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ABSTRACT

Cardiovascular disease has been established as the world’s number one killer, causing over 20 million deaths per year.

This fact, along with the growing awareness of the impact of exposomic risk factors on cardiovascular diseases, has led

the scientific community to leverage machine learning strategies as a complementary approach to traditional statistical

epidemiological studies that are challenged by the highly heterogeneous and dynamic nature of exposomics data. The

principal objective served by this work is to identify key pertinent literature and provide an overview of the breadth of

research in the field of machine learning applications on exposomics data with a focus on cardiovascular diseases.

Secondarily, we aimed at identifying common limitations and meaningful directives to be addressed in the future.

Overall, this work shows that, despite the fact that machine learning on exposomics data is under-researched compared

to its application on other members of the -omics family, it is increasingly adopted to investigate different aspects of

cardiovascular diseases.
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Introduction

Since the mid-20th century, cardiovascular diseases (CVDs) have emerged as the leading cause of death globally.

Focusing on Europe, CVDs have been reported to account for 3.9 million deaths annually and over 1.8 million deaths

within the European Union (EU) [1]. In addition to this significant epidemiological burden, CVDs are estimated to impose

a financial cost of 210 billion euros per year on the EU economy [1]. They represent a large group of diseases attributed

to a complex interplay between intrinsic risk factors, such as genetic predisposition, biological sex, age and lifetime

exposure to environmental and behavioral risk factors which are considered at least partially modifiable [2].

Environmental exposures to ambient and indoor air pollution, noise, extreme temperatures, second-hand smoke, and

chemicals, among other factors, have been recognized by the European Environment Agency as significant contributors

to the high burden of CVD. It is estimated that over 18% of CVD-related deaths in Europe are attributable to
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environmental risks [2]. In recent years, there has been growing recognition of the importance of modifiable factors as a

whole in efforts to alleviate the burden of disease [3].

While preventive interventions targeting traditional risk factors (e.g. blood pressure and cholesterol management) have

aided in reducing CVD incidents, it remains a major problem at a global scale highlighting the need for new approaches.

Unlike one's DNA, which remains unchangeable, there are primary modifiable contributors to CVD that are amenable to

prevention and policy initiatives aimed at promoting cardiovascular health. The fact that environmental CV risks factors

are inherently preventable leads to the actionable conclusion that reducing them is a key-step to alleviating the burden

of cardiovascular disease in Europe. In this context, investigations are increasingly directed towards non-traditional risk

factors that are present in the built, natural, and sociο-economic environments comprising the “Exposome” [3], [4].

Exposome, the youngest member of the widely acknowledged -ome family, was first coined in 2005 by Dr. Christopher

Wild, then-director of the International Agency for Research on Cancer (IARC), to complement the human genome and

address the limitations of genetic research in explaining chronic disease etiology [5]. Aiming to fill this critical knowledge

gap, the exposome was conceptualized as a systematic approach to measuring the entirety of environmental exposures

encountered by an individual from conception onwards, including chemical, physical, biological, and lifestyle factors. In

2014, Gary Miller and Dean Jones expanded the exposome so as to emphasize diet, behavior, and endogenous

processes, particularly focusing on biological responses to these exposures [6]. According to them, the exposome

captures the essence of “nurture” in one of the oldest philosophical discussions of “nature” vs “nurture”, representing

the summation and integration of external forces acting upon our genome throughout our lifespan. This includes factors

such as diet, living environment, air quality, social interactions, lifestyle choices like smoking and exercise, and inherent

metabolic and cellular activities. Measuring a quantity for the exposome serves as a biological index of our “nurture”,

contextualizing the impact of specific exposures on health. This expansion and refinement of exposomics led to the

inclusion of metabolomics, rather than solely exposure-focused approaches, aiming to capture biological endpoints

accompanied with substantial changes [7]. By exploring all these factors that constitute the exposome, researchers aim

to understand and pinpoint modifiable risk factors and devise targeted interventions by means such as active personal

measures, behavioral strategies, novel policies, urban landscape reforms etc. in an effort to promote health and prevent

disease across lifespan.

Along the lines of Genome-Wide Association studies (GWAS) and the identification of genetic basis of many complex

traits and diseases [8], there have also been efforts to identify the “environmental” risk factors in the so-called

‘Environment-Wide association studies’ [9]. Finally, the wider term "Exposome-Wide Association Study" (ExWAS) has

been proposed as a standardization term and a method designed to systematically investigate the connections between

phenotypes and various exposures beyond the classic understanding of environmental factors, in line with the definition

of Exposome [6]. This approach facilitates the identification of significant correlations while addressing the challenge of

multiple comparisons, aimed at finding the exposomic basis of a disease or trait [10]. Examples focused on CVD can be

found in literature [11].

There are different types of environmental risk factors reported in literature. First, chemical pollution, which spans air,

soil, water and occupational pollution and is currently acknowledged as the most significant environmental cause of

disease and premature death in the world [12]. Air pollution's main health risks come from particulate matter which is

well known to be linked with CVDs [13] while the water pollution hazards stem from unsafe sources. Soil pollution's

health impacts can be attributed mainly to heavy metals, deforestation, over-fertilization, and pesticides, with nano and

micro plastics emerging as a threat. Although lead toxicity primarily results from water and soil pollution, it warrants

separate consideration due to its widespread environmental presence. There's a close link between water and soil

pollution, as polluted soils can contaminate surface and groundwater. Heavy metals and metalloids are particularly

concerning for their contribution to cardiovascular issues through oxidative stress and inflammation [14]. Chemical

pollutants and particularly ambient air pollution, have garnered significant attention from research organizations

assessing their impacts [15], [16]. These pollutants were also considered in the Global Burden of Disease study [17], [18].
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Second, non-chemical pollution such as transportation noise, light pollution and lack of green spaces have been also

shown to have substantial impact on CVD [4]. On the one hand, as urban areas expand and the demand for

transportation increases, noise pollution is expected to rise. Research has demonstrated a connection between noise

pollution and heightened cardiovascular risk, driven by mechanisms such as stress, sleep disruption, and increased

inflammation. Furthermore, studies have shown an association between noise pollution and elevated risks of arterial

hypertension, dyslipidemia, obesity, and type II diabetes mellitus. Thus, noise pollution not only directly impacts the CV

system but also indirectly elevates the risk of developing traditional cardiovascular (CV) risk factors [19]. On the other

end, it is known that nocturnal light pollution is associated with abnormal changes in circadian rhythms, which in turn

may be linked to an increased risk of CVD [20], [21], increased blood pressure and risk of hospitalization for CVD [22].22

While there is extensive and robust evidence linking noise pollution to an increased risk of CVD, the role of nocturnal

light pollution in CV pathology is less studied. In order to validate and substantiate this association, further research is

needed to figure out potential thresholds of ‘safe’ or ‘acceptable’ artificial light levels [23]. Finally, latest meta analyses

have highlighted strong evidence on the link of green spaces and cardiovascular health [24]. For a comprehensive review

on the epidemiology and pathophysiology of environmental stressors with a focus on CVDs, the interested reader may

refer to pertinent literature [3], [4], [14], [25].

