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ABSTRACT 

Cardiovascular disease has been established as the world’s number one killer, causing over 20 million deaths per year. 

This fact, along with the growing awareness of the impact of exposomic risk factors on cardiovascular diseases, has led 

the scientific community to leverage machine learning strategies as a complementary approach to traditional statistical 

epidemiological studies that are challenged by the highly heterogeneous and dynamic nature of exposomics data. The 

principal objective served by this work is to identify key pertinent literature and provide an overview of the breadth of 

research in the field of machine learning applications on exposomics data with a focus on cardiovascular diseases. 

Secondarily, we aimed at identifying common limitations and meaningful directives to be addressed in the future. Overall, 

this work shows that, despite the fact that machine learning on exposomics data is under-researched compared to its 

application on other members of the -omics family, it is increasingly adopted to investigate different aspects of 

cardiovascular diseases. 

The authors declare that they have no conflicts of interest regarding the publication of this manuscript. 

 

Introduction 

Since the mid-20th century, cardiovascular diseases (CVDs) have emerged as the leading cause of death globally. Focusing 

on Europe, CVDs have been reported to account for 3.9 million deaths annually and over 1.8 million deaths within the 

European Union (EU).1 In addition to this significant epidemiological burden, CVDs are estimated to impose a financial cost 

of 210 billion euros per year on the EU economy.1 They represent a large group of diseases attributed to a complex 

interplay between intrinsic risk factors, such as genetic predisposition, biological sex, age and lifetime exposure to 

environmental and behavioral risk factors which are considered at least partially modifiable.2 Environmental exposures to 

ambient and indoor air pollution, noise, extreme temperatures, second-hand smoke, and chemicals, among other factors, 

have been recognized by the European Environment Agency as significant contributors to the high burden of CVD. It is 

estimated  that over 18% of CVD-related deaths in Europe are attributable to environmental risks.2 In recent years, there 

has been growing recognition of the importance of modifiable factors as a whole in efforts to alleviate the burden of 

disease.3 

While preventive interventions targeting traditional risk factors (e.g. blood pressure and cholesterol management) have 

aided in reducing CVD incidents, it remains a major problem at a global scale highlighting the need for new approaches. 
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Unlike one's DNA, which remains unchangeable, there are primary modifiable contributors to CVD that are amenable to 

prevention and policy initiatives aimed at promoting cardiovascular health. The fact that environmental CV risks factors 

are inherently preventable leads to the actionable conclusion that reducing them is a key-step to alleviating the burden 

of cardiovascular disease in Europe. In this context, investigations are increasingly directed towards non-traditional risk 

factors that are present in the built, natural, and sociο-economic environments comprising the “Exposome”.3,4 

Exposome, the youngest member of the widely acknowledged -ome family, was first coined in 2005 by Dr. Christopher 

Wild, then-director of the International Agency for Research on Cancer (IARC), to complement the human genome and 

address the limitations of genetic research in explaining chronic disease etiology.5 Aiming to fill this critical knowledge 

gap, the exposome was conceptualized as a systematic approach to measuring the entirety of environmental exposures 

encountered by an individual from conception onwards, including chemical, physical, biological, and lifestyle factors. In 

2014, Gary Miller and Dean Jones expanded the exposome so as to emphasize diet, behavior, and endogenous processes, 

particularly focusing on biological responses to these exposures.6 According to them, the exposome captures the essence 

of “nurture” in one of the oldest philosophical discussions of “nature” vs “nurture”, representing the summation and 

integration of external forces acting upon our genome throughout our lifespan. This includes factors such as diet, living 

environment, air quality, social interactions, lifestyle choices like smoking and exercise, and inherent metabolic and 

cellular activities. Measuring a quantity for the exposome serves as a biological index of our “nurture”, contextualizing the 

impact of specific exposures on health. This expansion and refinement of exposomics led to the inclusion of metabolomics, 

rather than solely exposure-focused approaches, aiming to capture biological endpoints accompanied with substantial 

changes.7  By exploring all  these factors that constitute the exposome, researchers aim to understand and pinpoint 

modifiable risk factors and devise targeted interventions by means such as active personal measures, behavioral 

strategies, novel policies, urban landscape reforms etc. in an effort to promote health and prevent disease across lifespan.  

Along the lines of Genome-Wide Association studies (GWAS) and the identification of genetic basis of many complex traits 

and diseases,8 there have also been efforts to identify the “environmental” risk factors in the so-called ‘Environment-Wide 

association studies’.9 Finally, the wider term "Exposome-Wide Association Study" (ExWAS) has been proposed as a 

standardization term and a method designed to systematically investigate the connections between phenotypes and 

various exposures beyond the classic understanding of environmental factors, in line with the definition of Exposome.6 

This approach facilitates the identification of significant correlations while addressing the challenge of multiple 

comparisons, aimed at finding the exposomic basis of a disease or trait.10  Examples focused on CVD can be found in 

literature.11 

There are different types of environmental risk factors reported in literature. First, chemical pollution, which spans air, 

soil, water and occupational pollution and is currently acknowledged as the most significant environmental cause of 

disease and premature death in the world.12 Air pollution's main health risks come from particulate matter which is well 

known to be linked with CVDs13 while the water pollution hazards stem from unsafe sources. Soil pollution's health impacts 

can be attributed mainly to heavy metals, deforestation, over-fertilization, and pesticides, with nano and micro plastics 

emerging as a threat. Although lead toxicity primarily results from water and soil pollution, it warrants separate 

consideration due to its widespread environmental presence. There's a close link between water and soil pollution, as 

polluted soils can contaminate surface and groundwater. Heavy metals and metalloids are particularly concerning for their 

contribution to cardiovascular issues through oxidative stress and inflammation.14 Chemical pollutants and particularly 

ambient air pollution, have garnered significant attention from research organizations assessing their impacts.15,16 These 

pollutants were also considered in the Global Burden of Disease study.17,18 

Second, non-chemical pollution such as transportation noise, light pollution and lack of green spaces have been also shown 

to have substantial impact on CVD.4 On the one hand, as urban areas expand and the demand for transportation increases, 

noise pollution is expected to rise. Research has demonstrated a connection between noise pollution and heightened 

cardiovascular risk, driven by mechanisms such as stress, sleep disruption, and increased inflammation. Furthermore, 

studies have shown an association between noise pollution and elevated risks of arterial hypertension, dyslipidemia, 
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obesity, and type II diabetes mellitus. Thus, noise pollution not only directly impacts the CV system but also indirectly 

elevates the risk of developing traditional CV risk factors.19 On the other end, it is known that nocturnal light pollution is 

associated with abnormal changes in circadian rhythms, which in turn may be linked to an increased risk of CVD,20,21 

increased blood pressure and risk of hospitalization for CVD.22 While there is extensive and robust evidence linking noise 

pollution to an increased risk of CVD, the role of nocturnal light pollution in CV pathology is less studied. In order to validate 

and substantiate this association, further research is needed to figure out potential thresholds of ‘safe’ or ‘acceptable’ 

artificial light levels.23 Finally, latest meta analyses have highlighted strong evidence on the link of green spaces and 

cardiovascular health.24 For a comprehensive review on the epidemiology and pathophysiology of environmental stressors 

with a focus on CVDs, the interested reader may refer to pertinent literature.3,4,14,25 

