metabolites and risk of these chronic diseases, we additionally performed metabolite set
enrichment analysis of U.S. nativity related metabolitesin all metabolites ranked by their
associations with incident risk of diseases. U.S. nativity related metabolites were enriched in
metabolites associated with risk of diabetes, obesity, CKD and asthma, but not in those
associated with risk of liver disease, in both datasets (Figure 5E-F).
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Discussion

Over the last few decades, epidemiological research on U.S. immigrants has drawn significant
attention for two primary reasons: firstly, health disparities among immigrants contribute to a
cascade of disease burdens, impacting the overall public health of populations|[2, 3, 28]; and
secondly, immigrants often experience arange of environmental and lifestyle-related risk factors,
not only affecting their own health but also providing insightsinto causal factors affecting others
in a society marked by chronic disease escalation due to the influence of an increasingly
industrialized lifestyle [16, 29, 30]. Such research offers crucia insightsinto the broader impact
of lifestyle on health and disease susceptibility among diverse populations. Hispanics/Latinos are
alarge ethnic minority population in the U.S., with alarge heterogeneity from immigration
status, cultural, socioeconomic, and genetic perspectives [31], which provides a unique
opportunity to study the effect of U.S. lifestyle on health. A thorough assessment of the
relationship between risk factors, the disease-informative blood metabolome, and health

outcomes could be acritical component of disease prevention.

In this study, we observed that a substantial proportion (21.1%) of measured blood metabolitesin
a broad commercially available panel could collectively be used to distinguish U.S.-born and
foreign-born Hispanics/Latinos in the U.S. The metabolites associated with U.S. nativity also
correlated to other immigration-related variables. These observations underscore the profound
impact of U.S. lifestyle on blood metabolome among immigrants to the U.S. Previous studies
have shown that a broad spectrum of factors, including host genetics, diet, gut microbiome,
clinical parameters, lifestyle and anthropometric measurements, can influence the blood
metabolome [32]. This suggests that certain risk factors inherent in U.S. lifestyle contribute to a
significant shift in the blood metabolome observed among Hispanics/Latinos in the U.S.

After extensively examining the associations of potential risk factors with the metabolomic
difference between the two nativity groups and their associations with individual U.S. nativity
related metabolites, we found that age and sex did not contribute to the metabolic difference but
were the two prominent contributors to U.S. nativity related metabolites, although they were
adjusted as covariates in the multiple linear regression model to identify U.S. nativity related
metabolites. Theinfluence of age and sex on blood metabolites have been well established in
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numerous studies [33-36], and our study further underlines their significance as crucial
covariates in blood metabolomics studies. Despite the anticipation that genetic factor would be
irrelevant to the metabolomic difference between U.S.-born and foreign-born Hispanics, we
noted some metabolites with high heritability (hzsnp>0.30), aligning with previous findings [ 7],
and some of the heritable metabolites were related to U.S. nativity. While the full genetic effect
on U.S. nativity related metabolitesis beyond our current research scope, it is worthy to further
explore the metabolites determined by both genetics and environmental factors in the future
studies, which could reveal certain genotypes which are more sensitive to the impacts of aU.S.
lifestyle.

We discovered that, among a range of modifiable factors that were examined, gut microbiota and
food groups represent the primary potential determinants of the metabolomic difference between
the two U.S. nativity groups. Recent studies on blood metabolites have consistently revealed that
food and gut microbiota are important sources of blood metabolites[7, 8, 11, 37]. Our study,
going beyond confirming the important roles of diet and the gut microbiome in shaping the
metabolome, focuses on prioritizing specific factors within these two categories using an
interpretable machine learning based analysis approach. Upon examining feature importance
among all available food groups, we identified that red and processed meat, dairy, whole grain,
vegetables, tea and coffee, and sweets and desserts were top determinants of overall U.S. nativity
related metabolites. The observation of increased consumption of red and processed meat, dairy,
refined grain, and sweets and desserts, along with reduced intake of whole grain and vegetables
among U.S.-born Hispanicg/Latinos, mirrors their dietary shift in aU.S. lifestyle. While many
prior studies have reported the association between these food types and blood metabolites [ 38-
41], our study provides a deeper understanding of the relationship between these food groups and
blood metabolites within context of U.S. nativity, which might offer direction for nutritional

studies aimed at understanding chronic diseases related to U.S. acculturation.

Among gut microbiota, we identified Flavonifractor, Veillonella, Intestinibacter, and
Butyrivibrio as the top microbes associated with U.S. nativity related metabolites. Flavonifractor
exhibited higher abundance among U.S.-born Hispanicg/Latinos, while the others showed a
lower abundance. Flavonifractor, an intestinal microbiota which enhances oxidative stress, has

been associated with bipolar disorders [42] and affective disorders [43]. Despite its unknown
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metabolic function, its representative species, Flavonifractor plautii, isinversely associated with
consumption of flavonoids, which are a group of polyphenolic dietary compounds found in many
different plant-based foods [44]. Veillonella plays a significant role in using lactic acid for
primary carbohydrate metabolism in the human small intestine [45]. Intestinibacter, although
known as a protective microbe for constipation, lacks clear insight into its metabolic functions
[46]. Butyrivibrio, extensively studied for its Carbohydrate-Active enZY mes (CAZymes) that
break down plant-derived polymers, aso produces health-promoting compounds like conjugated
linoleic acid and vitamins [47]. Collectively, these findings suggest that U.S.-born
Hispanics/Latinos have less favorable gut microbiome composition as compared to their

counterparts, which may contribute to metabolomic shift.

