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Abstract 

Background 

Norovirus is a leading cause of acute gastroenteritis, adding to strain on healthcare systems. 

Diagnostic test reporting of norovirus is often delayed, resulting in incomplete data for real-

time surveillance. 

Methods 

To nowcast the real-time case burden of norovirus a generalised additive model, semi-

mechanistic Bayesian joint process and delay model, and Bayesian structural time series 

model including syndromic surveillance data were developed. These models were evaluated 

over weekly nowcasts using a probabilistic scoring framework. 

Results 

Modelling current cases clearly outperforms a simple heuristic approach. Models that 

harnessed a time delay correction had higher skill, overall, relative to forecasting 

techniques. However, forecasting approaches were found to be more reliable in the event 

of temporally changeable reporting patterns. The incorporation of norovirus syndromic 

surveillance data was not shown to improve model skill in this nowcasting task, which may 

be indicative poor correlation between the indicator and norovirus incidence. 

Interpretation 

Analysis of surveillance data enhanced by nowcasting reporting delays improves 

understanding over simple model assumptions, which is important for real-time decision 

making. The structure of the modelling approach needs to be informed by the patterns of 

the reporting delay and can have large impacts on operational performance and insights 

produced. 
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Introduction 1 

Norovirus is a gastrointestinal RNA virus causing symptoms of nausea, vomiting and 2 

diarrhoea. Norovirus often causes outbreaks in enclosed settings, such as hospitals, care 3 

homes and nurseries [1], causing a substantial burden on health systems, particularly over 4 

winter [2] [3]. Norovirus transmission was limited during lockdown periods of the SARS-CoV-5 

2 pandemic response, followed by resurgent spreading when normative population mixing 6 

patterns resumed to pre-pandemic levels [4]. Norovirus is a constantly evolving pathogen 7 

with antigenic drift and shift [5] leading to strain replacement events periodically [6] [7] and 8 

resulting in short-lived immunity. These events cause large outbreaks and elevated 9 

transmission, highlighting the importance of monitoring and improving the timeliness of 10 

insights for taking public health action.  11 

Norovirus surveillance in England uses data from multiple national surveillance systems. 12 

These include norovirus positive laboratory reports from confirmed cases, of which a subset 13 

undergo molecular typing, as well as notifications of outbreaks [8]. There is a reporting 14 

delay between diagnostic test administration and reporting to the national surveillance 15 

data, partially attributable to norovirus not being a Schedule 2 notifiable causative agent in 16 

legislation [9]. Due to this lag, the national official statistics surveillance reports truncate the 17 

time period shown by one week to remove partially complete data [8]. 18 

Norovirus is an excellent candidate for the application of nowcasting methods due to the 19 

inherent delay in case reporting as a non-priority pathogen. Research has been conducted 20 

on short term projections using statistical methods [10] [11], though there is limited 21 

exploration of correcting for time delays in norovirus cases. Norovirus incidence is highly 22 

stochastic, with a partially seasonal pattern and high heterogeneity between localised 23 

outbreaks and national trends, making it challenging to predict. Building on nowcasting 24 

research applied during the SARS-CoV-2 pandemic [12] [13] modelling can be explored to 25 

improve understanding of the real-time norovirus dynamics. 26 

In this paper, we explored the reporting delay for norovirus cases in England over the 27 

2023/2024 winter. We evaluated a range of methods for nowcasting using different model 28 

structures, guide signals, and assumptions about data completeness to consider the trade-29 

offs between different approaches applicable to norovirus and beyond. 30 

Methods 31 

Data 32 

Norovirus Cases 33 

Individual test results were extracted from the Second Generation Surveillance Service 34 

(SGSS) database in UKHSA (UK Health Security Agency) [14] for positive norovirus tests 35 

conducted in England. The database only stores information on positive laboratory test 36 

results uploaded by frontline diagnostic laboratories, with a sampling bias towards health 37 

and social care settings. We deduplicated tests to keep the first test per patient infection 38 

episode. Under the legislation positive norovirus diagnostic tests are required to be notified 39 
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to the UKHSA, but not required within 7 days of testing [15]. Cases followed a day-of-week 40 

periodicity shown in Supplementary Figure 1. 41 

In this analysis we focused on two main time events for each test. Firstly, the specimen date 42 �� defines when the specimen was collected from the infected individual for testing. 43 

