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Abstract
Background and Objective: Previous studies have identified associations between
metabolites and Parkinson's disease (PD), but the causal relationships remain unclear.
This study aims to identify causal relationships between specific cerebrospinal fluid
(CSF) and plasma metabolites and the PD risk using Mendelian Randomization (MR).

Methods: We utilized data on 338 CSF metabolites from the Wisconsin Alzheimer's
Disease Research Center and the Wisconsin Registry for Alzheimer's Prevention, and
1,400 plasma metabolites from the Canadian Longitudinal Study on Aging. PD
outcome data were obtained from a GWAS meta-analysis by the International
Parkinson's Disease Genomics Consortium. MR analysis was conducted using the
TwoSampleMR package in R.

Results: MR analysis identified 49 plasma metabolites with suggestive causal
relationships with PD risk, including 21 positively associated metabolites, 23
negatively associated metabolites, and 5 unknown compounds. In the CSF, six
metabolites showed suggestive causal relationships with PD, including positively
associated dimethylglycine, gluconate, oxalate (ethanedioate), and the unknown
metabolite X-12015, while (1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) and
the unknown metabolite X-23587 were negatively associated. Among the plasma
metabolites, those with a positive association with PD risk include
hydroxy-3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (hydroxy-CMPF),
carnitine C14, 1-linoleoyl-GPG (18:2), glucose to maltose ratio, and
cis-3,4-methyleneheptanoate. Conversely, metabolites with a negative association
with PD risk include tryptophan, succinate to acetoacetate ratio,
N,N,N-trimethyl-alanylproline betaine (TMAP), glucuronide of piperine metabolite
C17H21NO3, and linoleoylcholine.

Conclusion: Our study underscores the correlation between CSF and plasma
metabolites and PD risk, highlighting specific metabolites as potential biomarkers for
diagnosis and therapeutic targets.
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Introduction
Parkinson's disease (PD) is a progressive neurodegenerative disorder primarily
characterized by the loss of dopaminergic neurons in the substantia nigra, leading to
symptoms such as tremors, bradykinesia, and rigidity1,2. Affecting millions globally,
the prevalence of PD increases with age3. Despite extensive research, the exact
etiology of PD remains unclear, involving a complex interplay of genetic,
environmental, and lifestyle factors4,5.

Metabolomics, the comprehensive study of small molecule metabolites within
biological systems, has emerged as a crucial tool in understanding PD6. This approach
allows for the identification of metabolic changes that occur in response to disease
processes, offering potential biomarkers for early diagnosis and targets for therapeutic
intervention. Recent studies have underscored significant metabolic disruptions in
both cerebrospinal fluid (CSF) and plasma of PD patients, pointing to systemic
metabolic dysfunction associated with the disease7. Analyses of plasma metabolomics
have revealed alterations in various metabolic pathways, including those related to
amino acids, lipids, and energy metabolism8,9. Similarly, CSF metabolomics studies
have identified changes in neurotransmitter metabolites, oxidative stress markers, and
other pathways specific to the central nervous system10–12. These findings indicate that
metabolic biomarkers in both CSF and plasma could serve as valuable indicators for
PD13.

Mendelian Randomization (MR) is a robust analytical method that uses genetic
variants as instrumental variables (IVs) to infer causal relationships between
exposures (e.g., metabolite levels) and outcomes (e.g., PD). This method addresses
confounding factors and reverse causation issues common in observational studies,
providing more reliable evidence for causality. Applying MR to metabolomic data in
PD can identify causal metabolic pathways and potential biomarkers, advancing our
understanding of PD pathogenesis and aiding in the development of targeted
therapeutic strategies and more effective clinical interventions14.

Patients and Methods
Exposure data
In this study, we utilized plasma metabolite data from 8,299 participants aged 45-85
from the Canadian Longitudinal Study on Aging. The data included summary
statistics for 1,091 blood metabolites and 309 metabolite ratios obtained via
genome-wide association studies (GWAS)15. Additionally, the GWAS summary data
for CSF metabolites were sourced from a study by Panyard et al., which included 338
metabolites in the CSF of 291 participants16. These data were derived from
participants enrolled in the Wisconsin Alzheimer’s Disease Research Center, with a
mean age of 64.7 years, and the Wisconsin Registry for Alzheimer’s Prevention, with
a mean age of 62.0 years.