Apart from the classic environmental risk factors such as pollution, the exposome encompasses a wide range of lifestyle

and socioeconomic factors. There is growing evidence that the CVD is characterized by socioeconomic inequalities [26],

[27], [28]. These inequalities that are most frequently assessed in terms of income, occupation and education seem to be

closely related with dietary habits and harmful lifestyle choices such as smoking and alcohol consumption [26]. The

effect of lifestyle intervention aiming at nutrition and physical activity has shown to benefit cardiometabolic risk factors

such as Body Mass Index (BMI), triglycerides and Low-Density Lipoproteins (LDL) of individuals at risk [29]. The

overwhelming evidence of the impact of lifestyle on traditional cardiometabolic biomarkers has led to the emergence of

the framework of “lifestyle medicine” which leverages lifestyle interventions to maintain cardiovascular health [30]. Most

often these interventions focus primarily on diet, physical activity, perceived stress and anxiety and also mitigation of

harmful habits such as tobacco use and alcohol consumption.

While traditional epidemiology relying on well-established study designs is a valuable tool to investigate the relationship

between environmental exposures and health outcomes, new challenges have been posed by the heterogeneous and

dynamic nature of exposomics data. The exposome concept aims at considering many environmental stressors

simultaneously, as opposed to the one-by-one approach typically used in epidemiological research. This necessity along

with the large number of exposures pose challenges such as increased complexity, high dimensionality, high correlation

between variables and the need to understand both the combined effects and the causal structure between exposure

risk factors and health outcomes. The Machine Learning (ML) toolbox, including Deep Learning (DL) techniques, is

particularly well-suited to address these challenges [31]. By leveraging this set of tools, researchers can efficiently reduce

data dimensionality and identify complex patterns and interactions; integrate diverse data types; enhance causal

inference capabilities and uncover intricate relationships between exposomic factors and health outcomes; provide

deeper insights into how combined environmental and behavioral factors influence CVD.

ML techniques, including DL, have been gaining popularity for quite a few years now in the analysis and integration of

diverse kinds of -omics data (e.g. genomics, proteomics, metabolomics) especially within the context of precision

medicine [32], [33]. However, applications on exposomics are still in early stages. This is partly because the field itself is

relatively new (i.e. the term only coined in 2005) but also due to the very nature and scale of the exposome which covers

all exposures from conception to death. Thus, data is expected to exhibit significant heterogeneity (e.g. lifestyle factors,

socioeconomic variables, biological responses etc.) as well as spatial and temporal variability, requiring integration from

multiple sources and technologies. Due to these challenges, researchers proposed a roadmap for the use of federated

technologies to accelerate research in the field [34]. Finally, DL, with its capacity for large-scale processing of complex

and disparate multi-modal datasets, holds promise for advancing the understanding of the implications of the

exposomics in the disease [35].
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To date, and to the best of the authors’ knowledge, the only review paper on the application of machine learning

techniques on exposomics data for CVD-related investigations exclusively includes social determinants of health [36]. The

principal objective served by this work is to address this literature gap, by identifying key studies and providing an

overview of the breadth of research in the field of machine learning applications on exposomics data with a focus on

cardiovascular diseases. Common limitations have also been identified and meaningful directives to be addressed in the

future have been suggested.

The rest of the article is structured as follows: we start with the Methods section reporting the adopted literature search

strategy and outlining the three research questions with respect to which the presented analysis has been conducted

and then we proceed with the Results section providing the reader with an overview of the relevant literature in the

context of the three main axes of our work. Finally and as a result of this review, we summarize findings, discuss

remarkable insights, and also identify and address the limitations of this study.

Methods

Search strategy

An extensive search of PubMed, IEEE Xplore and ACM Digital Library has been conducted in order to thoroughly identify

articles on machine learning applications exploring potential associations of exposomics factors with CVD-related

outcomes and published in English. Relevant key terms have been extracted in line with the main aspects of the

exposome recognized by the European Human Exposome Network [37]. The latter identifies environmental,

lifestyle-related, and socio-economic factors as the key exposures constituting the exposome. These key factors have

been adopted as the keywords for this review, searched in the titles and abstracts of published studies. Specifically, the

body of work reported herein has been obtained with the following keywords:

● ‘environment’ AND ‘machine learning’ AND ‘cardiovascular diseases’

● ‘socio-economic’ AND ‘machine learning’ AND ‘cardiovascular diseases’

● ‘lifestyle’ AND ‘machine learning’ AND ‘cardiovascular diseases’

Database searches have been supplemented with studies identified through manual searching. This review has been

conducted using a systematic approach consistent with the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) statement [38]. No temporal bounds have been imposed on the publication dates.

Study Exclusion Criteria

The following exclusion criteria have been applied in order to ensure that this review maintains focus and relevance to

the desired scope:

● Non-English articles,

● Non-peer reviewed items (e.g. gray literature such as pre-prints, technical reports, web-based guidelines etc.),

● Items for which the full text was not accessible (e.g. articles presented at conferences as abstracts),

● Articles exclusively focused on traditional statistical methods,

● Articles not exploiting exposomics data,

● Review articles,

● Duplicate articles.
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Research questions

The analysis to be presented revolves around the following research questions.

RQ1. Which are the main identified categories of studies with respect to their objective?

RQ2. Which machine learning algorithms have been applied for investigating exposomics impact on CVDs and which

seem to be ranking among the top performers?

RQ3. Which exposomic factors have been investigated and which have been identified as potentially good predictors?

The aspect investigated in the context of the first research question (RQ1) focuses on classifying the selected studies into

two main categories based on the selected target variables combined with the context of potential application of the

developed system. The second research question (RQ2) explores the ML algorithms preferred by the research community

in an attempt to rank specific categories of algorithms with respect to their popularity in pertinent literature. Finally, the

third research question (RQ3) aspires to shed light on specific categories of promising predictors and hopefully to identify

new directions of exposomics variables investigations.

Results

A general overview

Firstly, an overview of pertinent literature is provided, highlighting the temporal distribution of publications, the

geographical distribution of utilized datasets, and the specific machine learning tasks addressed.

