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ABSTRACT   

Background  

Visual scoring of tubular damage has limitations in capturing the full spectrum of structural changes and 
prognostic potential. We investigate if computationally quantified tubular features can enhance prognostication 
and reveal spatial relationships with interstitial fibrosis. 

Methods 

Deep-learning and image-processing-based segmentations were employed in N=254/266 PAS-WSIs from the 
NEPTUNE/CureGN datasets (135/153 focal segmental glomerulosclerosis and 119/113 minimal change disease) 
for: cortex, tubular lumen (TL), epithelium (TE), nuclei (TN), and basement membrane (TBM). N=104 pathomic 
features were extracted from these segmented tubular substructures and summarized at the patient level using 
summary statistics. The tubular features were quantified across the biopsy and in manually segmented regions 
of mature interstitial fibrosis and tubular atrophy (IFTA), pre-IFTA and non-IFTA in the NEPTUNE dataset. 
Minimum Redundancy Maximum Relevance was used in the NEPTUNE dataset to select features most 
associated with disease progression and proteinuria remission. Ridge-penalized Cox models evaluated their 
predictive discrimination compared to clinical/demographic data and visual-assessment. Models were evaluated 
in the CureGN dataset.  
Results 

N=9 features were predictive of disease progression and/or proteinuria remission. Models with tubular features 
had high prognostic accuracy in both NEPTUNE and CureGN datasets and increased prognostic accuracy for 
both outcomes (5.6%-7.7% and 1.6%-4.6% increase for disease progression and proteinuria remission, 
respectively) compared to conventional parameters alone in the NEPTUNE dataset. TBM thickness/area and TE 
simplification progressively increased from non- to pre- and mature IFTA. 
Conclusions 

Previously under-recognized, quantifiable, and clinically relevant tubular features in the kidney parenchyma can 
enhance understanding of mechanisms of disease progression and risk stratification.  
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INTRODUCTION  

Conventional assessment of the tubulointerstitial in kidney biopsies is based on visual scoring of a limited number 
of histologic parameters. These include continuous percentage or categorical scoring of interstitial fibrosis and 
tubular atrophy (IFTA) separately or combined as IFTA, interstitial inflammation, and acute tubular injury1–7. 
Although the association between these parameters with kidney function and disease progression has been 
shown by multiple studies in native and transplant kidney biopsies, their potential  for predicting outcomes is 
limited due to known inter- and intra-observer variability and lack of standardized scoring systems3,8,9. 
Furthermore, encoded in the kidney tissue may be quantitative and topological information that the human vision 
system is not equipped to capture or quantify. These characteristics may have the potential to improve our ability 
to better characterize changes of individual functional tissue units, their spatial relationship, and to identify novel 
biopsy-based biomarkers of disease progression1,10,11. Thus, the precise and reproducible quantification of 
tubulointerstitial histologic characteristics can contribute to the understanding of structural and functional 
changes in kidney diseases, enhance prognostication and prediction of clinical outcome, and ultimately of clinical 
care5,7,12. 
 
Digital and computational pathology has enabled precise tissue quantification through deep learning (DL) models 
that segment normal and abnormal functional tissue units, such as glomeruli, tubules, arteries, and peritubular 
capillaries13–15. Pathomic features, which are quantitative attributes from pathology images, capture 
morphological and structural characteristics of kidney structures1,15,16. These features represent the 
heterogeneity of kidney structural changes and can be extracted from segmented functional tissue units. They 
are essential for quantifying normal and pathological states, enabling precise tissue characterization, and 
enhancing our ability to diagnose and prognosticate kidney diseases in a reliable and reproducible manner1. 

 

Leveraging previously established rich clinical and whole slide image (WSI) cohorts, such as those from the 
Nephrotic Syndrome Study Network (NEPTUNE)17 and Cure Glomerulonephropathy (CureGN)18 consortia , this 

study employs computational pathology. It tests the hypothesis that sophisticated and computationally assessed 

tubular features extracted from digital kidney biopsies of patients with focal segmental glomerulosclerosis (FSGS) 
and minimal change disease (MCD) can enhance the prognostication of glomerular diseases and define the 
progression from normal to severe kidney scarring. To test this hypothesis, we: 
a) developed and applied multiple DL-based or traditional image-processing-based algorithms for the 
segmentation of different tubular substructures, including tubular basement membrane (TBM), tubular lumen 
(TL), tubular epithelium (TE), and tubular nuclei (TN); 
b) used pathomic features to extract and quantify the morphometric characteristics of the tubular substructures; 
c) identified the top features most predictive of clinical outcome and compared the prognostic value of these 
features to conventional pathology and clinical parameters; 
d) studied the tubular features in pre-, mature, and non-IFTA regions and compared them to non-IFTA regions 
of reference tissue. 
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METHODS  

1. Study cohorts and sample collection 

Three cohorts were used in this study:  1) NEPTUNE (n=254)17
, training and internal validation cohort;  2) 

CureGN (n=266)18, external validation cohort; 3) Nephrectomies (n=13) from the University of Michigan (UMICH), 
reference tissue.  Written informed consent was obtained from all NEPTUNE/CureGN participants and UMICH 
nephrectomy patients (Figure 1). A Periodic Acid Schiff (PAS) stained whole slide images (WSI) per participant 
was used. 
 