Apart from the classic environmental risk factors such as pollution, the exposome encompasses a wide range of lifestyle 

and socioeconomic factors. There is growing evidence that the CVD is characterized by socioeconomic inequalities.26–28 

These inequalities that are most frequently assessed in terms of income, occupation and education seem to be closely 

related with dietary habits and harmful lifestyle choices such as smoking and alcohol consumption.26 The effect of lifestyle 

intervention  aiming at nutrition and physical activity has shown to benefit cardiometabolic risk factors such as BMI, 

triglycerides and LDL of individuals at risk.29 The overwhelming evidence of the impact of lifestyle on traditional 

cardiometabolic biomarkers has led to the emergence of the framework of “lifestyle medicine” which leverages lifestyle 

interventions to maintain cardiovascular health.30 Most often these interventions focus primarily on diet, physical activity, 

perceived stress and anxiety and also mitigation of harmful habits such as tobacco use and alcohol consumption.        

While traditional epidemiology relying on well-established study designs is a valuable tool to investigate the relationship 

between environmental exposures and health outcomes, new challenges have been posed by the heterogeneous and 

dynamic nature of exposomics data. The exposome concept aims at considering many environmental stressors 

simultaneously, as opposed to the one-by-one approach typically used in epidemiological research. This necessity along 

with the large number of exposures pose challenges such as increased complexity, high dimensionality, high correlation 

between variables and the need to understand both the combined effects and the causal structure between exposure risk 

factors and health outcomes. The Machine learning toolbox, including also Deep Learning (DL) techniques, is particularly 

well-suited to address these challenges.31 By leveraging this set of tools, researchers can efficiently reduce data 

dimensionality and identify complex patterns and interactions; integrate diverse data types; enhance causal inference 

capabilities and uncover intricate relationships between exposomic factors and health outcomes; provide deeper insights 

into how combined environmental and behavioral factors influence CVD. 

ML techniques, including DL, have been gaining popularity for quite a few years now in the analysis and integration of 

diverse kinds of -omics data (e.g. genomics, proteomics, metabolomics) especially within the context of precision 

medicine.32,33 However, applications on exposomics are still in early stages. This is partly because the field itself is relatively 

new (i.e. the term only coined in 2005) but also due to the very nature and scale of the exposome which covers all 

exposures from conception to death. Thus, data is expected to exhibit significant heterogeneity (e.g. lifestyle factors, 

socioeconomic variables, biological responses etc.) as well as spatial and temporal variability, requiring integration from 

multiple sources and technologies. Due to these challenges, researchers proposed a roadmap for the use of federated 

technologies to accelerate research in the field.34 Finally, DL, with its capacity for large-scale processing of complex and 

disparate multi-modal datasets, holds promise for advancing the understanding of the implications of the exposomics in 

the disease.35 

To date, and to the best of the authors’ knowledge, the only review paper on the application of machine learning 

techniques on exposomics data for CVD-related investigations exclusively includes social determinants of health.36 The 

principal objective served by this work is to address this literature gap, by identifying key studies and providing an overview 

of the breadth of research in the field of machine learning applications on exposomics data with a focus on cardiovascular 

diseases. Common limitations have also been identified and meaningful directives to be addressed in the future have been 

suggested. 
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The rest of the article is structured as follows:  we start with the Methods section reporting the adopted literature search 

strategy and outlining the three research questions with respect to which the presented analysis has been conducted and 

then we proceed with the Results section providing the reader with an overview of the relevant literature in the context 

of the three main axes of our work. Finally and as a result of this review, we summarize findings, discuss remarkable 

insights, and also identify and address the limitations of this study. 

 

Methods 

Search strategy 

An extensive search of PubMed, IEEE Xplore and ACM Digital Library has been conducted in order to thoroughly identify 

articles on machine learning applications exploring potential associations of exposomics factors with CVD-related 

outcomes and published in English. Relevant key terms have been extracted in line with the main aspects of the exposome 

recognized by the European Human Exposome Network.37 The latter identifies environmental, lifestyle-related, and socio-

economic factors as the key exposures constituting the exposome. These key factors have been adopted as the keywords 

for this review, searched in the titles and abstracts of published studies. Specifically, the body of work reported herein has 

been obtained with the following keywords:  

● ‘environment’ AND ‘machine learning’ AND ‘cardiovascular diseases’ 

● ‘socio-economic’ AND ‘machine learning’ AND ‘cardiovascular diseases’ 

● ‘lifestyle’ AND ‘machine learning’ AND ‘cardiovascular diseases’ 

Database searches have been supplemented with studies identified through manual searching. This review has been 

conducted using a systematic approach consistent with the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) statement.38 No temporal bounds have been imposed on the publication dates. 

 Study Exclusion Criteria 

The following exclusion criteria have been applied in order to ensure that this review maintains focus and relevance to 

the desired scope: 

● Non-English articles, 

● Non-peer reviewed items (e.g. gray literature such as pre-prints, technical reports, web-based guidelines etc.), 

● Items for which the full text was not accessible (e.g. articles presented at conferences as abstracts), 

● Articles exclusively focused on traditional statistical methods, 

●  Articles not exploiting exposomics data, 

● Review articles, 

● Duplicate articles. 

   

Research questions 

The analysis to be presented revolves around the following research questions. 

RQ1. Which are the main identified categories of studies with respect to their objective? 
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RQ2. Which machine learning algorithms have been applied for investigating exposomics impact on CVDs and which seem 

to be ranking among the top performers? 

RQ3. Which exposomic factors have been investigated and which have been identified as potentially good predictors? 