The timeline of publications identified by using the specified search criteria, as displayed in the barplot below (Fig.1),

reveals a pronounced increase of relevant studies from 2021 onwards.

Figure 1. Time evolution of publications leveraging ML techniques to exploit exposomic datasets for CVD-related investigations a. Year

of publication (x-axis) and number of identified studies per year (y-axis), b. Time of publication (‘earlier than 2021’ and ‘from 2021

onwards’)

Concerning the spatial distribution, the majority of identified studies reporting the origin of their datasets have been

based on datasets collected within US or Asian territory (Fig. 2).
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Figure 2. a. Continental distribution of exploited datasets, b. Data of EU vs non-EU origin.

Lastly, regarding the framing of the ML problems addressed in the identified literature, an important observation is the

pronounced, almost exclusive adoption of a supervised context. The most widely adopted problem framing is that of

classification tasks, followed by regression tasks (Fig. 3).

Figure 3. A Venn diagram of ML tasks categories encountered in literature focusing on exploring CVDs

Research questions

Proceeding with the conducted analysis, we elaborate on identified categories of studies across pertinent literature with

respect to the aspects corresponding to the research questions:

RQ1. Which are the main identified categories of studies with respect to their objective?

Two main categories of studies have been identified based on the selected target variable combined with the application

context of the system under development. The first category aims at forecasting crucial cardiovascular outcomes or

associated risk level and often focuses on identifying key determinants of the target outcomes and ranking them in terms

of feature importance. The latter category opts for resource-related target variables, typically reflecting healthcare

demand such as number of CVD-induced hospital admissions or identification of peak demand days of hospitalizations.
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This kind of approach usually aspires to build and eventually deploy an early-warning system for medical resource

allocation and management.

Starting from the articles focusing on the prediction/ forecast of cardiovascular outcomes, a general observation would

be that most of the approaches either forecast cardiovascular disease incidence/ prevalence or investigate cardiovascular

cause-specific mortality. Less often, disease risk stratification or disease severity prediction is conducted. Guimbaud et al.

[39] have built early-life environmental risk scores (ERS) to assess the cumulative impact of environmental exposures on

diverse health outcomes, including cardiometabolic health. The authors aimed at informing practitioners about

actionable factors towards prevention measures in healthcare for high-risk children. In Chen et al. the association

between machine vision–based built environment and prevalence of cardiometabolic disease at the neighborhood level

has been investigated [35]. The authors aspired to identify at-risk neighborhoods, thereby contributing to a more

informed and targeted public health strategy for mitigating CV risks associated with specific environmental factors. In

Hossain et al. the authors focused on identifying crucial factors in predicting CVD risk [40]. As the authors claimed, the

eventual goal of this work has been to enhance clinical practice by providing doctors with a new instrument to determine

a patient’s CVD prognosis. The primary objective in the study by Nissa et al. has been to identify individuals at risk of

developing CVDs and eventually enable healthcare professionals to foster proactive healthcare measures [41]. County

phenotypes associated with premature CV mortality have been identified in Dong et al. and their geographic

distributions have been investigated using machine learning approaches as well as geographic information systems [42].

The authors conclude that interventions to reduce premature cardiovascular mortality should be targeted to geographic

areas with high-risk phenotypes of premature cardiovascular mortality. Leirião et al. have generated forecasts of

cardiorespiratory mortality in the elderly aiming at providing decision-makers with a powerful tool for the evaluation of

environmental public health-related policies [43]. Martin-Morales et al. predicted CVD mortality with a focus on

identifying associated risk factors from a pool of significant nutritional variables [44]. Lee et al. have generated forecasts

of mortality from cardiovascular, respiratory, and non-accidental diseases [45]. Proceeding with the studies attempting to

predict cardiovascular incidents, Marien et al. have forecasted the number of daily incidents of myocardial infarctions

based on case-only data and claimed that the suggested ML approach provides a promising basis to model future MI

under changing environmental conditions, as projected by scenarios for climate and other environmental changes [46].

Bhakta et al. have demonstrated the potential of ML models for the early detection of CVD, ultimately enabling medical

professionals to implement timely interventions and achieve improved patient outcomes [47]. Liu et al. developed a

detection system of stroke survivors with a focus on identifying key factors associated with stroke records [48]. Monaco

et al. have evaluated the severity of CVD incidents and identified clinical features mostly associated with CVD risk [49].

Yao et al. have exploited multi-source spatio-temporal data to predict MI severity and to spatially analyze associated risk

factors [50]. The authors also proposed urban planning-related directives aiming at reducing the risk and mortality.

Atehortua et al. have attempted to demonstrate the potential of exposome-based machine learning as a risk assessment

tool by developing an ML model for CVD risk prediction performing comparably to a more integrative model requiring

clinical information [51]. Alaa et al. leveraged an automated ML framework applied on non-traditional variables to

increase the accuracy of CVD risk predictions in asymptomatic individuals compared to a well-established risk prediction

algorithm based on conventional CVD risk factors (Framingham score) and other baseline models [52]. Ren et al. have

identified maternal exposure to PM10 as the primary risk factor for congenital heart defects based on two machine

learning models [53]. Park et al. [54] developed several updated Environmental Risk Score (ERS) measures constructed to

predict GGT, an indicator of oxidative stress, which has been exploited as a summary measure to examine the risk of

exposure to multi-pollutants. Subsequently, associations between ERS and cardiovascular endpoints (blood pressure,

hypertension and total and cardiovascular disease (CVD) mortality) have been evaluated. Lee et al. [11] performed an

exposome-wide association study (ExWAS) on a selection of cardiovascular outcomes (cardiac arrhythmia, congestive

heart failure, coronary artery disease, heart attack, stroke, and a combined atherogenic-related outcome comprising

angina, angioplasty, atherosclerosis, coronary artery disease, heart attack, and stroke) using statistics and machine

learning and claim to have identified novel risk factors for CVD. Li et al. [55] have identified and ranked prominent factors

associated with CVD in a supervised context using CVD diagnoses. In Hsiao et al. [56] environmental and outpatient
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records have been utilized for detecting the incidence of four specific categories of cardiovascular diseases. The authors

claim that the proposed model can be further developed as a tool for personalized healthcare management. Lastly,

Dominici et al. [57] have explored the association between short-term exposure to airborne particles and daily

hospitalizations with respiratory or CV etiology on a national scale highlighting this ongoing threat to the health of the

elderly population.