As gut microbiota and food groups were found to be two important sources of blood metabolites
in previous studies and in our study, a noteworthy aspect of our study is the ability to examine
their synergistic or independent impact on U.S. nativity related metabolites. Focusing on the top
metabolites determined by either of these two groups of factors, we discerned adistinct trend
regarding their associations with specific food groups and microbes. Although our current cross-
sectional study cannot establish causal relationships between these sources, it revealed that
certain U.S. nativity related metabolites were influenced by both gut microbiota and food groups,
underscoring the significant interplay between dietary choices and gut microbiotain shaping
blood metabolites[7, 8, 38].

Finally, we discovered that U.S. nativity related metabolites were collectively associated with
representative clinical traits reflecting blood glycemic and lipid profiles, liver function, kidney
function, and lung function, to a greater extent than metabolites unrelated to U.S. nativity.
Additionally, U.S. nativity related metabolites were collectively overlapped with these
metabolites associated with representative common diseases that are prevalent among
Hispanics/Latinos in the U.S. Hispanics/Latinosin the U.S. have a high burden of multiple
chronic diseases [31, 48, 49], and prior studies have attempted to pinpoint one or multiple causal
factors[13, 50, 51]. However, our study suggests that a systemic metabolomic shift in metabolic
patterns, resulting from the adoption of U.S. lifestyle due to multiple risk factors, significantly

contributes to this multifaceted disease burden.
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Our study has some limitations that should be considered. First, the analysis focused on
HispanicgLatinos in the U.S., which may limit the generalizability of the findingsto other U.S.
immigrant groups, or people of Latin American birth living in the other global regions. Second,
the study relied on cross-sectional data, which limits the ability to establish causal relationships
between determinants, metabolomic differences, and health outcomes. Third, longitudinal studies
would be valuable to better understand the dynamic changes in the metabolome over time with
immigration to the U.S.

In the current study, we used comprehensive profiling of the blood metabolome, gut microbiota,
genotypic data, environmental factors, and health outcomes for U.S.-born and foreign-born
Hispanicg/Latinos in the U.S. to investigate the relationship among risk factors, blood
metabolites related or unrelated to U.S. nativity, and multiple clinical traits and chronic diseases.
The difference in metabolomic profiles by U.S. nativity determined by multiple risk factors
particularly among food groups and gut microbiota, shed light on the impact of U.S.
acculturation on health and provides vital clues for prevention of chronic disease burden in
immigrant communities. Understanding the associ ation between metabolomic variations, risk
factors, and disease outcome could pave the way for tailored interventions aiming to mitigate the
health risks associated with U.S. lifestyle during acculturation process.
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Figures
Figure1 U.S. nativity related blood metabolites.

(A) Consistency between U.S. nativity-blood metabolite associations from age-matched discovery dataset
and their associations from age-matched replication dataset. The associations between U.S. nativity and
metabolites were measured by  values from multiple linear models with adjustment for age, sex, visit
center, Hispanic background, and five principal components of population structure. § values from
discovery dataset and replication dataset are plotted against x-axis and y-axis, respectively. Red dots
indicate 135 U.S. nativity related metabolites which were confirmed after validation with replication
dataset and False Discovery Rate (FDR) adjustment for multiple tests. (B) Distribution of total 634
metabolites and 135 U.S. nativity related metabolites on the super-pathway level. Enrichment of U.S.
nativity related metabolites in each super-pathway was marked behind the labels of super-pathway, as
shown by P values. (C) Top 50 U.S. nativity metabolites selected by the average beta value from
discovery dataset and replication dataset. Metabolites higher in the blood of foreign-born participants
(negative 3 values) and those higher in the blood of U.S.-born participants (positive 3 values) are listed at
the top and bottom, respectively. The color denotes the super-pathway for each metabolite, whose color

corresponds to super-pathways in figure B.
Figure 2 M etabolomic scor e associates with immigration-related variables.

(A) Receiver operating characteristic (ROC) curve showing the performance of metabol omic score on
predicting U.S. nativity status. Age-matched discovery dataset was divided into training dataset (60%)
and testing dataset (40%). The metabol omic score was constructed with 135 U.S. nativity related
metabolites using Least Absolute Shrinkage and Selection Operator (LASSO) in training dataset,
validated in testing dataset, and further confirmed in replication dataset. (B) the correlation between
metabolomic score and immigration-related variables, including immigration age, years lived in US,
dietary acculturation score, language acculturation score, and social acculturation score. Columns are
participants who are sorted by metabolomic score with low scores at the left and high scores at the right.
(C) Dose-response rel ationship between metabolomic score and US-immigration status in discovery
dataset and replication dataset 1. Foreign-born participants were divided into six groups according to
yearslived in the U.S., while U.S.-born participants were classified into one group. Metabolomic score

for participants in each group was dotted, and the mean values were shown as bars.
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Figure 3 Determinants of U.S. nativity related metabolomic difference.