The aspect investigated in the context of the first research question (RQ1) focuses on classifying the selected studies into 

two main categories based on the selected target variables combined with the context of potential application of the 

developed system. The second research question (RQ2) explores the ML algorithms preferred by the research community 

in an attempt to rank specific categories of algorithms with respect to their popularity in pertinent literature.  Finally, the 

third research question (RQ3) aspires to shed light on specific categories of promising predictors and hopefully to identify 

new directions of exposomics variables investigations. 

 

Results 

 

A general overview 

Firstly, an overview of pertinent literature is provided, highlighting the temporal distribution of publications, the 

geographical distribution of utilized datasets, and the specific machine learning tasks addressed. 

The timeline of publications identified by using the specified search criteria, as displayed in the barplot below (Fig.1), 

reveals a pronounced increase of relevant studies from 2021 onwards. 

 

 

Figure 1. Time evolution of publications leveraging ML techniques to exploit exposomic datasets for CVD-related investigations left: 

Year of publication (x-axis) and number of identified studies per year (y-axis), right: Time of publication (‘earlier than 2021’ and ‘from 

2021 onwards’) 

Concerning the spatial distribution, the majority of identified studies reporting the origin of their datasets have been based 

on datasets collected within US or Asian territory (Fig. 2).  
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Figure 2. left: Continental distribution of exploited datasets, right: Data of EU vs non-EU origin. 

Lastly, regarding the framing of the ML problems addressed in the identified literature, an important observation is the 

pronounced, almost exclusive adoption of a supervised context. The most widely adopted problem framing is that of 

classification tasks, followed by regression tasks (Fig. 3). 

 

Figure 3. A Venn diagram of ML tasks categories encountered in literature focusing on exploring CVDs 

 

Research questions 

Proceeding with the conducted analysis, we elaborate on identified categories of studies across pertinent literature with 

respect to the aspects corresponding to the research questions: 

RQ1. Which are the main identified categories of studies with respect to their objective? 

Two main categories of studies have been identified based on the selected target variable combined with the application 

context of the system under development. The first category aims at forecasting crucial cardiovascular outcomes or 

associated risk level and often focuses on identifying key determinants of the target outcomes and ranking them in 

terms of feature importance. The latter category opts for resource-related target variables, typically reflecting 

healthcare demand such as number of CVD-induced hospital admissions or identification of peak demand days of 

hospitalizations. This kind of approach usually aspires to build and eventually deploy an early-warning system for 

medical resource allocation and management.  
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Starting from the articles focusing on the prediction/ forecast of cardiovascular outcomes, a general observation would 

be that most of the approaches either forecast cardiovascular disease incidence/ prevalence or investigate cardiovascular 

cause-specific mortality. Less often, disease risk stratification or disease severity prediction is conducted. Guimbaud et 

al.39 have built early-life environmental risk scores (ERS) to assess the cumulative impact of environmental exposures on 

diverse health outcomes, including cardiometabolic health. The authors aimed at informing practitioners about actionable 

factors towards prevention measures in healthcare for high-risk children. In Chen et al.35 the association between machine 

vision–based built environment and prevalence of cardiometabolic disease at the neighborhood level has been 

investigated. The authors aspired to identify at-risk neighborhoods, thereby contributing to a more informed and targeted 

public health strategy for mitigating cardiovascular risks associated with specific environmental factors. In Hossain et al.40 

the authors focused on identifying crucial factors in predicting CVD risk. As the authors claimed, the eventual goal of this 

work has been to enhance clinical practice by providing doctors with a new instrument to determine a patient’s CVD 

prognosis. The primary objective in the study by Nissa et al.41 has been to identify individuals at risk of developing CVDs 

and eventually provide healthcare professionals County phenotypes associated with premature cardiovascular mortality 

have been identified in Dong et al.42 and their geographic distributions have been investigated using machine learning 

approaches as well as geographic information systems. The authors conclude that interventions to reduce premature 

cardiovascular mortality should be targeted to geographic areas with high-risk phenotypes of premature cardiovascular 

mortality. Leirião et al.43 have generated forecasts of cardiorespiratory mortality in the elderly aiming at providing 

decision-makers with a powerful tool for the evaluation of environmental public health-related policies. Martin-Morales 

et al.44 predicted CVD mortality with a focus on identifying associated risk factors from a pool of significant nutritional 

variables. Lee et al.45 have generated forecasts of mortality from cardiovascular, respiratory, and non-accidental diseases. 

Proceeding with the studies attempting to predict cardiovascular incidents, Marien et al.46 have forecasted the number of 

daily incidents of myocardial infarctions based on case-only data and claimed that the suggested ML approach provides a 

promising basis to model future MI under changing environmental conditions, as projected by scenarios for climate and 

other environmental changes. Bhakta et al.47 have demonstrated the potential of ML models for the early detection of 

CVD, ultimately enabling medical professionals to implement timely interventions and achieve improved patient 

outcomes. Liu et al.48 developed a detection system of stroke survivors with a focus on identifying key factors associated 

with stroke records. Monaco et al.49 have evaluated the severity of CVD incidents and identified clinical features mostly 

associated with CVD risk. Yao et al.50 have exploited multi-source spatio-temporal data to predict MI severity and to 

spatially analyze associated risk factors. The authors also proposed urban planning-related directives aiming at reducing 

the risk and mortality. Atehortua et al.51 have attempted to demonstrate the potential of exposome-based machine 

learning as a risk assessment tool by developing an ML model for CVD risk prediction performing comparably to a more 

integrative model requiring clinical information. Alaa et al.52 leveraged an automated ML framework applied on non-

traditional variables to increase the accuracy of CVD risk predictions in asymptomatic individuals compared to a well-

established risk prediction algorithm based on conventional CVD risk factors (Framingham score) and other baseline 

models. Ren et al.53 have identified maternal exposure to PM10 as the primary risk factor for congenital heart defects 

based on two machine learning models. Park et al.54 developed several updated Environmental Risk Score (ERS) measures 

constructed to predict GGT, an indicator of oxidative stress, which has been exploited as a summary measure to examine 

the risk of exposure to multi-pollutants. Subsequently, associations between ERS and cardiovascular endpoints (blood 

pressure, hypertension and total and cardiovascular disease (CVD) mortality) have been evaluated. Lee et al.11 performed 

an exposome-wide association study (ExWAS) on a selection of cardiovascular outcomes (cardiac arrhythmia, congestive 

heart failure, coronary artery disease, heart attack, stroke, and a combined atherogenic-related outcome comprising 

angina, angioplasty, atherosclerosis, coronary artery disease, heart attack, and stroke) using statistics and machine 

learning and claim to have identified novel risk factors for CVD. Li et al.55 have identified and ranked prominent factors 

associated with CVD in a supervised context using CVD diagnoses. In Hsiao et al.56 environmental and outpatient records 

have been utilized for detecting the incidence of four specific categories of cardiovascular diseases. The authors claim that 

the proposed model can be further developed as a tool for personalized healthcare management. Lastly, Dominici et al.57 

have explored the association between short-term exposure to airborne particles and daily hospitalizations with 
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respiratory or cardiovascular etiology on a national scale. Their findings indicate an ongoing threat to the health of the 

elderly population. 