Secondly, the report date �� defines the date the record is ingested into SGSS, thereby 44 

notifying UKHSA of the norovirus case through national surveillance. As symptom onset 45 

dates are not reported, the specimen date is the most epidemiologically relevant event. 46 

Despite being impacted by time to treatment, the specimen date gave the least delayed 47 

representation of the epidemic’s progression compared with other available time events for 48 

each test. The difference between report date and specimen date � � �� � � is the 49 

reporting delay.  50 

To model the epidemic and corresponding delay distributions, we aggregated the data by � 51 

and � to construct a so-called data “reporting triangle” [16], illustrated in Figure 1. The 52 

reporting triangle is an array with elements ��,�, for � � �1, 
� and � � �0, 
�, where 
 is the 53 

maximum length of the specimen date time series � and 
 is the maximum reporting delay. 54 

The element ��,� represents the number of tests collected on the �th
 day of the specimen 55 

date time series that were reported after � days. In theory, 
 could be very large. However, 56 

in practice most reporting delays are under 10 days. Therefore, for this analysis, we assume 57 

a maximum possible reported delay of 50, though each model may assume a shorter value. 58 

In real-time, cases ��,� cannot exist when � � 
 � � which introduces a right truncation. 59 

Therefore, for cases at � � 
 only cases with � � 0 can be known, with other values 60 1 � � � 
 unknown. The quantity of most interest used to inform decision making and 61 

proactive communications was the total cases by specimen date �� . The reporting triangle is 62 

therefore collapsed into �� � ∑ ��,�
�
��� . To support operational needs, these daily counts 63 

are also aggregated to weekly levels for ease of interpretation.    64 
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 65 

Figure 1. Illustration of the reporting delay data triangle structure, with elements of the 2-dimensional array. Horizontal 66 

axis represents the report delay and vertical axis the specimen date. Complete data per specimen date  correspond to the 67 

sum of each row across the reporting delays. Each cell represents the case count for a given specimen date and reporting 68 

delay. Case counts are unknown in real-time when d > T-t, represented here by blue cells.  69 

NHS 111 Online Pathways 70 

While there is a delay in case reporting, other data sources are complete in real-time and 71 

rapidly available. These data were be leveraged to inform case prediction. NHS 111 Online 72 

Pathways is an online triage service in the UK used to give non-emergency healthcare 73 

guidance to individuals [17]. Users are routed to appropriate guidance given input 74 

information about their symptoms. We transformed these inputs into symptom categories, 75 

, and calculate counts of symptom triages, , by time,  and symptom category. 76 

Symptom categories and groupings are given in Supplementary Table 1, with visualisations 77 

of the trends in Supplementary Figure 2 & 3.  78 

Models 79 

The aim of our nowcasting models was to estimate the expected complete number of cases 80 

that have been collected during the most recent 7 days, . Some models harness the 81 

partial reporting of recent cases correcting for the delay distribution, others ignore this 82 

partial reporting. We aimed to select methods that perform well against the norovirus 83 

dynamics observed. Models were tuned for appropriate parameter selection over the 4-84 

week period using weeks ending 8 October 2023 to 29 October 2023, then applied to the 85 

remainder of the weeks to 10 March 2024, to avoid parameter selection using evaluation 86 

data. Models are tuned based on the average daily scores for the most recent 7 days, as 87 

outlined in the evaluation section. Model structures and assumptions are given in Table 1. 88 
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Baseline 89 

To contextualise the performance of the models, we implemented a simple baseline 90 

approach to compare against. We assumed each predicted day will be equal to the observed 91 

count the previous week giving an autocorrelated prediction with day-of-week effects. 92 

The central estimate is set as ��� � ∑ ����,�
�������
�	
 , which corresponds to the reported data 93 

from the seven days prior – matching the weekly reporting cycle in surveillance. Most 94 

norovirus cases were reported with � � 7 and as such this method gives predictions of near 95 

complete case numbers. We did not consider uncertainty within the baseline method. For 96 

application of the scoring methodology, prediction intervals are required. Therefore, for the 97 

baseline model the prediction intervals were assumed equal to the central estimate. 98 