Proceeding with the category that focuses on predicting/ forecasting medical resources-related variables, the identified

attempts aspiring the development of a healthcare resources management tool will be reported. Sun et al. [58] exploited

ML techniques to identify the determinants of population-based CVD outcomes, such as the prevalence of CVD and its

related health care costs. The authors focused on county level since counties have departments of health that are

equipped with public health personnel and have the capacity to report and monitor real-world cardiovascular prevalence

and costs. The findings have important policy implications for controlling the health care costs from CVD. Lin et al. [59]

selected emergency department visits with CVD-related etiology as a target variable, emphasizing the critical need for

ML-enabled decision support in clinical manpower and resource management. By predicting the incidence of emergent

CVD events, they aimed at providing a basis for the development of a management system to address this need. Sajid et

al. [60] demonstrated satisfactory performance in predicting CVD incidence with the use of nonclinical features readily

available in any healthcare system. The authors aimed at reducing the potential burden of disease on already

overburdened health systems in low-middle-income countries, which have limited access to health facilities by enabling

the implementation of preventive strategies. Chen et al.[61] focused on providing an early-warning system upon

potentially excessive numbers of hemorrhagic stroke admissions to medical institutions by forecasting the demand for

hemorrhagic stroke healthcare services. Qiu et al. [62] aimed at the implementation of a decision-making tool for

medical resource management by forecasting peak demand days of CVD admissions. The authors have also identified the

main weather-related and air quality-related contributors to prediction accuracy. Along similar lines, Lu and Qiu have

focused on forecasting daily hospital admissions due to cerebrovascular disease and claimed that their approach offers

practical value for hospital management teams in early warning and healthcare resource allocation [63]. In Usmani et al.

[64] prediction of the trends of daily and monthly hospitalization has been conducted and along similar lines Jalili et al.

[65] forecast the number of hospital admissions of CVD patients without however elaborating on a specific application

context. Hu et al. [66] identified major determinants of stroke incidence at the neighborhood level potentially useful to

prioritize and allocate resources to optimize community-level interventions for stroke prevention. Nghiem et al. [67]

employed a selection of ML algorithms to predict high health-cost users among individuals with CVD, aiming to advance

the application of preventive measures for population health improvement and ultimately the optimization of health

services planning.

RQ2. Which machine learning algorithms have been applied for investigating exposomics impact on CVDs and which

seem to be ranking among the top performers?

Tasks encountered in pertinent literature have been predominantly addressed within classification and regression

contexts, with clustering being much less common. Overall, a broad palette of machine learning algorithms spanning

from linear to non-linear and ensemble algorithms has been exploited. In many cases different categories of algorithms

are employed and compared against each other. A detailed reporting of algorithms used in each study can be found in

Table 1.

Research endeavors conducting comparative experiments among diverse algorithms account for nearly 70% of the

identified studies. Starting from the most extensive investigations, a considerable part of the literature has explored a

selection of linear, non-linear and ensemble methods [35], [40], [45], [46], [47], [48], [54], [60], [61], [62], [63], [67], [68].

The second most commonly encountered comparative approach involves utilizing non-linear and ensemble methods

[41], [55], [68].Guimbaud et al. [39] have exploited linear and ensemble algorithms and Jalili et al. [65] have focused on
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linear and non-linear algorithms. Another comparative approach involves selecting more than one algorithm but within a

specific family of models. In this context, Usmani et al. [64], have focused on the use of non-linear models while Hu et al.

[66] have exclusively investigated ensemble models.

Proceeding with the remaining 30% of pertinent literature that does not conduct performance comparison whatsoever, a

part of research opted for a non-linear algorithm [42], [43], [56], [57], while another part has focused on an ensemble

algorithm of their selection [50], [51], [58], [59].

As it becomes obvious from Figure 4 ensemble algorithms are the most popular choice encountered in pertinent

literature [35], [39], [40], [41], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [58], [60], [61], [62], [63],

[66], [67], [68], closely followed by non-linear algorithms [35], [41], [42], [43], [44], [45], [46], [47], [48], [49], [54], [59],

[60], [62], [64], [65], [66], [67], [68], [69], [70], [71], [72]. The most widely adopted algorithms per category are Random

Forest (RF) followed by Extreme Gradient Boosting (XGBoost) from the family of ensemble methods, Artificial Neural

Networks (ANN) followed by Support Vector Machines (SVM) from the family of non-linear methods and linear/logistic

regression as well as Lasso and Ridge variants from the linear algorithms.

As Table 2 shows, the majority of comparative studies identify different representatives of the family of ensemble models

as top-performing algorithms. Among these, the RF algorithm is the most frequently highlighted as the best performer,

followed by XGBoost.

Linear methods exploited in pertinent literature are logistic regression [48], [62],SVM with linear kernel [61], Ridge

regression [46],Elastic Net (EN) [63], although the latter in a meta-learning context.

From the popular family of ensemble models, quite a few works have reported the use of Random Forests (RF) [44], [46],

[49], [50], [55], [61], [62], [68], followed by XGBoost [44], [51], [55], [61], Light Gradient Boosting Machine (LGBM)[44],

Gradient Boosting (GB) [46], Random Ferns [55], Bayesian additive regression tree (BART) [54] and Stacking ensemble

model [63].

Regarding non-linear methods, the use of artificial neural networks (ANN) and/or DL has been adopted in a considerable

part of literature [35], [43], [46], [48], [49], [52], [56], [60], [62], [64], [65], [69].

Figure 4. Popularity of categories of ML algorithms as reflected by the number of corresponding occurrences in identified literature.
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Reference ML task ML algorithms Validation
Evaluation
Metric

Feature
importance/selecti
on

Chen et. al.
2024 [35]

Regression
CNN, ET, RF, LGBM,
Linear Mixed Effects
Model (LMEM)

10-fold
cross-valid
ation

R2, MAE,
RMSE

sparse partial least
squares (SPLS)
regression

Hossain et
al. 2024
[40]

Classification

LR, Naïve Bayes, DT,
AdaBoost, RF, BAG,
ensemble model
combining the above
as estimators

Data
splitting
with 80:20
ratio,
5-fold
cross-valid
ation

AUC-ROC,
sensitivity,
specificity,
and
accuracy

chi-square

Guimbaud
et al. 2024
[39]

Regression Lasso, RF, XGBoost
10-fold
cross-valid
ation

R2 SHAP

Nissa et.
al. 2024
[41]

Classification
DT, RF, GB, CatBoost,
XGBoost, AdaBoost,
LGBM

Data
splitting
with 60:40
ration + 5
and
10-fold
cross-valid
ation

ACC,
sensitivity
PEC,
Precision,
NPV, FPR,
FDR, FNR,
F1, MCC

Correlation-based

Nghiem et
et al. 2023
[67]