Proceeding with the category that focuses on predicting/ forecasting medical resources-related variables, the identified 

attempts aspiring the development of a healthcare resources management tool will be reported. Sun et al.58 exploited 

ML techniques to identify the determinants of population-based CVD outcomes, such as the prevalence of CVD and its 

related health care costs. The authors focused on county level since counties have departments of health that are 

equipped with public health personnel and have the capacity to report and monitor real-world cardiovascular 

prevalence and costs. The findings have important policy implications for controlling the health care costs from CVD. Lin 

et al.59 selected emergency department visits with CVD-related etiology as a target variable, emphasizing the critical 

need for ML-enabled decision support in clinical manpower and resource management. By predicting the incidence of 

emergent CVD events, they aimed at providing a basis for the development of a management system to address this 

need. Sajid et al.60 demonstrated satisfactory performance in predicting CVD incidence with the use of nonclinical 

features readily available in any healthcare system. The authors aimed at reducing the potential burden of disease on 

already overburdened health systems in low-middle-income countries, which have limited access to health facilities by 

enabling the implementation of preventive strategies. Chen et al.61 focused on providing an early-warning system upon 

potentially excessive numbers of hemorrhagic stroke admissions to medical institutions by forecasting the demand for 

hemorrhagic stroke healthcare services. Qiu et al.62 aimed at the implementation of a decision-making tool for medical 

resource management by forecasting peak demand days of cardiovascular diseases admissions. The authors have also 

identified the main weather-related and air quality-related contributors to prediction accuracy. Along similar lines, Lu 

and Qiu  have focused on forecasting daily hospital admissions due to cerebrovascular disease and claimed that their 

approach offers practical value for hospital management teams in early warning and healthcare resource allocation.63 In 

Usmani et al.64 prediction of the trends of daily and monthly hospitalization has been conducted and along similar lines 

Jalili et al.65 forecast the number of hospital admissions of CVD patients without however elaborating on a specific 

application context. Hu et al.66 identified major determinants of stroke incidence at the neighborhood level potentially 

useful to prioritize and allocate resources to optimize community-level interventions for stroke prevention. Nghiem et 

al.67 employed a selection of ML algorithms to predict high health-cost users among individuals with CVD, aiming to 

advance the application of preventive measures for population health improvement and ultimately the optimization of 

health services planning.  

 

 

RQ2. Which machine learning algorithms have been applied for investigating exposomics impact on CVDs and which seem 

to be working the best? 

Tasks encountered in pertinent literature have been predominantly addressed within classification and regression 

contexts, with clustering being much less common. Overall, a broad palette of machine learning algorithms spanning from 

linear to non-linear and ensemble algorithms has been exploited. In many cases different categories of algorithms are 

employed and compared against each other. A detailed reporting of algorithms used in each study can be found in Table 

1. 

Research endeavors conducting comparative experiments among diverse algorithms account for nearly 70% of the 

identified studies. Starting from the most extensive investigations, a considerable part of the literature has explored a 

selection of linear, non-linear and ensemble methods.35,40,45–48,54,60–63,67,68 The second most commonly encountered 

comparative approach involves utilizing non-linear and ensemble methods.41,55,68 Guimbaud et al.39 have exploited linear 

and ensemble algorithms and Jalili et al.65 have focused on linear and non-linear algorithms. Another comparative 

approach involves selecting more than one algorithm but within a specific family of models. In this context, Usmani et 

al.64,69 have focused on the use of non-linear models while Hu et al.66 have exclusively investigated ensemble models. 
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Proceeding with the remaining 30% of pertinent literature that does not conduct performance comparison whatsoever, a 

part of research opted for a non-linear algorithm,42,43,56,57 while another part has focused on an ensemble algorithm of 

their selection.50,51,58,59  

As it becomes obvious from Figure 4 ensemble algorithms are the most popular choice encountered in pertinent 

literature,35,39–41,44–55,58,60–63,66–68 closely followed by non-linear algorithms.35,41–49,54,59,60,62,64–72 The most widely adopted 

algorithms per category are Random Forest followed by XGBoost from the family of ensemble methods, ANN  followed 

by SVM from the family of non-linear methods and linear/logistic regression as well as Lasso and Ridge variants from the 

linear algorithms. 

As Table 2 shows, the majority of comparative studies identify different representatives of the family of ensemble 

models as top-performing algorithms. Among these, the RF algorithm is the most frequently highlighted as the best 

performer, followed by XGBoost. 

Linear methods exploited in pertinent literature are logistic regression,48,62 Support Vector Machines with linear kernel,61 

Ridge regression,46 Elastic Net,63 although the latter in a meta-learning context.  

From the popular family of ensemble models, quite a few works have reported the use of Random Forests,44,46,49,50,55,61,62,68  

followed by XGBoost,44,51,55,61 LGBM,44 Gradient Boosting,46 Random Ferns,55 Bayesian additive regression tree (BART)54 

and Stacking ensemble model63. 

Regarding non-linear methods, the use of artificial neural networks (ANN) and/or DL has been adopted in a considerable 

part of literature.35,43,46,48,49,52,56,60,62,64,65,69 

 

 

Figure 4. Popularity of categories of ML algorithms as reflected by the number of corresponding occurrences in identified literature. 

 

 

Reference ML task ML algorithms Validation 
Evaluation 

Metric 

Feature 

importance/selecti

on 

Chen et. al. 

2024 1 
Regression 

CNN, ET, RF, LGBM, 

Linear Mixed Effects 

Model (LMEM) 

10-fold 

cross-

validation 

R2, MAE, 

RMSE 

sparse partial least 

squares (SPLS) 

regression 

Hossain et 

al. 20242 
Classification 

LR, Naïve Bayes, DT, 

AdaBoost, RF, BAG, 

Data 

splitting  

AUC-ROC, 

sensitivity, 
chi-square 
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ensemble model 

combining the above 

as estimators 

with 80:20 

ratio, 5-

fold cross-

validation 

specificity, 

and 

accuracy 

Guimbaud 

et al. 20243 
Regression Lasso, RF, XGBoost 

10-fold 

cross-

validation 

R2 SHAP 

Nissa et. al. 