(A, B) Boxplot showing the variance of each metabolite explained by each determinant category or SNP-
based heritability for 135 U.S. nativity related metabolites (green) and 499 unrelated metabolites (red).
Explained variance (EV; R2) for each metabolite was obtained from X GBoost model which used each
determinant group to predict metabolite. The difference of explained variance (EV) and heritability
between the two metabolite sets were detected using permutation test (1000 times). Fig. a shows results
from discovery dataset, and b from replication dataset. (C) Barplot showing the relative predictive power
of each determinant category on overall 135 U.S. nativity related metabolitesin replication dataset 2. The
total predictive power of each determinant group is the sum of the EV of the first 100 principal
components weighted by the EV of each principal components (Methods). Relative predictive power for
each determinant group is the fraction of the total predictive power of the separate model of determinant
group compared to the total predictive power of the full model of al non-genetic determinants. (D)
Consistency of SHAP values of each determinant from discovery dataset, replication dataset, and
replication dataset 2. (E) Mean SHAP value of each determinant extracted from the full model (Fig. C) in
replication dataset 2.

Figure4 U.S. nativity related metabolites primarily determined by food or gut micr obiota.

(A) Heatmap showing explained variance (EV) of metabolites (columns) which are primarily determined
by food or gut microbiota (rows). Y ellow gradient colors indicate the EV of metabolites higher in the
blood of U.S.-born participants compared to foreign-born participants, green gradient colors indicate the
EV of metabolites higher in the blood of foreign-born participants, and gray indicates the EV of
metabolites not primarily determined by food or gut microbiota. Metabolites higher among U.S.-born or
foreign-born participants are further divided into three groups: those primarily explained by food groups
(food-derived metabolites), those primarily explained by gut microbiota (microbiota-derived metabolites),
and those explained by both (food and microbiota-derived metabolites). (B) Adjusted variance explained
by food groups and gut microbiota (adjusted explained variance; EVadj). The adjusted variance explained
by food groups was calculated based on the residuals of linear model fitting metabolite and gut
microbiota, and vice versa. (C) Heatmap showing partial Spearman’s correlation coefficient between
metabolites and individual food group or microbe. Red indicates positive correlation, green indicates
negative correlation, and marked correlations are those statistically significant after FDR adjustment
(FDR<0.05). The strongest correlation for each metabolite is highlighted in aboxed cell. Only individual
food groups and microbes with at least one significant correlation with metabolites are shown. Columns
in Fig a b, and c are aligned to show the same metabolite. (D) Correlation between the effect size of U.S.
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nativity on metabolites and the effect size of four selected determinants on metabolites. 71 selected
metabolitesfrom A-C are colored in red (metabolites higher in U.S.-born individuals) or green
(metabolites higher in foreign-born individuals) among 643 profiled metabolites. Pearson’s correlation

coefficients and P-value are shown in each panel.
Figure5. Association between U.S. nativity related metabalites, clinical traits and diseases.

(A) Explained variance (EV) of selected clinical traits predicted by 135 U.S. nativity related metabolites
in discovery dataset (x-axis) and replication dataset (y-axis). b-c, Comparing EV of selected clinical traits
predicted by U.S. nativity related metabolites and that predicted by U.S. nativity unrelated metabolites.
To avoid the bias of predictive power due to the different number of metabolites between two metabolite
sets, 25 metabolites were randomly selected from 135 U.S. nativity related metabolites and were used to
predict each clinical trait. The process was repeated 500 times, generating 500 EV values. The same
process were performed on 499 U.S. nativity unrelated metabolites, generating 500 EV values. (B)
Boxplot of EV values of U.S. nativity related metabolites (red) and these of U.S. nativity unrelated
metabolites (green) from discovery dataset. (C) Boxplot of EV values of U.S. nativity related metabolites
(red) and these of U.S. nativity unrelated metabolites (green) from replication dataset. Comparison of
these two sets of EV values was carried out using permutation test. (D) Relative risk (RR) and 95%
confidence interval (95% CI) of metabolomic score for diabetes, obesity, chronic kidney disease, asthma,
and liver diseasesin discovery dataset (blue), replication dataset 1 (green), and the combined RR (red).
(E-F) Enrichment of U.S. nativity related metabolitesin disease-associated metabolites in discovery
dataset (fig. €) and replication dataset (fig. f). 634 metabolites are ranked by their association with each
disease and aligned along x-axis in each subplot. Metabolites with positive association are on the left, and
metabolites with negative associations are on the right. Rug plot along x-axis shows the paositions of U.S.
nativity related metabolites among the ranked metabolites. Metabolite Set Enrichment Analysis (MSEA)
was used to calculate the enrichment score. Normalized enrichment score (NES) and statistic significance
arereported at the top. Fig.e and f show the data from discovery dataset and that from replication dataset
1, respectively.
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