Generalised Additive Model 99 

We used a generalised additive model (GAM) utilising partially reported data, based on a 100 

nowcasting model for mpox [18] [19]. This estimated the total number of cases with 101 

specimen date �, ��� , as the sum of known data that has already been reported, ��,�, for 102 

reporting delays � � �0, 
 � ��, and estimates for the unknown data yet to be reported, 103 ���,�, for reporting delays � � �
 � � � 1, 
�, i.e.  104 

��� �  ∑ ��,����
��0 �  ∑ ���,�

�
�����	1     (1) 105 

As ��,� is known, ��� has a natural lower bound of ∑ ��,�
��
��� . The unknown data was modelled 106 

with a negative binomial distribution accounting for the non-negative integer values and 107 

overdispersion. Using the mean and variance parameterisation, 108 

��,�  ~ NegBin���,� , ��,� � ��,�
� /  ! 

with dispersion parameter  . We use a log link function to model the exponential epidemic 109 

process, where ��,� depends on both � and � according to 110 

log���,�! �  $
 � %�&�' � %�&�' � (�&wday&�'' �  (�&wday&� � �''. 111 

where $
 is a constant. We assumed that the number of cases vary smoothly over specimen 112 

date � and number of days delay � as %�&�' and %�&�', with random day-of-week effects 113 (�&wday&�'' and (�&wday&� � �'' respectively. The model was fitted in R using the gam 114 

function from the mgcv package [20]. 1000 burn-in and posterior samples were drawn from 115 

the model using the gratia package [21] with a Metropolis-Hastings sampler. Samples were 116 

aggregated to ��� (eqn. 1), with prediction intervals taken using quantiles of these samples. 117 

Models were fit to the past 56 days, with cubic regression basis functions every - � 7 days 118 

for %�&�' and %�&�', and a maximum reporting delay 
 � 14. Model tuning is outlined in 119 

Supplementary Section 2.  120 

Epinowcast 121 

We also used a Bayesian hierarchical nowcasting framework implemented in the epinowcast 122 

package [22], with the implementation described below. This approach builds on earlier 123 

nowcasting approaches [23] [24]. As with the “GAM” model, the estimate for the total 124 
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number of tests with specimen date �, ��� , is the sum of known data, ��,� , and estimates for 125 

the unknown data, ���,� (eqn. 1). 126 

Here ��,�|�� follows a multinomial distribution with a probability vector �1�,�! that is 127 

estimated jointly with the expected number of final reported cases. This differs from the 128 

“GAM” model approach, where each ��,� is independent. We used the default 129 

implementation of modelling expected final reported cases as a first order random walk, 130 

2���� � 3� 

log&3�' ~ Normal&log�λ��� , σ
!' 

log&3
' ~ Normal&log&�
 � 1',1) 131 

σ
 ~ HalfNormal&0,1'. 132 

The instantaneous growth rate :� is defined as the log of the expected number of final 133 

reported tests between time � and � � 1. :� is then modelled on the log scale by a daily 134 

random effect (�&�' and a random effect for the day of the week (�&wday&�'', to account 135 

for weekly periodicity in the underlying data. 136 

log&:�' � (�&�' � (�&wday&�'' 

Within epinowcast the delay distribution �1�,�! is then defined as a discrete time hazard 137 

model where: 138 

;�,� � <�delay � �=day > �, W�,�!. 139 

Here, the hazard is determined by a design matrix W�,� including a baseline delay 140 

distribution and time- and delay- specific covariates which affect the reporting delay. We 141 

assume the probability of reporting 1�,�
�  follows a discretised log-normal distribution where 142 

the log mean and log standard deviation are modelled with a daily random effect (the model 143 

default). 144 

1�,�
� ~LogNormal&µ� , υ�' 

where the parametric logit hazard γ��  is given by 145 

γ�� � logit E 1�,�
�

F1 � ∑ 1���
��	
 �,��

� GH 

We also use a constant non-parametric logit hazard such that: 146 

I�,� � $
 

The overall hazard is then modelled as logit&;�,�' � γ�,� � I�,� 147 

To estimate final observed reported cases a negative binomial observation model is used 148 

where: 149 

���,�|λ� , 1�,�  ~ NegBin�λ� J 1�,� , K!, � � 1, … 
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and the overdispersion parameter K is estimated with a prior of 150 1MK ~ HalfNormal&0,1' 

and ���  is given by (eqn. 1). 151 

Unlike the “GAM” model, this approach introduces parametric, discrete, and truncated 152 

distributions for the reporting delay, better reflecting the reporting measurements. Models 153 

are fit in stan with cmdstan [25] using the Hamiltonian Monte Carlo (HMC) with NUTS (No-154 