20244 
Classification 

DT, RF, GB, CatBoost, 

XGBoost, AdaBoost,  

LGBM 

Data 

splitting 

with 60:40 

ration + 5 

and 10-

fold cross-

validation 

ACC, 

sensitivity 

PEC, 

Precision, 

NPV, FPR, 

FDR, FNR, 

F1, MCC 

Correlation-based 

Nghiem et 

et al. 20235 
Classification Lasso, DT, KNN, RF 

Data 

splitting  

with 80:20 

ratio,  

cross-

validation 

sensitivity, 

specificity, 

precision, F1 

score, AUC 

Gini index 

Leiriao et 

al. 20236 
Regression ANN 

cross-

validation 

+ external 

MAPE  
connection weight 

method 

Li et. al. 

20237 
Classification 

Adaboost, SVM, RF, 

DT, KNN 

Data 

splitting 

80:20 

AUC, 

Sensitivity, 

Specificity, 

Average 

Precision, 

NPV, FPR, 

FNR, FDR, F1 

Score, Brier 

score 

SHAP 

Lu and Qiu, 

20238 
Regression 

Stacking ensemble 

(four base learners: 

Ridge, RF, GBDT, 

ANN) and a meta-

learner (Elastic Net), 

LSTM 

5-fold 

cross-

validation 

+ external 

MAE, RMSE, 

MAPE, 

R2 

SHAP 

Atehortua 

et al. 20239 
Classification  XGBoost 

Internal + 

External 

Sensitivity, 

Specificity, 

Precision, 

AUC-ROC 

SHAP 

Dong et al. 

202310 
Classification CART 

Internal + 

External 
 RF 

Martin-

Morales 

202311 

Classification 

 

LR, SVM, RF, 

XGBoost, LGBM 

5-fold 

cross-

validation 

Accuracy, 

Recall, 

Precision, 

F1, AUC-

ROC 

SHAP 

Bhakta et 

al. 202312 
Classification 

DT, LR, naive Bayes 

(NB), voting, RF, GB, 

bagging, XGBoost, 

and AdaBoost 

Data 

splitting  

with 80:20 

ratio 

Accuracy, 

Precision, 

Recall, and 

F1 Score 

 

Ohashi et 

al. 202313 
Regression LightGBM 

10-fold 

cross-

validation 

RMSE, MAE Boruta SHAP 

Sun et al. 

202314 
Regression XGBoost - - Gini index 

Wang et. 

al. 202315 
Classification 

LR, RF, SVC, MLP, Cox 

Survival Regression, 

Random survival 

Forest, Fast Survival 

SVM 

5-fold 

cross-

validation 

AUC, F1 

score, 

Precision, 

Recall 

SHAP 

Huang et. 

al. 202216 

Classification, 

Regression 

Ensemble Classifier 

based on Naive 

Bayes, RF and SVM. 

Ensemble regressor 

based on General 

Linear Regression, 

Support Vector 

5-fold 

cross-

validation 

AUC-ROC 
Support Vector 

Classifier 
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Regressor and 

Stochastic Gradient 

Descent) 

Lee et al. 

202217 
Classification LR  

 false 

discovery 

rate 

Lasso, knockoff 

boosted trees 

(KOBT), SHAP 

Lee et al. 

202218 
Regression 

XGBoost, RF, Lasso, 

Ridge, and EN , LSTM, 

stacked LSTM 

10-fold 

cross-

validation 

+ external 

MAE, RMSE - 

Marien et 

al. 202219 
Regression 

DT, RF, GBR, Ridge, 

MLP 

10-fold 

cross-

validation 

+ external 

R2, adjusted 

R2, ME, 

RMSE, BIC 

DT, RF and GBR, 

PCA 

Yao et al. 

202220 

Classification and 

regression 
RF  

Kappa 

coefficient, 

Precision,  

Recall, F1 

score and 

AUC-ROC 

SHAP 

Li et al. 

202221 
Classification 

RF, Random Ferns, 

and XGBoost 

10-fold 

cross-

validation 

+ test set 

AUC-ROC, 

AUC-PR 
Boruta 

Liu et al. 

202222 
Classification 

LR, ANN, H2O 

Driverless AI, IF 

cross-

validation 

AUC-ROC, 

AUC-PR, 

Categorical 

Net 

Reclassificat

ion 

Improveme

nt (NRI), 

Integrated 

Discriminati

on 

Improveme

nt (IDI) 

BoostARoota, SHAP 

Testa et al. 

202223 

Clustering and 

inferential analysis 

Hierarchical 

Clustering, cluster 

selection based on 

dendrograms  

n/a n/a n/a 

Usmani et 

al. 202224 
Regression LSTM, ELSTM, DL train + test 

RMSE,  

MAE 
- 

Lin et al. 

202125 
Regression LSTM  

RMSE, 

MAPE 
- 

Monaco et 

al. 202126 
Classification  RF, ANN, GLM 

�=10,5,3 

and Leave 

One Out 

(LOO-CV) 

cross-

validation 

sensitivity, 

precision, 

F1 score 

Boruta 

Jalili et al. 

202127 
Classification  ANN, LR 

cross-

validation 

+ testing 

(Data 

splitting 

70:15:15) 

 

MSE, ER, 

Pearson’s r 
 

Sajid et. al. 

202128 
Classification LR, ANN, SVM, RF 

Data split 

(70:30) 

and 10 fold  

cross 

validation 

Sensitivity, 

Specificity, 

Precision, 

ACC, AUC 

Gini 

Usmani et 

al. 202129 
Regression LSTM, ELSTM, DL 

Data split 

(70:30) 
MAE, RMSE  

Qiu et al. 

202030 
Classification 

ANN, SVM, LR, RF, 

XGBoost, LGBM 

10-fold 

cross-

validation 

Accuracy, 

specificity, 

precision, 

F1 score, 

LGBM  
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AUC, log-

loss  

Hu et al. 

202031 
Regression 

BART, GBM, 

XGBoost,  RF  

5-fold 

cross-

validation 

RMSE 
BART, GBM, 

XGBoost,  RF  

Chen et al. 