Outcome data
The main results for PD were summarized in a recent GWAS by Nalls et al17. We
obtained genetic information from a recent meta-analysis of GWAS conducted by the
International Parkinson's Disease Genomics Consortium and 23andMe, which
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included a total of 16 cohorts. The study population consisted of 33,674 individuals,
including 15,056 PD patients and 18,618 control subjects. The GWAS analysis in this
study took into account a range of factors including sex, various biomarkers,
educational level, smoking status, and brain volume. Since the 23andMe data was not
included in the publicly accessible datasets, we simply omitted this cohort from our
analysis.

Instrument selection
To ensure the effectiveness of instrumental genetic variables, we selected qualified
single-nucleotide polymorphisms (SNPs) through a rigorous process. First,
considering that genome-wide significance might be too stringent for CSF and plasma
metabolites, we used a relatively relaxed threshold (P < 5.00E-5) to extract IVs from
plasma metabolites18,19. Second, to ensure the independence of the IVs, we applied
clumping to the SNPs based on European samples from the 1000 Genomes Project
Linkage Disequilibrium reference panels, using a clumping threshold of R2 < 0.001
and a window size of 10 kb. This step aimed to minimize the potential impact of
linkage disequilibrium on the stochastic allocation of alleles. Third, we harmonized
the data to eliminate unclear SNPs with non-concordant alleles, ensuring consistent
estimates of effect by aligning with the same alleles. The maximum threshold for
minor allele frequency alignment for palindromic SNPs was set at 0.3. Fourth, we
calculated the F-statistics for each SNP and excluded those with F < 10 to avoid weak
instrument bias20. Finally, we conducted MR analysis on metabolites with more than
two SNPs.

Mendelian randomization assumptions
MR was used to evaluate the causal relationship between exposure (plasma and CSF
metabolites) and disease outcome (PD). MR analysis has three core assumptions: (1)
SNPs are closely related to exposure, (2) SNPs are not associated with confounding
factors, and (3) SNPs have no other (pleiotropic) way of affecting the results except
through exposure21.

Statistical Analysis
We conducted MR analyses using the TwoSampleMR package22 in R version 4.4.0.
For the primary analysis, the inverse variance-weighted (IVW) method was employed
to evaluate MR estimates, supplemented by four additional MR methods: MR-Egger,
weighted median, simple mode, and weighted mode. The MR results were expressed
as odds ratios (ORs) with corresponding 95% confidence intervals (CIs). The IVW
method is considered robust for estimating causal effects, provided that genetic
variations comply with the three instrumental variable assumptions and are not
influenced by pleiotropy.

Sensitivity Analysis
Several sensitivity analyses were conducted to validate the robustness of the MR
estimates. These included the MR-Egger intercept22, Cochran’s Q test, leave-one-out
test23, and funnel plots. Cochran’s Q test was utilized to detect potential heterogeneity,
with a P < 0.05 indicating its presence. The MR-Egger intercept method assessed
horizontal pleiotropy. Leave-one-out sampling identified influential IV outliers, and
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funnel plots visualized SNP heterogeneity. Forest and scatter plots were created to
display the study results. Additionally, a reverse MR analysis was performed on the
positive results from the primary analysis to ensure that reverse causality did not
affect the findings, thereby ensuring the reliability of the MR study.

Metabolic Pathway Analysis
The metabolic pathway analysis was carried out using MetaboAnalyst 6.0, an online
tool available at https://www.metaboanalyst.ca/. To maintain the accuracy and
robustness of the results, only metabolites with a statistical significance of P < 0.05
were considered. This analysis leveraged two key databases: the Small Molecule
Pathway Database (SMPDB) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG). A significance threshold of 0.05 was established for the pathway analysis.
Functional enrichment and pathway analysis modules were applied to pinpoint
relevant metabolite groups or pathways associated with the biological processes of
interest.