Classification Lasso, DT, KNN, RF

Data
splitting
with 80:20
ratio,
cross-valid
ation

sensitivity,
specificity,
precision, F1
score, AUC

Gini index

Leiriao et
al. 2023
[43]

Regression ANN
cross-valid
ation +
external

MAPE 
connection weight
method

Li et. al.
2023 [68]

Classification
Adaboost, SVM, RF,
DT, KNN

Data
splitting
80:20

AUC,
Sensitivity,
Specificity,
Average
Precision,
NPV, FPR,
FNR, FDR,
F1 Score,
Brier score

SHAP

Lu and
Qiu, 2023
[63]

Regression

Stacking ensemble
(four base learners:
Ridge, RF, GBDT,
ANN) and a
meta-learner (Elastic
Net), LSTM

5-fold
cross-valid
ation +
external

MAE, RMSE,
MAPE,
R2

SHAP

Atehortua
et al. 2023
[51]

Classification XGBoost
Internal +
External

Sensitivity,
Specificity,
Precision,
AUC-ROC

SHAP

Dong et al.
2023 [42]

Classification CART
Internal +
External

RF

10
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Martin-Mo
rales 2023
[44]

Classification LR, SVM, RF,
XGBoost, LGBM

5-fold
cross-valid
ation

Accuracy,
Recall,
Precision,
F1,
AUC-ROC

SHAP

Bhakta et
al. 2023
[47] 12

Classification

DT, LR, naive Bayes
(NB), voting, RF, GB,
bagging, XGBoost,
and AdaBoost

Data
splitting
with 80:20
ratio

Accuracy,
Precision,
Recall, and
F1 Score

Ohashi et
al. 2023
[73]

Regression LightGBM
10-fold
cross-valid
ation

RMSE, MAE Boruta SHAP

Sun et al.
2023 [58]

Regression XGBoost - - Gini index

Wang et.
al. 2023
[70]

Classification

LR, RF, SVC, MLP, Cox
Survival Regression,
Random survival
Forest, Fast Survival
SVM

5-fold
cross-valid
ation

AUC, F1
score,
Precision,
Recall

SHAP

Huang et.
al. 2022
[71]

Classification,
Regression

Ensemble Classifier
based on Naive
Bayes, RF and SVM.
Ensemble regressor
based on General
Linear Regression,
Support Vector
Regressor and
Stochastic Gradient
Descent)

5-fold
cross-valid
ation

AUC-ROC
Support Vector
Classifier

Lee et al.
2022 [11]

Classification LR

10-fold
cross-valid
ation+ test
set

FDR
Lasso, knockoff
boosted trees
(KOBT), SHAP

Lee et al.
2022 [45]

Regression
XGBoost, RF, Lasso,
Ridge, and EN ,
LSTM, stacked LSTM

10-fold
cross-valid
ation +
external

MAE, RMSE -

Marien et
al. 2022
[46]

Regression
DT, RF, GBR, Ridge,
MLP

10-fold
cross-valid
ation +
external

R2, adjusted
R2, ME,
RMSE, BIC

DT, RF and GBR,
PCA

Yao et al.
2022 [50]

Classification and
regression

RF -

Kappa
coefficient,
Precision,
Recall, F1
score and
AUC-ROC

SHAP

Li et al.
2022 [55]

Classification
RF, Random Ferns,
and XGBoost

10-fold
cross-valid
ation + test
set

AUC-ROC,
AUC-PR

Boruta

Liu et al.
2022 [48]

Classification
LR, ANN, H2O
Driverless AI,
Isolation Forest (IF).

cross-valid
ation

AUC-ROC,
AUC-PR,
Categorical
Net
Reclassificati
on

BoostARoota, SHAP
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Improveme
nt (NRI),
Integrated
Discriminati
on
Improveme
nt (IDI)

Testa et al.
2022 [72]

Clustering and
inferential analysis

Hierarchical
Clustering, cluster
selection based on
dendrograms

n/a n/a n/a

Usmani et
al. 2022
[69]

Regression LSTM, ELSTM, DL train + test
RMSE,
MAE

-

Lin et al.
2021 [59]

Regression LSTM
RMSE,
MAPE

-

Monaco et
al. 2021
[49]

Classification RF, ANN, GLM

𝑘=10,5,3
and Leave
One Out
cross-valid
ation
(LOO-CV)

Sensitivity,
Precision,
F1 score

Boruta

Jalili et al.
2021 [65]

Classification ANN, LR

cross-valid
ation
+testing
(Data
splitting
70:15:15)

MSE, ER,
Pearson’s r

Sajid et. al.
2021 [60]

Classification LR, ANN, SVM, RF

Data split
(70:30)
and
10-fold
cross
validation

Sensitivity,
Specificity,
Precision,
ACC, AUC

Gini

Usmani et
al. 2021
[64]

Regression LSTM, ELSTM, DL
Data split
(70:30)

MAE, RMSE

Qiu et al.
2020 [62]

Classification
ANN, SVM, LR, RF,
XGBoost, LGBM

10-fold
cross-valid
ation

Accuracy,
specificity,
precision,
F1 score,
AUC,
log-loss 

LGBM 

Hu et al.
2020 [66]

Regression
BART, GBM,
XGBoost, RF

5-fold
cross-valid
ation

RMSE
BART, GBM,
XGBoost, RF

Chen et al.
2019 [61]

Classification
LR, XGBLinear, KNN,
RF, XGBTree, and
SVMLinear

10-fold
cross-valid
ation

AUC-ROC,
sensitivity,
specificity

Lasso

Alaa et al.
2019 [52]

Classification
LR, RF, NN,
AdaBoost, GBM
(AutoPrognosis)

10-fold
cross-valid
ation

AUC-ROC Lasso, PCA, RF

Ren et. al.
2018 [53]

Classification RF, GB, LR
10-fold
cross-valid
ation

AUC-ROC,
AUC-PRC,
F1,

No selection, only
rankings using Gini
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Precision,
Recall

Coefficient and
Relative Influence

Park 2017
[54]

Regression and
classification

AENET-I, BART,
BKMR, and Super
Learner

5-fold
cross-valid
ation +

PRESS,
MSE, MSPE
AUC-ROC

custom, within
Super Learner
framework

Hsiao et al.
2016 [56]

Classification
Autoencoder and a
Softmax classifier

- - -

Dominici
et al. 2006
[57]

Clustering, Regression K-means n/a n/a n/a

Table 1. ML task addressed and key information on the adopted pipelines.
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Reference Best performer

Chen et al. 2024 [35] ET

Hossain et al. 2024 [40] RF

Guimbaud et al. 2024 [39] XGBoost

Nissa et al. 2024 [41] AdaBoost

Bhakta et al. 2023 [47] XGBoost

Li et al. 2023 [68] RF

Lu and Qiu, 2023 [63] Stacking Ensemble Model with

four base learners (Ridge, RF,

GB, and ANN)

Martin-Morales et al. 2023

[44]

RF

Nghiem et al. 2023 [67] RF

Wang et al. 2023 [70] Cox survival regression (L1

penalty)

Lee et al. 2022 [45] XGBoost, Ridge, and EN

Li et al. 2022 [55] RF

Marien et al. 2022 [46] Ridge, MLP

Usmani et al. 2022 [69] ELSTM

Jalili et al. 2021 [65] ANN

Monaco et al. 2021 [49] RF

Sajid et al. 2021 [60] RF

Usmani et al. 2021 [64] ELSTM
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Table 2. Algorithms reported as top-performers in corresponding comparative studies

RQ3. Which categories of exposomics factors have been investigated?