This study leveraged previously collected digital kidney biopsies and clinical data from children and adults 
enrolled in the NEPTUNE17 and CureGN18 cohort studies, with a diagnosis of minimal change disease (MCD 
and MCD-like) or focal segmental glomerulosclerosis (FSGS). NEPTUNE and CureGN are multi-site 
observational cohort studies of patients with a kidney biopsy performed at the time of enrollment and within 5 
years before enrollment, respectively. NEPTUNE participants that were also enrolled in CureGN (NEPTUNE 
transfers) were included only in the NEPTUNE dataset.   
   
The following exclusion criteria were used for both cohorts: a) unavailability of outcome data, b) absence of PAS-
WSIs; or c) failure of the PAS-stained WSIs to pass HistoQC-driven quality control11,19,20. CureGN participants 
with a biopsy performed >3 years prior to enrollment were excluded due to missing data between biopsy and 
study enrollment. 
 
The UMICH cohort consists of paired PAS and immunohistochemistry (IHC) stained for pan cytokeratin WSIs 
from nephrectomies of kidney cancer patients, with tissue samples taken distally from the tumor mass (Figure 
1-b). The UMICH PAS-WSIs were visually assessed by study pathologists for adequacy (i.e., good quality of 
tissue processing and staining). The PAS-IHC paired sections were co-registered and used as ground truth as 
part of the training of a DL algorithm for tubular segmentation (METHODS 3) and as reference tissue for 
comparison of pathomic feature values with the NEPTUNE/CureGN datasets. 
 

2. Demographic, Clinical, and Visually Scored Pathology Data  

As per NEPTUNE and CureGN study protocols, demographic data (age, sex, self-or parent-reported race and 
ethnicity) and WSIs were collected at study enrollment, and medication use, laboratory, and other clinical data 
at enrollment and each prospective 4–6-month study visit.  
 
Clinical outcomes used in this study included (1) time from biopsy to disease progression, defined by at least 
40% decline in estimated glomerular filtration rate (eGFR)21,22 with eGFR<90 mL/min/1.73m2 23 or kidney failure 
(chronic dialysis, transplant, or two consecutive eGFRs <15 mL/min/1.73m2); and (2) time from biopsy to first 
complete proteinuria remission, defined by urine protein creatinine ratio (UPCR) <0.3 g/g. Due to eGFR and 
UPCR data not being collected comprehensively between biopsy and 6 months before study enrollment in 
CureGN, CureGN participants were considered to not have disease progression outcome data if enrolled 3-5 
years after the kidney biopsy, or had fewer than 5 eGFR measurements available and less than 1.5 years of 
follow-up after study enrollment if biopsy was 6 months to 2 years before study enrollment. For complete 
proteinuria remission outcome, only participants whose biopsy was within 6 months before enrollment or at 
enrollment (i.e., incident patients) were included. 
 
Tubulointerstitial descriptor scoring data (percentage of interstitial fibrosis, tubular atrophy, acute tubular injury, 
and inflammation) were extracted from the NEPTUNE database for NEPTUNE participants24, and scored by 
study pathologists for CureGN participants to harmonize visual scoring data across datasets.  
 

3. Ground Truth and algorithmic segmentations. 

A mixture of manual, DL, and traditional image-processing-based segmentations were employed to segment the 
different kidney compartments, cortex, non-IFTA, pre-IFTA, and mature IFTA (definitions in Supplementary 
Materials S2), and tubular substructures (TL, TE, TN, and TBM). Each segmentation (ground truth and DL-
generated) went through rigorous quality control by study pathologists (Supplementary Material S2). The 
segmentation approaches are detailed comprehensively in Supplementary Materials S2. 
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4. Quantitative feature extraction 

From the segmented tubular sub-structures, a total of 99 tubule-level and 5 biopsy-level morphological pathomic 
features were extracted (Supplementary Table 1) and standardized based on micro-per-pixel (MPP) scaling to 
ensure consistent units for area (μm²) and length (μm) related features. Supplementary Figure 2 shows the 
distribution of MPP values for both NEPTUNE and CureGN cohorts, slides for UMICH have the same MPP value 
(0.2527). 
 