201932 
Classification 

LR, XGBLinear, KNN, 

RF, XGBTree, and 

SVMLinear 

10-fold 

cross-

validation 

AUC-ROC, 

sensitivity, 

specificity 

Lasso 

Alaa et al. 

201933 
Classification  

LR, RF, NN, 

AdaBoost, GBM 

(AutoPrognosis) 

 AUC-ROC Lasso, PCA, RF 

Ren et. al. 

201834 
Classification 

RF, GB, Logistic 

Regression 

10-fold 

cross-

validation 

AUC-ROC, 

AUC-PRC, 

F1, 

Precision, 

Recall 

No selection, only 

rankings using Gini 

Coefficient and 

Relative Influence 

Park 201735 
Regression and 

classification 

AENET-I, BART, 

BKMR, and Super 

Learner 

5-fold 

cross-

validation 

+  

PRESS, 

MSE, MSPE 

AUC-ROC 

custom, within 

Super Learner 

framework 

 

Hsiao et al. 

201636 
Classification  

Autoencoder and a 

Softmax classifier 
- - - 

Dominici et 

al. 200637 
Clustering, Regression K-means n/a n/a n/a 

 
Table 1. ML task addressed and key information on the adopted pipelines. 
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Table 2. Algorithms reported as top-performers in corresponding comparative studies 

 

 

Reference Best performer 

Chen et al. 20241 ET 

Hossain et al. 20242 RF 

Guimbaud et al. 20243 XGBoost 

Nissa et al. 20244 AdaBoost 

Bhakta et al. 202312 XGBoost 

Li et al. 20237 RF 

Lu and Qiu, 20238 Stacking Ensemble Model with 

four base learners (Ridge, RF, 

GB, and ANN) 

Martin-Morales et al. 202311 RF 

Nghiem et al. 20235 RF 

Wang et al. 202315 Cox survival regression (L1 

penalty) 

Lee et al. 202218 XGBoost, Ridge, and EN 

Li et al. 202221 RF 

Marien et al. 202219 Ridge, MLP 

Usmani et al. 202224 Enhanced LSTM 

Jalili et al. 202127 ANN 

Monaco et al. 202126 RF 

Sajid et al. 202128 RF 

Usmani et al. 202129 Enhanced LSTM 

Hu et al. 202031 BART 

Qiu et al. 202030 LGBM 

Chen et al. 201932 LR 

Ren et al. 201834 RF 

Park et al. 201735 AENET-I 
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RQ3. Which categories of exposomics factors have been investigated? 

During the last years feature space investigations have broadened to include non-traditional CVD risk factors found in 

built, natural, and social environments, significantly contributing to the disease burden. The primary feature categories 

investigated in pertinent literature, whether individually or in combination, are environmental exposure factors, lifestyle 

και socio-economic status-related factors. The majority of identified articles exploit a combination of the aforementioned 

categories while the remaining works exclusively consider environmental factors. For a detailed reporting of the categories 

of exposomics features exploited in literature, see Table 3. 

Environmental exposure is the most widely adopted category of exposome with the bulk of relevant literature exploring 

a broad palette of factors ranging from pollutants concentrations, average sound levels and meteorological parameters 

to biomarkers reflecting the extent of human exposure to heavy metals. Following closely are socio-economic factors, 

including factors such as current employment status, education level, income, lack of health insurance and food insecurity. 

Lastly, lifestyle-related factors, mostly reflecting dietary/sleep patterns along with various health habits, are also 

addressed in a significant portion of pertinent literature. Notably, environmental exposure is the only category often 

investigated individually while socioeconomic and lifestyle factors are typically studied in combination with other 

categories. 

The most widely used environmental parameters include air pollutant concentrations and meteorological 

parameters.43,45,46,53,64,69,72 Additionally but less often, parameters reflecting noise pollution,39,51 green spaces39,46 and 

traffic proximity/volume41,66 are also included in the exploited feature space. In very few cases, variables reflecting daily 

or work exposures such as number of smokers at home,11,39,52 biohazardous materials11 and heavy metals concentration 

based on human scalp hair analysis49, blood or urine samples are exploited68.  Lastly, a novel approach worth mentioning 

consists in the exploitation of machine vision-enabled assessment of the built environment to investigate potential 

associations with CVD-related variables.35 Features extracted from Google Street View (GSV) images could also generate 

activation maps enabling the identification of high-risk neighborhoods.  

Regarding socio-economic factors, a wide range of variables are used, primarily reflecting income, education levels, 

economic status and/or the subject’s occupation.39,41,47,48,51,55,67,71 Less often, extra variables such as lack of private health 

insurance, home ownership, housing type or severe housing cost burden are also considered.42,44,58,66,70  

In terms of lifestyle factors the focus is predominantly on health-related habits and adopted dietary, physical activity and 

sleep patterns/quality.11,39,41,42,44,48,51,52,55,58,67,70,71 The most commonly considered health habit-related parameters is 

smoking status and/or alcohol consumption.11,41,44,52,55,58,67,70,71  

A considerable part of literature explores combinations of all three categories i.e. environmental, lifestyle, and socio-

economic factors.11,39,41,47,51,52,66 Additionally, socio-economic and lifestyle-related parameters are frequently combined to 

investigate associations of exposomics data with CVD-related variables.42,44,48,55,58,67,70,71 One last commonly encountered 

combination of categories consists in simultaneous investigation of socio-economic and environmental categories.35,54,60,68 

The remaining part of identified articles exclusively considers environmental parameters, with a part of literature 

exploiting air quality-related features (mostly air pollutants concentrations) to forecast CVD-related variables,57,64,65,69 
61,68,69,78 and another part further expanding the feature space to include meteorological parameters as well.43,45,59,63,72 
47,49,63,67,80 Additionally, Marien et al.46 further expanded the feature space with vegetation index. Ohashi et al.73 is the only 

work exclusively based on meteorological parameters. Lastly, Monaco et al.49 focused on heavy metals concentrations 

obtained by human scalp hair analysis tests to perform ML-enabled estimation of the severity of CVD. 
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Reference 

Exposomic categories 

included in feature 

space 

Target 

outcome/variable 

Chen et. al. 

20241 

 

socio-economic and, 

built environment 

Coronary heart 

disease prevalence 

Hossain et 

al. 20242 

socio-economic, 

lifestyle 
CVD diagnosis 

Guimbaud 

et al. 20243 

Air quality (pollutant 

concentrations), 

meteorological factors, 

traffic noise, 

traffic indicators, 

natural space, built 

environment, 

lifestyle, pollutant 

biomarkers 

Cardiometabolic risk 

Nissa et. al. 