During the last years feature space investigations have broadened to include non-traditional CVD risk factors found in

built, natural, and social environments, significantly contributing to the disease burden. The primary feature categories

investigated in pertinent literature, whether individually or in combination, are environmental exposure factors, lifestyle

και socio-economic status-related factors. The majority of identified articles exploit a combination of the aforementioned

categories while the remaining works exclusively consider environmental factors. For a detailed reporting of the

categories of exposomics features exploited in literature, see Table 3.

Environmental exposure is the most widely adopted category of exposome with the bulk of relevant literature exploring

a broad palette of factors ranging from pollutants concentrations, average sound levels and meteorological parameters

to biomarkers reflecting the extent of human exposure to heavy metals. Following closely are socio-economic factors,

including factors such as current employment status, education level, income, lack of health insurance and food

insecurity. Lastly, lifestyle-related factors, mostly reflecting dietary/sleep patterns along with various health habits, are

also addressed in a significant portion of pertinent literature. Notably, environmental exposure is the only category often

investigated individually while socioeconomic and lifestyle factors are typically studied in combination with other

categories.

The most widely used environmental parameters include air pollutant concentrations and meteorological parameters

[43], [45], [46], [53], [64], [69], [72]. Additionally but less often, parameters reflecting noise pollution [39], [51], green

spaces [39], [46] and traffic proximity/volume [41], [66] are also included in the exploited feature space. In very few

cases, variables reflecting daily or work exposures such as number of smokers at home [11], [39], [52], biohazardous

materials [11] and heavy metals concentration based on human scalp hair analysis [49], blood or urine samples are

exploited [68]. Lastly, a novel approach worth mentioning consists in the exploitation of machine vision-enabled

assessment of the built environment to investigate potential associations with CVD-related variables [35]. Features

extracted from Google Street View (GSV) images could also generate activation maps enabling the identification of

high-risk neighborhoods.

Regarding socio-economic factors, a wide range of variables are used, primarily reflecting income, education levels,

economic status and/or the subject’s occupation [39], [41], [47], [48], [51], [55], [67], [71]. Less often, extra variables

such as lack of private health insurance, home ownership, housing type or severe housing cost burden are also

considered [42], [44], [58], [70], [74].

In terms of lifestyle factors the focus is predominantly on health-related habits and adopted dietary, physical activity and

sleep patterns/quality [11], [39], [41], [42], [44], [48], [51], [52], [55], [58], [67], [70], [71]. The most commonly

14

Hu et al. 2020 [74] BART

Qiu et al. 2020 [62] LGBM

Chen et al. 2019 [61] LR

Ren et al. 2018 [53] RF

Park et al. 2017 [54] AENET-I
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considered health habit-related parameters is smoking status and/or alcohol consumption [11], [41], [44], [52], [55], [58],

[67], [70], [71].

A considerable part of literature explores combinations of all three categories i.e. environmental, lifestyle, and

socio-economic factors [11], [39], [41], [47], [51], [52], [74]. Additionally, socio-economic and lifestyle-related parameters

are frequently combined to investigate associations of exposomics data with CVD-related variables [42], [44], [48], [55],

[58], [67], [70], [71]. One last commonly encountered combination of categories consists in simultaneous investigation of

socio-economic and environmental categories [35], [54], [60], [68].

The remaining part of identified articles exclusively considers environmental parameters, with a part of literature

exploiting air quality-related features (mostly air pollutants concentrations) to forecast CVD-related variables [57], [64],

[65], [69], and another part further expanding the feature space to include meteorological parameters as well [43], [45],

[59], [63], [72]. Additionally, Marien et al. [46] further expanded the feature space with vegetation index. Ohashi et al.

[73] is the only work exclusively based on meteorological parameters. Lastly, Monaco et al. [49] focused on heavy metals

concentrations obtained by human scalp hair analysis tests to perform ML-enabled estimation of the severity of CVD.

Reference
Exposomic categories
included in feature

space

Target
outcome/variable

Chen et. al.
2024 [35]

socio-economic and,
built environment

Coronary heart
disease prevalence

Hossain et
al. 2024
[40]

socio-economic,
lifestyle

CVD diagnosis

Guimbaud
et al. 2024
[39]

Air quality (pollutant
concentrations),
meteorological factors,
traffic noise,
traffic indicators,
natural space, built
environment,
lifestyle, pollutant
biomarkers

Cardiometabolic risk

Nissa et. al.
2024 [41]

environmental,
socio-economic and
lifestyle factors
(including diet, physical
activity and sleep
hours)

Risk of heart attack

Bhakta et
al. 2023

[47]

occupation,
environment, lifestyle
habits

Heart disease
detection

Leiriao et
al. 2023

[43]

Air quality,
meteorological
parameters

Cardiorespiratory
mortality

Li et al.
2023 [68]

Exposure to heavy
metals, socioeconomic

Coronary Heart
Disease Risk

Lu and Qiu,
2023 [63]

Air quality (pollutants
concentrations)

Daily counts of
hospital admissions
due to cardiovascular
diseases and stroke
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Atehortua
et al. 2023

[51]

Εarly-life,
environmental (noise/
pollution levels),
lifestyle,
sociodemographics

Cardiometabolic risk
estimation
(coronary/ischaemic
heart diseases, heart
failure events,
vascular dementia
and cerebrovascular
diseases)

Dong et al.
2023 [42]

Air quality (pollutants
concentration),
lifestyle, socioeconomic
status

Premature
cardiovascular
mortality

Martin-Mor
ales 2023

[44]

Dietary and
non-diet-related health
data

CVD mortality

Ohashi et.
al. 2023

[73]
Daily weather data CVD Mortality risk

Sun et al.
2023 [58]

Demographic

composition, risk

factors, lifestyle and

socioeconomic status

Total care costs per

capita, inpatient care

costs per capita,

outpatient care costs

per capita, CVD

prevalence (%)

Wang et. al.
2023 [70]

Socioeconomic status,
lifestyle (including
dietary patterns)

CVD Mortality, IHD
hospitalization

Huang et.
al. 2022

[71]

Social-demographics,
lifestyle factors
(Dietary, Physical
activity, sleep pattern)

Cardiovascular risk

Lee et al.
2022 [45]

Meteorological
variables, air pollutants

Non-accidental,
cardiovascular, and
respiratory
mortality

Lee et al.
2022 [11]

Chemical and biological
exposures,
socioeconomic status,
food and diet,
prescription medication
and comorbidities,
emotional and mental
health, sleep, and
genetics.