U-Turn Sampler). We ran 1000 iterations for warm-up and 1000 post-warmup iterations. A 155 

maximum reporting delay of 7 days, with a training length of 35 was selected. Model tuning 156 

and prior specification are outlined in Supplementary Section 3. 157 

Bayesian Structural Time Series 158 

We employed a flexible Bayesian structural time series (BSTS) modelling approach to 159 

produce a nowcast without harnessing partial reported case counts. The time series �� is 160 

truncated by 7 days, with the unknown daily counts estimated in a traditional forecasting 161 

approach. The BSTS allows for a state space specification with decomposition of time 162 

varying dynamics including trend, seasonality and regression effects [26]. We create two 163 

models using the bsts R package [27], one without regressors, the second using 111 online 164 

indicators. 165 

The first model “BSTS” is defined by the following state space equations, where at time �, 166 

we have mean ��, slope N�  and seasonal component O�, with a season as P � 7 days to 167 

capture the day-of-week effects. 168 

log&3�' � �� � O� where  ��  ~ <QR%%Q�&3�'   (2) 169 

The equation for the mean �� is given by 170 

���� � �� � N� � S
,�  with   S
,�  ~T&0, U�'    (3) 171 

and the slope, 172 

N��� � N� � S�,�     and     S�,�~T&0, U�'.        (4) 173 

Lastly the seasonality component is determined via dummy regression variables, 174 

τ��� � � 	 τ�����
���

���

� 
�,�  

with       S�,�~T&0, U�'.    (5) 175 

This ensures that the seasonal component τ� accounts for the cumulative seasonal effects 176 

over the specified period P, in our case one week. Therefore, log&3�' follows a local linear 177 

trend with seasonality, where the mean and slope of the trend are assumed to follow 178 

random walks. For the “BSTS” model, a training length of 60 days was chosen, with upper 179 

limits of exp&U�' and exp&U�' equal to 1.1. Model tuning is outlined in Supplementary 180 
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Section 4. The models were fit via Gibbs sampling MCMC, run for 50,000 iterations with 181 

2,000 burn in.  182 

To produce the second model “BSTS + NHS 111 online” we update the observational 183 

equation (1) to include the R regressor symptom category scaled counts X�,�  in Y� 184 

log&3�' � �� � O� � $�Y� , where  ��  ~ <QR%%Q�&3�'. 185 

The $�  values are estimated using spike and slab priors [28] centred on zero to allow for 186 

sensible variable selection. For the “BSTS + NHS 111 online” model we choose a training 187 

length of 150 days, 5 expected regression coefficients (through the spike and slab prior), and 188 

an upper limit for exp&U�' of 1.01 and exp&U�' of 1.1. Model tuning analysis is given in 189 

Supplementary Section 4. 190 

 Models Overview 191 

Property Baseline BSTS BSTS + NHS 

111 online 

GAM epinowcast 

Uses partial 

reported data 

No No No Yes Yes 

Parametric 

reporting delay 

distribution 

- - - No Yes 

Supplementary 

indicator signal 

No No Yes No No 

Bayesian No Yes Yes No Yes 

Parameter 

estimation 

method 

- Gibbs  Gibbs REML, 

sampling  

via Metropolis-

Hastings 

HMC with 

NUTS 

Approximate 

runtime per week 

(fitting and post-

processing) 

0.1s 50s 1 min 45s 10s 10 min 

Posterior samples 

(burn-in) 

- 50,000 

(2,000) 

50,000 

(2,000) 

1,000  

(1,000) 

1,000 

(1,000) 
Table 1. Summary of key model structures, assumptions, and characteristics to compare for each model. 192 

Evaluation 193 

To compare the different nowcasting approaches we employ multiple scoring methods in a 194 

probabilistic framework. The interval coverage is a measure of probabilistic calibration, 195 

telling us the proportion of observations that are within given prediction interval ranges – in 196 

our case 50% and 90%. From the interval coverage we calculate the coverage deviation, the 197 

average difference between the measured interval coverage and the specified interval 198 

value, with a coverage deviation nearer zero being preferred. The (weighted) interval score 199 

(WIS) is a proper scoring rule composed of sharpness and under/overprediction, giving an 200 

overall measure of performance where low values are better. The weighted interval skill 201 
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score is calculated as WISS����� � 1 � ��������

�����	��
��
 where WISS����� � 0 corresponds to a 202 

model better than the “baseline” model. The bias is a relative measure of 203 

under/overprediction telling us if the models systematically estimate high or low, with lower 204 

bias models having a score nearer zero. The median absolute error gives an average of the 205 

absolute difference between central prediction and true data. The scoring is conducted 206 

using the scoringutils package [29]. The estimates are scored at daily and weekly 207 

aggregations, as well as explored by nowcast horizon ;, where ; � 
 � � in our case is the 208 

day-of-week predicted. Since the data is uploaded weekly, the nowcast horizon ; 209 

corresponds to a unique day-of-week where Sunday will be a nowcast horizon of 0 days, and 210 

Monday will have a nowcast horizon of 6 days. 211 

Results 212 

Winter 2023/2024 followed the seasonal trend of increasing cases from September 213 

onwards, reaching a stable trend from December 2023 onwards. The difference between 214 

final and initial cases is largest in the most recent days each week, as expected, with ��,
 215 

near zero (Figure 2a). Across each week approximately 20% of the data are revisions (cases 216 

added the following week). These revisions can change the narrative of the real-time trend 217 

without correction (Figure 2b). The distribution of � shows few reports on � � 0, a peak at 218 

1-2 days and most reports within 7 days (Figure 3). The time varying reporting delay is given 219 
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in Supplementary Figure 4, showing limited variation.220 

 221 

Figure 2. The backfilling of norovirus tests over the Winter 2023/2024 season. (a.) daily counts of tests at different 222 
snapshots of reporting, showing the most recent observed counts are substantially lower than the final revised data. (b.) 223 
weekly counts of tests at each ingest and final revisions. The end date for each week was taken as a Sunday, to produce a 224 
nowcast of data from the previous week.  225 

 226 
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 227 

Figure 3. Time delay distribution of days between specimen date and report date. Includes complete data from 02-10-2023 228 
to 10-03-2024. 229 

The daily and weekly nowcasts are shown over the tuning and evaluation time periods 230 

(Figure 4 & 5). Both the “GAM” and “epinowcast” models show increasing uncertainty 231 

towards the most recent date where data is more incomplete. The models using the 232 

partially complete data underpredict the complete cases in the week ending 14 January 233 

2024, which we also see in the weekly estimates (Figure 5), though the “BSTS” is not 234 

impacted in this way. The uncertainty in the weekly estimate varies substantially by model, 235 

though the “baseline” model has no associated uncertainty. The BSTS models have wide 236 

prediction intervals compared to the “GAM”, with the “epinowcast” model prediction 237 

intervals being skewed towards higher values. 238 
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 239 

 240 

 241 

Figure 4. Daily predictions from all models with 50% and 90% prediction intervals against initial and final reported count of 242 
tests. 243 
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 244 

 245 

Figure 5. Weekly predictions from all models with 50% (box) and 90% (whiskers) prediction intervals against initial and final 246 
reported count of tests. The weekly predictions are created as the sum of sample predictions per week. 247 

The overall daily and weekly evaluation scores are shown in Table 2. The “baseline” model 248 

has high WIS, expected given its small interval width. The partial reporting delay models 249 

“epinowcast” and “GAM” outperform other models across WIS and MAE, generally 250 

overpredicting, when other models are underpredicting. The “BSTS” model performs better 251 

than the baseline across all daily metrics, whereas the “BSTS + NHS 111 online” performs 252 

broadly worst. Across daily and weekly scoring the “BSTS” model has the best calibration 253 

with lowest coverage deviation, though other models have similar values. Notably, the 254 

“GAM” and “epinowcast” models over and underpredict respectively. 255 

 256 

 257 
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 258 

 259 

Temporal 

granularity 

Model WIS Median 

absolute error 

Bias Coverage 

deviation 

daily Baseline 7.73 7.73 -0.21 -0.49 

daily BSTS 4.57 7.18 -0.07 0.03 

daily 

BSTS + NHS 111 

online 

10.28 15.36 -0.24 -0.12 

daily epinowcast 3.03 4.07 -0.31 0.08 

daily GAM 2.29 3.39 0.05 0.05 

weekly Baseline 29.74 29.74 -0.39 -0.56 

weekly BSTS 21.19 34.04 -0.05 -0.06 

weekly 

BSTS + NHS 111 

online 

67.44 100.35 -0.30 -0.20 

weekly epinowcast 15.61 22.35 -0.19 0.08 

weekly GAM 11.56 16.00 0.04 -0.11 
Table 2. Breakdown of overall model scores by temporal granularity. The daily granularity shows the average daily score 260 
over the time series. The weekly granularity shows the average weekly score over the time series. The most optimal score by 261 
temporal granularity and scoring metric is in bold. 262 