20244 

environmental, socio-

economic and lifestyle 

factors (including diet, 

physical activity and 

sleep hours) 

Risk of heart attack 

Bhakta et 

al. 202312 

occupation, 

environment, lifestyle 

habits 

Heart disease 

detection 

Leiriao et 

al. 20236 

Air quality, 

meteorological 

parameters 

Cardiorespiratory 

mortality 

Li et al. 

20237 

Exposure to heavy 

metals, socioeconomic 

Coronary Heart 

Disease Risk 

Lu and Qiu, 

20238 

Air quality (pollutants 

concentrations) 

Daily counts of 

hospital admissions 

due to cardiovascular 

diseases and stroke 

Atehortua 

et al. 20239 

Εarly-life, 

environmental (noise/ 

pollution levels), 

lifestyle, 

sociodemographics 

 

Cardiometabolic risk 

estimation 

(coronary/ischaemic 

heart diseases, heart 

failure events, 

vascular dementia 

and cerebrovascular 

diseases) 

Dong et al. 

202310 

Air quality (pollutants 

concentration), 

lifestyle, socioeconomic 

status 

Premature 

cardiovascular 

mortality 

Martin-

Morales 

202311 

Dietary and non-diet-

related health data 

CVD mortality 

 

Ohashi et. 

al. 202313 
Daily weather data CVD Mortality risk  

Sun et al. 

202314 

Demographic 

composition, risk 

factors, lifestyle and 

socioeconomic status  

Total care costs per 

capita, inpatient care 

costs per capita, 

outpatient care costs 

per capita, CVD 

prevalence (%) 

 

Wang et. al. 

202315 

Socioeconomic status, 

lifestyle (including 

dietary patterns) 

CVD Mortality, IHD 

hospitalization 

Huang et. 

al. 202216 

Social-demographics, 

lifestyle factors 

(Dietary, Physical 

activity, sleep pattern) 

Cardiovascular risk 
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Lee et al. 

202218 

Meteorological 

variables, air pollutants 

Non-accidental, 

cardiovascular, and 

respiratory 

mortality 

Lee et al. 

202217 

Chemical and biological 

exposures, 

socioeconomic status, 

food and diet, 

prescription medication 

and comorbidities, 

emotional and mental 

health, sleep, and 

genetics. 

 

Cardiac arrhythmia, 

congestive heart 

failure, coronary 

artery disease, heart 

attack, stroke, and a 

combined 

atherogenic-related 

outcome comprising 

angina, angioplasty, 

atherosclerosis, 

coronary artery 

disease, heart attack, 

and stroke incidents 

Marien et 

al. 202219 

Meteorological, air 

quality (pollutants 

concentration), 

vegetation index 

Daily and annual 

incidents of 

myocardial 

infarctions 

Yao et al. 

202220 

Urban multi-source 

spatio-temporal big 

data, road network, 
demographic, 

economic, 

meteorologic data and 

air pollutants 

MI disease severity, 

MI mortality 

Li et al. 

202221 

Socio-economic and 

lifestyle factors 
CVD diagnoses 

Liu et al 

2022.22  

Demographic 

Information,Dietary 

Intake, Health 

Behaviors, 

Stroke incidents 

Testa et al. 

202223 

Air Pollutants and 

weather variables 

Acute 

cardiac or 

cerebrovascular 

events 

Sajid et. al. 

202128 

Non-clinical factors 

such as education, area 

of living, occupation, 

exposure to economic 

problems and the role 

in the family 

Cardiovascular risk 

score 

Usmani et 

al. 202224 

Air quality (pollutants 

concentration) 

Cardiorespiratory 

mortality 

Lin et al. 

202125 

Air quality, 

meteorological 

Emergency 

department visits 

with CVD-related 

etiology 

Monaco et 

al. 202126 

Heavy metal 

concentrations are 

extracted by means of 

TMA hair tests. 

Level of CVD clinical 

risk 

 

Jalili et al. 

202127 

Air quality (pollutants 

concentration), 

meteorological  

CVD rate (as 

reflected by hospital 

admissions) 

Usmani et 

al. 202129 

Air quality (pollutants 

concentration) 

Monthly 

cardiorespiratory 

hospitalization 

Qiu et al. 

202030 

Air quality (pollutants 

concentration), 

meteorological 

Peak demand days of 

CVDs admissions 

Hu et al. 

202031 

Air pollution, lifestyle, 

dietary, socio-economic 

Stroke incidents 

(neighborhood-level) 

Chen et al. 

201932 

Air quality (pollutants 

concentration), 

meteorological 

Demand for 

hemorrhagic stroke 

admissions to 

medical institutions 
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Alaa et al 

201933 

Health and medical 

history, lifestyle and 

environment, physical 

activity, 

psychosocial factors, 

dietary and nutritional 

information, and 

sociodemographics 

CVD risk 

Ren et. al. 

201834 

Air quality (pollutants 

concentration), 

meteorological 

(humidity, 

temperature) 

Risk of Congenital 

Heart Defects  

Park 201735 

Metal biomarkers in 

blood and urine 

reflecting 

environmental 

exposure in heavy 

metals 

blood pressure, 

hypertension and 

total and CVD 

mortality 

Hsiao et al. 

201636 

Air quality (pollutants 

concentration), 

meteorological 

Risk of four 

categories of 

cardiovascular 

diseases 

(hypertensive, 

ischemic heart, 

cerebrovascular 

disease, other forms 

of heart disease) 

Dominici et 

al. 200637 

Air quality (pollutants 

concentration), 

meteorological 

Daily counts of 

county-wide hospital 

admissions for 

primary diagnosis of 

cerebrovascular, 

peripheral, and 

ischemic heart 

diseases, heart 

rhythm, heart failure, 

chronic obstructive 

pulmonary disease, 

and respiratory 

infection, and injuries 

as a control outcome 

 

Table 3. Exposome-related feature categories investigated and target outcomes addressed in pertinent literature. 

 

 

Discussion 

This scoping review aimed at presenting the state-of-the-art of ML applications on exposomic data, specifically focusing 

on CVDs.  To this end, a substantial amount of current literature on the selected topic has been identified and analyzed 

with respect to diverse aspects such as study objectives, ML techniques employed and the categories of exposomic data 

categories exploited. Based on the insights from the previous sections, we will take a step further and identify key 

challenges and opportunities in ML-enabled exploitation of exposomic data for CVD-related variables. 