Cardiac arrhythmia,
congestive heart
failure, coronary
artery disease, heart
attack, stroke, and a
combined
atherogenic-related
outcome comprising
angina, angioplasty,
atherosclerosis,
coronary artery
disease, heart attack,
and stroke incidents

Marien et
al. 2022

[46]

Meteorological, air
quality (pollutants
concentration),
vegetation index

Daily and annual
incidents of
myocardial
infarctions

Yao et al.
2022 [50]

Urban multi-source
spatio-temporal big

data, road network,

demographic,

MI disease severity,
MI mortality
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economic,
meteorologic data and
air pollutants

Li et al.
2022 [55]

Socio-economic and
lifestyle factors

CVD diagnoses

Liu et al
2022 [48]

Demographic
Information,Dietary
Intake, Health
Behaviors,

Stroke incidents

Testa et al.
2022 [72]

Air Pollutants and
weather variables

Acute
cardiac or
cerebrovascular
events[60]

Sajid et. al.
2021 [60]

Non-clinical factors
such as education, area
of living, occupation,
exposure to economic
problems and the role
in the family

Cardiovascular risk
score

Usmani et
al. 2022

[69]

Air quality (pollutants
concentration)

Cardiorespiratory
mortality

Lin et al.
2021 [59]

Air quality,
meteorological

Emergency
department visits
with CVD-related
etiology

Monaco et
al. 2021

[49]

Heavy metal
concentrations are
extracted by means of
TMA hair tests.

Level of CVD clinical
risk

Jalili et al.
2021 [65]

Air quality (pollutants
concentration),
meteorological

CVD rate (as reflected
by hospital
admissions)

Usmani et
al. 2021

[64]

Air quality (pollutants
concentration)

Monthly
cardiorespiratory
hospitalization

Qiu et al.
2020 [62]

Air quality (pollutants
concentration),
meteorological

Peak demand days of
CVDs admissions

Hu et al.
2020 [66]

Air pollution, lifestyle,
dietary, socio-economic

Stroke incidents
(neighborhood‐level)

Chen et al.
2019 [61]

Air quality (pollutants
concentration),
meteorological

Demand for
hemorrhagic stroke
admissions to
medical institutions

Alaa et al
2019 [52]

Health and medical
history, lifestyle and
environment, physical
activity,
psychosocial factors,
dietary and nutritional
information, and
sociodemographics

CVD risk
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Ren et. al.
2018 [53]

Air quality (pollutants
concentration),
meteorological
(humidity,
temperature)

Risk of Congenital
Heart Defects

Park 2017
[54]

Metal biomarkers in
blood and urine
reflecting
environmental
exposure in heavy
metals

blood pressure,

hypertension and

total and CVD

mortality

Hsiao et al.
2016 [56]

Air quality (pollutants
concentration),
meteorological

Risk of four
categories of
cardiovascular
diseases
(hypertensive,
ischemic heart,
cerebrovascular
disease, other forms
of heart disease)[57]

Dominici et
al. 2006

[57]

Air quality (pollutants
concentration),
meteorological

Daily counts of
county-wide hospital
admissions for
primary diagnosis of
cerebrovascular,
peripheral, and
ischemic heart
diseases, heart
rhythm, heart failure,
chronic obstructive
pulmonary disease,
and respiratory
infection, and injuries
as a control outcome

Table 3. Exposome-related feature categories investigated and target outcomes addressed in pertinent literature.

Discussion

This scoping review aimed at presenting the state-of-the-art of ML applications on exposomic data, specifically focusing

on CVDs. To this end, a substantial amount of current literature on the selected topic has been identified and analyzed

with respect to diverse aspects i.e. study objectives, ML techniques employed and the categories of exposomic data

exploited. Based on the insights from the previous sections, we will take a step further and identify key challenges and

opportunities in ML-enabled exploitation of exposomic data for CVD-related variables.

As reflected by the timeline of identified publications the presented field is constantly expanding, particularly from 2021

onwards, with the expansion in exploitation of ML on exposomics targeting CVDs being predominantly driven by research

in the US and Asia. However, the past 4 years the EU has shown an increasing interest in the Human Exposome Project

initiating multimillion funding and thus recognizing potential to enhance public health [75].

Two main categories of studies have been identified based on the selected target variable and the application context of
the system under development. The first category focuses on forecasting crucial cardiovascular outcomes or associated
risk levels while the second targets resource-related variables typically reflecting healthcare demand such as the number
of CVD-induced hospital admissions or the identification of peak demand days of hospitalizations. The former studies

18
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often aim to identify key determinants of the target outcomes and rank them in terms of feature importance and the
latter usually aspires to build and deploy an early-warning system for medical resource allocation and management.
Overall, the direction of research efforts falls within the scope of AI-driven health interventions aimed at effective risk
stratification, public health surveillance, and health policy planning, all of which are described to contribute to
health-related sustainable development goals [76].

Regarding ML techniques, it is noteworthy that ML tasks have been primarily framed in a supervised context, leaving

ample space for the exploration of under-researched unsupervised techniques. Overall, a variety of machine learning

algorithms spanning from linear to non-linear and ensemble algorithms has been exploited. In many cases different

categories of algorithms are employed and compared against each other. Ensemble algorithms seem to be the most

widely adopted approach and especially Random Forest and XGBoost which frequently rank as the most efficient

solutions in comparative experiments. In the context of unsupervised learning and data clustering, more methods could

be explored imposing minimal assumptions on data, trying to identify patterns, simplify large datasets and also enhance

predictive modeling. An addition to the toolbox of the well-established linear clustering methods would be the case of

non-linear clustering algorithms and specifically the so-called manifold learning, which aims to cluster data by identifying

the intrinsic manifold upon which the data resides [77].