Over the evaluation period the “GAM”, “BSTS” and “epinowcast” models have improved 263 

skill over the baseline model in most but not all weeks (Figure 6c). For much of the time 264 

series, the “BSTS+NHS 111 online” model has higher WIS than the baseline model (Figure 265 

6b). The “GAM” and “epinowcast” models have bias > 0 during the epidemic growth phase, 266 

indicating overprediction (Figure 6c). The week of 14 January 2024 the “epinowcast” and 267 

“GAM” perform markedly worse than other weeks, where initial reported data is 268 

particularly low. Further scoring at daily and weekly levels are given in Supplementary 269 

Figures 5 & 6. 270 
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 271 

 272 

Figure 6. Daily count of final and initial reported tests (a) with daily mean model scores for each prediction week. The 273 
Weighted Interval Score (b), Weighted Interval Skill Score (c), Bias (d) and Coverage deviation (e) are given across models 274 
and time. 275 

By breaking down by the day-of-week (and therefore nowcast horizon, in our case) we can 276 

explore how varying data completeness affects model performance. Relative to “baseline” 277 

the “BSTS” model exhibits a flat skill across days (Figure 7a), whereas the relative skill of the 278 

“GAM” and “epinowcast” gets deteriorates towards the end of the week (Figure 7b). The 279 

“baseline” consistently underpredicts, while “epinowcast” underpredicts at the start of the 280 

week but becomes less biased toward Sunday (Figure 7c). Compared to the "BSTS" model, 281 

the improved performance of the "GAM" model is primarily due to lower WIS early in the 282 

prediction week when data is more complete. 283 
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 284 

 285 

Figure 7. Model scores averaged over each day of prediction. A Monday has near complete data, whereas a Sunday has 286 
many cases not yet reported. The scores are the average over the evaluation period. 287 

 288 

 289 

Discussion 290 

Norovirus contributes substantially to health service winter pressures through hospital 291 

outbreaks, reduced bed availability and staff absences. As such, timely surveillance is crucial 292 

for situational awareness, particularly to understand changes in the epidemic curve in the 293 

context of delayed reporting. In this work we applied a range of nowcasting approaches to 294 

norovirus cases, with the aim of understanding the current epidemic state.. We have shown 295 

that harnessing partially complete data outperforms a truncate-and-forecast approach, but 296 

the performance can be sensitive to the consistency of case reporting, which is challenging 297 

in frontline health protection. The delay in reporting impacts the analysis of trends in 298 

national surveillance, so it is important official reporting exclude these partially reported 299 

days, though nowcasting can support decision making in real-time. The nowcasting problem 300 
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presented is a straightforward application of time delay correction, with a small average 301 

delay, a single test type, and without considering regional or age-related variation. This may 302 

partially explain the strong performance of approximate methods in the scoring. 303 

Nowcasting approaches are increasingly used to predict case counts by accounting for 304 

delays in reporting, and have been crucial in the recent COVID-19 pandemic and mpox 305 

outbreak [12] [24] [18] [30]. In this analysis, we apply several modelling approaches from 306 

the epidemic literature to this problem. We compare a well-principled Bayesian 307 

implementation, epinowcast, which jointly models a reporting delay distribution with an 308 

underlying process model, and a more approximate but highly flexible and computationally 309 

efficient GAM-based model. We also consider a Bayesian structural time series approach, 310 

testing the utility of incorporating leading indicators into the modelling framework. To our 311 

knowledge this is the first study to apply time delay nowcasting methods to norovirus cases, 312 

which may be more challenging to nowcast than other infectious diseases due to high levels 313 

of underreporting, regional heterogeneity and its association with outbreaks in closed 314 

settings such as care homes, schools and hospitals [31]. Despite this, several models 315 

generated operationally useful predictions of norovirus test counts, offering a substantial 316 

improvement over using truncated data (the current standard) or a naïve seasonal baseline. 317 