Results
We conducted an MR study on CSF and plasma metabolites in a European population
(Figure 2). From a total of 338 CSF metabolites and 1400 plasma metabolites, we
selected between 3 to 404 independent SNPs as IVs. Each of these IVs had an F value
greater than 10, ensuring no weak IV bias. Detailed summary information for these
SNPs is provided in Tables S1 and S2.

In CSF metabolites, a total of six metabolites were identified to have suggestive
causal relationships with the PD risk, including two unknown metabolites (Figure 3).
Among them, levels of dimethylglycine (OR [95% CI] = 1.06 [1.01-1.12], P = 0.023),
gluconate (OR [95% CI] = 1.12 [1.01-1.25], P = 0.034), oxalate (ethanedioate) (OR
[95% CI] = 1.07 [1.00-1.13], P = 0.043), and the unknown metabolite X-12015 (OR
[95% CI] = 1.06 [1.00-1.11], P = 0.044) were positively associated with the PD risk.
Conversely, levels of (1-enyl-palmitoyl)-2-arachidonoyl-gpc (p-16:0/20:4) (OR [95%
CI] = 0.93 [0.88-0.99], P = 0.019) and the unknown metabolite X-23587 (OR [95%
CI] = 0.93 [0.88-0.98], P = 0.005) were negatively associated with the PD risk (Figure
3).

In the MR analysis of plasma metabolites, a total of 49 metabolites were identified to
have suggestive causal relationships with the PD risk (Figure 4), including five
unknown metabolites. Among them, 21 metabolites were positively associated with
the PD risk. The top five metabolites with the smallest p-values are
hydroxy-3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (hydroxy-CMPF) (OR
[95% CI] = 1.36 [1.15-1.60], P = 0.0003), carnitine C14 (OR [95% CI] = 1.38
[1.15-1.66], P = 0.0005), 1-linoleoyl-GPG (18:2) (OR [95% CI] = 1.26 [1.09-1.47], P
= 0.002), glucose to maltose ratio (OR [95% CI] = 1.19 [1.04-1.36], P = 0.012), and
cis-3,4-methyleneheptanoate (OR [95% CI] = 1.21 [1.04-1.42], P = 0.015).
Conversely, 23 metabolites were negatively associated with the PD risk. The top five
protective metabolites with the smallest p-values are tryptophan (OR [95% CI] = 0.79
[0.69-0.90], P = 0.0006), succinate to acetoacetate ratio (OR [95% CI] = 0.79
[0.66-0.93], P = 0.0055), N,N,N-trimethyl-alanylproline betaine (TMAP) (OR [95%
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CI] = 0.82 [0.71-0.95], P = 0.0067), glucuronide of piperine metabolite C17H21NO3
(3) (OR [95% CI] = 0.80 [0.68-0.94], P = 0.0073), and linoleoylcholine (OR [95% CI]
= 0.73 [0.58-0.92], P = 0.0078).

To explore the possibility of reverse causality, we performed a reverse MR analysis to
determine whether an increased PD risk could influence the levels of certain
metabolites (Figure 5). In the CSF metabolites, PD risk was associated with a
decrease in gluconate levels (OR [95% CI] = 0.95 [0.91-0.99], p = 0.0276). In the
plasma metabolites, PD risk was associated with decreases in 1-stearoyl-2-oleoyl-GPI
(18:0/18:1) levels (OR [95% CI] = 0.94 [0.89-0.99], p = 0.0123), argininate levels
(OR [95% CI] = 0.94 [0.89-0.99], p = 0.0153), and 2,3-dihydroxy-2-methylbutyrate
levels (OR [95% CI] = 0.95 [0.90-1.00], p = 0.0331). These findings suggest that an
increased PD risk may lead to alterations in specific CSF and plasma metabolites,
underscoring the impact of reverse causality on our study.