With respect to investigations related to the employed feature space, environmental exposure seems to be the most

widely adopted category within the exposome. The bulk of relevant literature explores diverse factors ranging from

pollutant concentrations, average sound levels and meteorological parameters to biomarkers reflecting the extent of

human exposure to heavy metals. Following closely are socio-economic factors, encompassing aspects such as current

employment status, education level, income, lack of health insurance and food insecurity. Lastly, lifestyle-related factors,

mostly reflecting dietary/sleep patterns and quality along with various health habits such as drinking alcohol or smoking,

are also addressed in a significant portion of the identified literature. Notably, environmental exposure is the only

category often investigated individually while socioeconomic and lifestyle factors are typically studied in combination

with other categories.

Important limitations have been reported across pertinent literature. Firstly, validity of exploited ground truth cannot be

ascertained e.g. upon the use of diagnostic codes corresponding to hospitalizations or death certificates. Second, in case

of self-reported data categories such as lifestyle data, subjectivity and recall bias cannot be avoided. Third, the bulk of

conducted research only involved incidents that occurred in a single region. Another important limitation stems from the

lack of temporal alignment between the collection of medical data concerning CVD incidents and the collection of

exposome-related data. Most of the time, the data sources are not comprehensive and/ or standardized [36]. Fifth,

several works report limited availability of data sources and finally, it is difficult to directly compare results from different

studies since they are heterogeneous in terms of target, problem framing, study design and sample size and outcome

assessment as reflected by the occasional lack of an external validation process but also by the diverse metric scores

reported.

Extending the feature space to include non-traditional CVD risk factors spanning environmental, social and life-style

domains has shown promising results in improving the performance of conventional models targeting CVD-related

variables. In this sense, exploitation of exposome-related variables brings the researcher community one step closer to

identifying major environmental, social and lifestyle determinants of CVDs. This additional knowledge at a personal level

could form the basis for developing tools for personalized healthcare management. At a broader level (neighborhood,

city, etc.), it could help prioritize and allocate healthcare resources. The latter would enhance healthcare workflow

optimization and implementation of prevention and intervention measures to reduce CVD-induced healthcare costs.
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At this point it should be stressed that a lack of consensus is observed within the research community regarding the

distinct categories that constitute the exposome and the specific variables included in each of these categories. This

leads to inconsistencies in terminology and classification, hindering comparability and standardization across studies. For

instance, part of the research community might refer to 'smoking status' while another part may be making use of

alternative terms such as 'tobacco use' etc. This holds for other terms as well, that may be used by researchers

interchangeably, despite potentially referring to slightly different concepts. To enhance the reliability and comparability

of exposome research, there is a need for standardization of terms and definitions used to describe predictor variables.

Overall, standardized protocols for data collection and sharing should be developed.

Finally, there is a need to explore exposomics from a multi-disciplinary perspective. Since its scope is becoming clearer

and clearer every day and more and more studies include exposomics in etiological research, actions are needed from

multiple stakeholders to join forces for the unification of frameworks and the establishment of guidelines regarding an

Exposome Study Design and even a comprehensive exposome database [78].

Conclusions
Even though ML techniques application on exposomics data with a focus on cardiovascular diseases is in its early stages

compared to similar use cases that are based on other kinds of -omic data such as genomic data, there is a pronounced

increase of pertinent publications during the last years. However, the vast majority of relevant studies has been based on

data outside EU territory and specifically on data originating from the US and China. Regarding the ML framing of

CVD-related problems, it is worth highlighting the nearly exclusive adoption of a supervised context across identified

literature, irrespective of the cardiovascular outcome addressed, with just two works addressing a clustering task. As

machine learning applications on exposomics data expand and reach a higher maturity level, it seems to hold promise for

uncovering new insights into the environmental determinants of health but also for identifying valuable strategies for

CVD prevention and healthcare resource allocation. Towards this aim, further research could focus on the more

manageable and easily adjustable modifiable factors in contrast to those that are stiffer such as the socio-economic

status and try to use the first as inhibitors to avert a “poor” exposome. Understanding the modifiability of different

factors is crucial for public health strategies. Focusing on more modifiable factors can empower individuals to make

positive changes in their lives, while also pursuing broader societal and policy changes to address the other less

modifiable factors. Finally, there is need of standardization in terms of language so as to enable comparability between

different studies as this is often hard even to categorize similar studies using the most prevalent keywords in the

literature.
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AdaBoost, Adaptive Boosting

AENET-I, Adaptive Elastic-Net with main effects and pairwise interactions

AI, Artificial Intelligence

ANN, Artificial Neural Network

APS, Average Precision Score

AUC-PR, Area Under the Precision Recall Curve

AUC-ROC, Area Under the Receiver Operating Characteristic Curve

AUC, Area Under the Curve
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BAG, Bagging (regressor or classifier based on context)

BART, Bayesian additive regression tree

BKMR, Bayesian Kernel Machine Regression

BMI, Body Mass Index

CART, Classification And Regression Tree

CatBoost, Categorical Boosting

CNN, Convolutional Neural Network

CVD, Cardio-Vascular Disease

GB, Gradient Boosting

DL, Deep Learning

DT, Decision Tree

ELSTM, Enhanced Long Short-Term Memory Model

EN, Elastic Net

ERS, Environmental Risk Score

ExWAS, Exposome-Wide Association Study

FDR, False Discovery Rate

FNR, False Negative Rate

FPR, False Positive Rate

GGT, Gamma-Glutamyl Transferase

GSV, Google Street View

IDI, Integrated Discrimination Improvement

IF, Isolation Forest

KNN, k-nearest neighbors

KOBT, Knockoff Boosted Trees

LASSO, Least Absolute Shrinkage and Selection Operator

LDL, Low-Density Lipoproteins

LGBM, Light Gradient Boosting Machine

LMEM, Linear Mixed Effects Model

LOO-CV, Leave-One-Out Cross-Validation

LR, Logistic Regression

LSTM, Long Short-Term Memory Model
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MAE, Mean Absolute Error

MAPE, Mean Absolute Percentage Error

MCC, Matthew's Correlation Coefficient

MI, Myocardial Infarction

ML, Machine Learning

MLP, Multi-Layer Perceptron

MSE, Mean-Squared Error

MSPE, Mean-Squared Prediction Error

ΝΒ, Naïve Bayes

NPV, Negative Predictive Value

NRI, Categorical Net Reclassification Improvement

PCA, Principal Component Analysis 

PRESS

RF, Random Forest

RMSE, Root Mean Squared Error

SHAP, SHapley Additive exPlanations

SVC, Support Vector Classification

SVM, Support Vector Machines

XGBoost, Extreme Gradient Boosting
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