However, when reporting delay data is unavailable, time series forecasting presents an 318 

adaptive alternative with good coverage and performance compared to the baseline. In 319 

contrast to previous studies, we did not find including leading indicators improved our 320 

predictions [32]. This could perhaps be explained by lower signal in the indicators 321 

considered, related to confounding effects from other winter pathogens. Finally, our 322 

findings that several models perform well with different accuracy and biases over time and 323 

day of the week suggests the potential benefit of an ensemble approach, as has been 324 

demonstrated in other contexts [12]. 325 

Models incorporating reporting delays consistently performed better than forecasting 326 

models that do not, showing the utility of leveraging this data when available. This improved 327 

performance is driven by reduced uncertainty when there is more complete reported data, 328 

early in the nowcast window. Among our models using reporting delays, we found that the 329 

time delay approximation method in the “GAM” scored slightly better than the more 330 

complex “epinowcast” model’s full joint distribution approach, in this application. The 331 

“epinowcast” has increased uncertainty due to modelling the reporting delay distribution 332 

and underlying process model. Wide intervals are penalised in scoring metrics like the WIS, 333 

however, this larger uncertainty may better reflect the uncertainty in the system. We saw 334 

that modelling based on recent distributions of reporting delays can perform poorly if these 335 

distributions change rapidly, although in these cases, the “epinowcast” model’s optional 336 

time-varying delay may be advantageous compared to a fixed distribution approach, such as 337 

the one in the “GAM”. Speed is key in a real-time modelling context, with some models 338 

being substantially faster than others, however, all approaches ran in a reasonable time 339 

(Table 1) for real-time inference. The computational expense of “epinowcast” compared to 340 

other models, however, was impactful during model development. 341 
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The performance of some models may have been limited due to the tuning approach taken. 342 

Hyperparameter optimisation was performed on a time before the epidemic wave started, 343 

simulating a plausible real-time scenario – which may bias selection toward 344 

hyperparameters good at flat periods of incidence. There are reporting changes in frontline 345 

healthcare delivery which can impact the performance of time delay informed models – 346 

these local practices are challenging to understand in real-time and adjust for in modelling, 347 

which should be explored further. Future work should explore how local testing practices 348 

can be incorporated into modelling directly. Understanding testing pathways and real-time 349 

modelling of norovirus will be crucial for the next strain replacement event highlighting the 350 

importance of developing our understanding and preparedness. 351 

While not a high priority pandemic potential pathogen, norovirus causes healthcare system 352 

strain and an unpleasant infection for the individual, increasing associated opportunity cost 353 

by blocking beds and elongating patient length of stay [3]. Estimating the current case 354 

burden when accounting for delayed reporting can be an important tool for supporting 355 

effective public health response. In this work we have compared the options available to 356 

correct for delayed reporting, highlighting their strengths and limitations – notably 357 

demonstrating the importance of explicitly modelling the partially complete data. This work 358 

will underpin situational awareness should the next strain replacement event occur. 359 
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Training data for the models explored in this manuscript is available at 383 

https://github.com/jonathonmellor/norovirus-nowcast. This data is aggregate with 384 

statistical noise added to preserve anonymity. This data enables each model to be fit and 385 

can be used for the future development of nowcasting models. Code for running all models 386 

is available at https://github.com/jonathonmellor/norovirus-nowcast. Individual-level data 387 

on the reporting delay used to inform initial exploration are not available due to patient 388 

identifiability. An application for data access can be make to the UK Health Security Agency.  389 

UKHSA&operates a robust governance process for applying to access protected data that 390 

considers:  391 

• the benefits and risks of how the data will be used 392 

• compliance with policy, regulatory and ethical obligations  393 

• data minimisation  394 

• how the confidentiality, integrity, and availability will be maintained  395 

• retention, archival, and disposal requirements  396 

• best practice for protecting data, including the application of ‘privacy by design and 397 

by default’, emerging privacy conserving technologies and contractual controls  398 

Access to protected data is always strictly controlled using legally binding data sharing 399 

contracts.  400 

UKHSA&welcomes data applications from organisations looking to use protected data for 401 

public health purposes.  402 

To request an application pack or discuss a request for UKHSA data you would like to 403 

submit, contact DataAccess@ukhsa.gov.uk.  404 
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