The sensitivity analyses confirmed the robustness of the MR estimates. Despite the
IVW methods being susceptible to weak IV bias, the MR-Egger, weighted median,
simple mode, and weighted mode methods showed directions consistent with the MR
estimates. Heterogeneity was evaluated using Cochran’s Q statistic in MR-Egger
regression, and results with notable heterogeneity were excluded (Tables S3 and S4).
The MR-Egger intercept was used to detect pleiotropy, and any results indicating
pleiotropy were excluded (Tables S5 and S6). The leave-one-out sensitivity analysis
(Figures S1-S2) and forest plots (Figures S3-S4) did not reveal any anomalous SNPs,
confirming the stability of the MR estimates. Scatter plots (Figures S5-S6) and funnel
plots (Figures S7-S8) further supported these findings, showing directions consistent
with the IVW approach and symmetrical distribution of IVs.

Metabolic Pathway Analysis
In this study, we utilized MetaboAnalyst 6.0 to conduct a comprehensive metabolic
pathway analysis of CSF and plasma metabolites in PD patients (Table S7 and Figures
S9). Our results identified 15 significant metabolic pathways, including the urea cycle
(4/23, P = 0.0006; D-alanine, pyruvic acid, urea, ADP), ammonia recycling (4/25, P =
0.0009; pyruvic acid, L-asparagine, L-histidine, ADP), alanine metabolism (3/14, P =
0.0018; D-alanine, pyruvic acid, ADP), glucose-alanine cycle (2/9, P = 0.0112),
glycine and serine metabolism (4/50, P = 0.0119), trehalose degradation (2/11, P =
0.0167), bile acid biosynthesis (4/59, P = 0.0211), fatty acid biosynthesis (3/33, P =
0.0216), phosphatidylethanolamine biosynthesis (2/13, P = 0.0232), riboflavin
metabolism (2/14, P = 0.0267), transfer of acetyl groups into mitochondria (2/18, P =
0.0430), betaine metabolism (2/18, P = 0.0430), phosphatidylcholine biosynthesis
(2/18, P = 0.0430), glutathione metabolism (2/19, P = 0.0475), and glutamate
metabolism (3/45, P = 0.0487). These findings highlight the involvement of multiple
metabolic pathways in PD pathogenesis, providing valuable insights into the
underlying metabolic disruptions associated with this condition.

Discussion
The findings from our MR study provide robust evidence for the metabolic
underpinnings of PD. By leveraging genetic variants as instrumental variables, we
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inferred causal relationships between specific CSF and plasma metabolites and PD
risk. Our MR analysis identified 49 metabolites with suggestive causal relationships
with PD risk: 21 positively associated, 23 negatively associated, and 5 unknown
compounds. In the context of CSF metabolites, we identified six with suggestive
causal relationships to PD: dimethylglycine, gluconate, oxalate (ethanedioate), and the
unknown metabolite X-12015 were positively associated with PD risk, whereas
(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) and the unknown metabolite
X-23587 were negatively associated. Notably, in the plasma metabolites, we
identified hydroxy-CMPF, carnitine C14, 1-linoleoyl-GPG (18:2), glucose to maltose
ratio, and cis-3,4-methyleneheptanoate as having the strongest positive associations
with PD risk, while metabolites such as tryptophan, the succinate to acetoacetate ratio,
N,N,N-trimethyl-alanylproline betaine (TMAP), the glucuronide of piperine
metabolite C17H21NO3, and linoleoylcholine were found to be negatively associated
with PD risk.

These findings highlight the multifaceted metabolic alterations in PD. Our study
found that tryptophan is negatively associated with PD risk. This amino acid is not
only crucial for protein synthesis but also serves as a precursor to serotonin, a
neurotransmitter that regulates numerous functions in the central nervous system. In
PD patients, serotonin system dysfunction is associated with non-motor symptoms
such as depression and sleep disturbances24. Additionally, tryptophan metabolites
possess antioxidative properties, reducing oxidative stress by decreasing the
production of free radicals and enhancing the activity of antioxidant enzymes, thereby
protecting neurons25. The kynurenine pathway of tryptophan metabolism also
generates anti-inflammatory metabolites, which is important given the role of
inflammation in PD pathology26.