As reflected by the timeline of identified publications the presented field is constantly expanding, particularly from 2021 

onwards. However, this expansion in the exploitation of ML on exposomics targeting CVDs has been so far predominantly 

driven by research in the US and Asia. However, the past 4 years the EU has shown an increasing interest in the Human 

Exposome Project initiating multimillion funding and thus recognizing potential to enhance public health.74 
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Two main categories of studies have been identified based on the selected target variable and the application context of 

the system under development. The first category focuses on forecasting crucial cardiovascular outcomes or associated 

risk levels while the second targets resource-related variables typically reflecting healthcare demand such as the number 

of CVD-induced hospital admissions or the identification of peak demand days of hospitalizations.  The former studies 

often aim to identify key determinants of the target outcomes and rank them in terms of feature importance and the 

latter usually aspires to build and deploy an early-warning system for medical resource allocation and management. 

Overall, the direction of research efforts falls within the scope of AI-driven health interventions aimed at effective risk 

stratification, public health surveillance, and health policy planning, all of which are described to contribute to health-

related sustainable development goals.75   

Regarding ML techniques, it is noteworthy that ML tasks have been primarily framed in a supervised context, leaving 

ample space for the exploration of under-researched unsupervised techniques. Overall, a variety of machine learning 

algorithms spanning from linear to non-linear and ensemble algorithms has been exploited. In many cases different 

categories of algorithms are employed and compared against each other. Ensemble algorithms seem to be the most widely 

adopted approach and especially Random Forest and XGBoost which frequently rank as the most efficient solutions in 

comparative experiments. In the context of unsupervised learning and data clustering, more methods could be explored 

imposing minimal assumptions on data, trying to identify patterns, simplify large datasets and also enhance predictive 

modeling. An addition to the toolbox of the well-established linear clustering methods would be the case of non-linear 

clustering algorithms and specifically the so-called manifold learning, which aims to cluster data by identifying the intrinsic 

manifold upon which the data resides.83   

With respect to investigations related to the employed feature space, environmental exposure seems to be the most 

widely adopted category within the exposome. The bulk of relevant literature explores diverse factors ranging from 

pollutant concentrations, average sound levels and meteorological parameters to biomarkers reflecting the extent of 

human exposure to heavy metals. Following closely are socio-economic factors, encompassing aspects such as current 

employment status, education level, income, lack of health insurance and food insecurity. Lastly, lifestyle-related factors, 

mostly reflecting dietary/sleep patterns and quality along with various health habits, are also addressed in a significant 

portion of the identified literature. Notably, environmental exposure is the only category often investigated individually 

while socioeconomic and lifestyle factors are typically studied in combination with other categories. 

Important limitations have been reported across pertinent literature. Firstly, validity of exploited ground truth cannot be 

ascertained e.g. upon the use of diagnostic codes corresponding to hospitalizations or death certificates. Second, in case 

of self-reported data categories such as lifestyle data, subjectivity and recall bias cannot be avoided. Third, the bulk of 

conducted research only involved incidents that occurred in a single region. Another important limitation stems from the 

lack of temporal alignment between the collection of medical data concerning CVD incidents and the collection of 

exposome-related data. Most of the time, the data sources are not comprehensive and/ or standardized.36 Fifth, several 

works report limited availability of data sources and finally, it is difficult to directly compare results from different studies 

since they are heterogeneous in terms of target, problem framing, study design and sample size and outcome assessment 

as reflected by the occasional lack of an external validation process but also by the diverse metric scores reported. 

Extending the feature space to include non-traditional CVD risk factors spanning environmental, social and life-style 

domains has shown promising results in improving the performance of conventional models targeting CVD-related 

variables. In this sense, exploitation of exposome-related variables brings the researcher community one step closer to 

identifying major environmental, social and lifestyle determinants of CVDs.   This additional knowledge at a personal level 

could form the basis for developing tools for personalized healthcare management. At a broader level (neighborhood, 

city, etc.), it could help prioritize and allocate healthcare resources. The latter would enhance healthcare workflow 

optimization and implement prevention and intervention measures to reduce CVD-induced healthcare costs. 
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At this point it should be stressed that there is lack of consensus within the research community is observed regarding the 

distinct categories that constitute the exposome and the specific variables included in each of these categories. This leads 

to inconsistencies in terminology and classification, creating challenges for comparability and standardization across 

studies. For instance, part of research community might refer to 'smoking status' while another part may be making use 

of alternative terms such as 'tobacco use' etc. This holds for other terms as well, that may be used by researchers 

interchangeably, despite potentially referring to slightly different concepts. To enhance the reliability and comparability 

of exposome research, there is a need for standardization of terms and definitions used to describe predictor variables. 

Overall, standardized protocols for data collection and sharing should be developed. 

Finally, there is a need to explore exposomics from a multi-disciplinary perspective. Since its scope is becoming clearer 

and clearer every day and more and more studies include exposomics in etiological research, actions are needed from 

multiple stakeholders to join forces for the unification of frameworks and the establishment of guidelines regarding an 

Exposome Study Design and even a comprehensive exposome database.76 

 

Conclusions 

Even though ML techniques application on exposomics data with a focus on cardiovascular diseases is in its early stages 

compared to similar use cases that are based on other kinds of -omic data such as genomic data, there is a pronounced 

increase of pertinent publications during the last years. However, the vast majority of relevant works have been based on 

data outside EU territory leaving the EU behind in the number of publications compared to the US and China. Additionally, 

it is worth highlighting the nearly exclusive adoption of a supervised context across identified literature, irrespective of 

the cardiovascular outcome addressed, with just two works addressing a clustering task. As machine learning applications 

on exposomics data expand and reach a higher maturity level, it seems to hold promise for uncovering new insights into 

the environmental determinants of health but also for identifying valuable strategies for CVD prevention and healthcare 

resource allocation. Towards this aim, further research could focus on the more manageable and easily adjustable 

modifiable factors in contrast to those that are stiffer such as the socio-economic status and try to use the first as inhibitors 

to avert a “poor” exposome. Understanding the modifiability of different factors is crucial for public health strategies. 

Focusing on more modifiable factors can empower individuals to make positive changes in their lives, while also pursuing 

broader societal and policy changes to address the other less modifiable factors. Finally, there is need of standardization 

in terms of language so as to enable comparability between different studies as this is often hard even to localize similar 

studies using the most prevalent keywords in the literature.     
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