Our study found that a lower succinate to acetoacetate ratio is associated with reduced
PD risk. Previous research has shown that this ratio reflects the metabolic state of
cells, particularly mitochondrial function, which is often compromised in PD.
Mitochondrial dysfunction leads to disrupted energy metabolism, a hallmark of PD27.
An increase in succinate may indicate a block in the tricarboxylic acid cycle,
contributing to oxidative stress by generating reactive oxygen species. Conversely, an
increase in acetoacetate suggests enhanced ketone body metabolism, which can serve
as an alternative energy source when mitochondrial function is impaired, thereby
reducing oxidative stress by decreasing reactive oxygen species production28.

Our comprehensive metabolic pathway analysis revealed that these metabolites are
enriched in 15 metabolic pathways in the plasma of PD patients. The main affected
pathways include the urea cycle and alanine metabolism. Research indicates that the
urea cycle is significantly disrupted in PD patients, with elevated urea levels observed
in various brain regions. Elevated urea levels in the brain can lead to conditions
similar to uremic encephalopathy, characterized by severe cognitive impairments and
neurological deficits29. The widespread increase in brain urea levels indicates
potential metabolic disturbances across PD and underscores the critical role of
effective ammonia detoxification in preventing neurotoxicity and subsequent neuronal
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damage in PD30. Furthermore, studies have shown that elevated blood urea nitrogen
and proteinuria are associated with increased severity and progression of PD. For
example, higher blood urea nitrogen and creatinine levels are linked to longer disease
duration and worse motor symptoms31. In summary, these findings highlight the
significant relationship between elevated urea levels and the progression and severity
of Parkinson's disease.

Additionally, alterations in alanine metabolism were identified as significant in PD
patients. Elevated plasma alanine levels and increased alanine to asparagine ratios,
which show a negative association with PD risk, suggest a protective role of alanine
in PD. Alanine plays a crucial role in glucose metabolism and energy production, and
its increased levels might support better neuronal function and energy homeostasis,
potentially offering neuroprotection. Studies have shown that specific amino acid
profiles, including elevated alanine levels, could serve as biochemical markers of PD
progression32. Moreover, beta-alanine has been associated with the expression of Wnt
pathway genes, further supporting its potential neuroprotective role in PD33.

This study represents the initial application of MR to investigate CSF and plasma
metabolites in PD, effectively addressing confounding factors and issues of reverse
causation commonly encountered in observational studies. This approach provides
robust insights into metabolic dysregulation associated with Parkinson's disease.
However, certain limitations should be acknowledged. Firstly, our study population
was primarily of European descent, which may limit the generalizability of the
findings to other ethnic groups. Future research should aim to include more diverse
populations to validate these results across different genetic backgrounds. Secondly,
our analysis was restricted to metabolites for which genetic data were available,
potentially overlooking other relevant metabolites and pathways involved in PD.
Expanding the metabolomic profiling to encompass a broader range of metabolites
could provide a more comprehensive understanding of the disease. Additionally, due
to the limited number of SNPs, we employed a relatively relaxed significance
threshold (P < 5.00E-5)19, which might have introduced some false positives.
Furthermore, we did not perform multiple testing corrections, which is consistent with
practices in similar studies18, but this could affect the robustness of our findings.
Future studies should incorporate more stringent criteria and correction methods to
enhance the reliability of the results.

In conclusion, our MR study identified 6 CSF metabolites and 49 plasma metabolites
with suggestive causal relationships with PD. Among these, 1 CSF metabolite and 23
plasma metabolites were identified as protective, while 3 CSF metabolites and 21
plasma metabolites were classified as risk factors. Additionally, 2 CSF metabolites
and 5 plasma metabolites were categorized as unknown compounds. Our metabolic
pathway analysis revealed enrichment in 15 pathways, notably highlighting the urea
cycle and alanine metabolism. These findings underscore the potential of these
metabolites as biomarkers for diagnosis and therapeutic targets. Further research is
needed to validate these findings and explore their clinical applications, thereby
enhancing our understanding of PD pathogenesis and improving patient outcomes.
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Figure legends

Figure 1: Flowchart of Mendelian Randomization Study on Metabolites and
Parkinson's Disease. IVs: Instrumental Variables; SNPs: Single Nucleotide
Polymorphisms; MR: Mendelian Randomization; IVW: Inverse Variance Weighted.
Figure 2: Circular Heatmap of Combined Cerebrospinal Fluid and Plasma Metabolites
Associated with Parkinson's Disease in Mendelian Randomization Analysis. The
circular heatmap displays the odds ratios and p-values of cerebrospinal fluid and
plasma metabolites associated with Parkinson's Disease. Red indicates risk factors and
blue indicates protective factors.
Figure 3: Mendelian Randomization Results of Cerebrospinal Fluid Metabolites and
Parkinson's Disease. This figure summarizes the causal relationships between
cerebrospinal fluid metabolites and Parkinson's Disease, determined by Mendelian
randomization analysis. The size of each point represents the odds ratio, and
horizontal lines indicate 95% confidence intervals. OR: Odds Ratio; CI: Confidence
Interval; IVW: Inverse Variance Weighted.
Figure 4: Mendelian Randomization Results of Plasma Metabolites and Parkinson's
Disease. This figure summarizes the causal relationships between plasma metabolites
and Parkinson's Disease, determined by Mendelian randomization analysis using the
inverse variance weighted method. The size of each point represents the odds ratio,
and horizontal lines indicate 95% confidence intervals. OR: Odds Ratio; CI:
Confidence Interval.
Figure 5: Reverse Mendelian Randomization Results of Metabolites and Parkinson's
Disease. This figure shows the reverse Mendelian randomization results of
metabolites and Parkinson's Disease, determined using the inverse variance weighted
method from the positive findings of the primary analysis. Forward indicates the
causal effect of metabolites on Parkinson's Disease, and reverse indicates the causal
effect of Parkinson's Disease on metabolite levels. OR: Odds Ratio; CI: Confidence
Interval.

Supplementary File legends

Supplementary Figure 1: Leave-One-Out Sensitivity Analysis Results for
Cerebrospinal Fluid Metabolites in MR Study of Parkinson's Disease
Supplementary Figure 2: Leave-One-Out Sensitivity Analysis Results for Plasma
Metabolites in MR Study of Parkinson's Disease
Supplementary Figure 3: Forest Plots of Cerebrospinal Fluid Metabolites in MR
Study of Parkinson's Disease
Supplementary Figure 4: Forest Plots of Plasma Metabolites in MR Study of
Parkinson's Disease
Supplementary Figure 5: Scatter Plots of Cerebrospinal Fluid Metabolites in MR
Study of Parkinson's Disease
Supplementary Figure 6: Scatter Plots of Plasma Metabolites in MR Study of
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Parkinson's Disease
Supplementary Figure 7: Funnel Plots of Cerebrospinal Fluid Metabolites in MR
Study of Parkinson's Disease
Supplementary Figure 8: Funnel Plots of Plasma Metabolites in MR Study of
Parkinson's Disease
Supplementary Figure 9: Metabolic Pathway Analysis of Metabolites Associated with
Parkinson's Disease. This bubble plot shows the pathway impact score on the x-axis
and the -log10 (p-value) on the y-axis. Larger bubbles indicate higher impact, and the
color gradient from yellow to red represents increasing significance, with redder
bubbles indicating more statistically significant pathways.

Supplementary Table 1: Summary of SNPs for Cerebrospinal Fluid Metabolites in
MR Study of Parkinson's Disease
Supplementary Table 2: Summary of SNPs for Plasma Metabolites in MR Study of
Parkinson's Disease
Supplementary Table 3: Heterogeneity Analysis Using Cochran’s Q statistic for
Cerebrospinal Fluid Metabolites in MR Study of Parkinson's Disease
Supplementary Table 4: Heterogeneity Analysis Using Cochran’s Q statistic for
Plasma Metabolites in MR Study of Parkinson's Disease
Supplementary Table 5: Pleiotropy Analysis Using MR-Egger Intercept for
Cerebrospinal Fluid Metabolites in MR Study of Parkinson's Disease
Supplementary Table 6: Pleiotropy Analysis Using MR-Egger Intercept for Plasma
Metabolites in MR Study of Parkinson's Disease
Supplementary Table 7: Metabolic Pathway Analysis of Metabolites Associated with
Parkinson's Disease
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