Tubule-level features were derived from both single and multiple sub-structures and included: i) Area (for 
TUBULE/TE+TL/TE/TL/TBM/TN, ii) Diameter (for TUBULE/TL/TE+TL), iii) Thickness (for 
TUBULE/TE+TL/TE/TL/TBM), iv) Smoothness (for TE+TL/TL/TBM), v) Nuclei location: the minimum distance 
from nuclei centroid/border to lumen/epithelium border, and vi) Inter-structural features: area ratio (density),and 
diameter, and thickness ratio between 2 sub-structures. Please see the feature extraction algorithms and detail 
in Supplementary Material S3 and Supplementary Table 1. 
 
Biopsy-level features included cortical TUBULE density, cortical TE+TL density, cortical TBM density, area ratio 
between TE+TL and TBM, and area ratio between TUBULE and TBM. Since each patient only has 1 WSI in our 
study, these 5 biopsy-level features are also patient-level features. 
 

5. Statistical analysis 

Demographics, clinical characteristics at biopsy, and visually scored tubulointerstitial morphology descriptors 
from NEPTUNE/CureGN study participants were described using mean and standard deviation (SD) or median 
and interquartile range (IQR) for continuous variables, and frequency for categorical variables. Event rates were 
calculated for clinical outcomes. 
       

5.1 Identification of clinically relevant tubular pathomic features in NEPTUNE   

Using NEPTUNE data, 99 tubule-level pathomic features were aggregated to the patient-level using mean, 
standard deviation, skewness, and kurtosis, resulting in 396 patient-level features. Additionally, 5 biopsy 
(patient)- level pathomic features were included, resulting in 401 total patient-level tubular features used for 
subsequent analysis. Pairwise correlations between tubular pathomic features were assessed using Pearson’s 
correlation coefficient. Hierarchical clustering using Pearson’s correlation as the dissimilarity measure was 
employed to group highly correlated features together. The number of feature groups was chosen based on 
dendrogram height, such that for all feature groups, when conducting principal component analysis within each 
feature group, the first principal component (PC) explained >90% variability. Using the first PC to represent each 
feature group, the Minimum Redundancy Maximum Relevance (MRMR) selection method was used to rank 
feature groups, separately for each outcome. Finally, ridge-penalized Cox regression was used to assess 
predictive value when varying the number of top ranked feature groups included in the model, and the number 
of top feature groups predictive of each outcome was chosen based on the smallest number where the predictive 
value started to level off. Predictive value was measured by integrated area under the time-varying receiver 
operating characteristic curve (iAUC)25. 
  
For each of the top selected feature groups, a representative pathomic feature was manually chosen using 
predetermined rules to optimize interpretability, for example, selecting mean over kurtosis for the same feature 
(Supplementary Material S4), and used for all subsequent analysis. Median and IQR were used to describe top 
selected features.  
 

5.2 Prognostic value of tubular pathomic features in NEPTUNE 

To assess whether selected tubular pathomic features provide additional prognostic value above and beyond 
parameters currently used in routine clinical practice, a total of seven models were constructed for each outcome 
and their performances were compared. First, we built three models using conventional parameters alone, 
including (1) model 1: demographics (age, sex, Black race, Hispanic ethnicity) and clinical characteristics (FSGS 
vs MCD/MCD-Like, eGFR, and UPCR at the time of biopsy, and immunosuppressant use within 30 days before 
or at biopsy) only; (2) model 2: model 1 + % tubular atrophy and % acute tubular injury (visually assessed); (3) 
model 3: model 2 + % interstitial fibrosis and % inflammation (visually assessed);. Then, we built a model 
including selected tubular pathomic features only. Lastly, we added selected tubular pathomic features to each 
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of the three conventional parameters models listed above. Only participants with complete data on all variables 
used in this analysis were included. Modeling was performed using ridge regression and predictive value was 
assessed by iAUC. iAUC was internally validated and bias-corrected using bootstrapping26. 
  
Additionally, we estimated associations between each selected top tubular pathomic feature and the outcome 
using separate standard Cox proportional hazard regression. For each feature, three associations were 
estimated, including (i) unadjusted, (ii) adjusted for demographics and clinical characteristics only, and (iii) 
adjusted for demographics, clinical characteristics, and visually scored tubular morphology descriptors.  
  

5.3 External validation of clinically relevant tubular pathomic features in CureGN 

CureGN tubule-level image feature data were similarly aggregated to the patient-level as in NEPTUNE. For 
external validation using CureGN data, we refit those seven ridge-penalized Cox models using the selected 
tubular pathomic features from NEPTUNE, again only including participants with complete data on all analysis 
variables, and similarly assessed predictive value using iAUC (with bias-correction using bootstrap). We also 
examined associations between the same selected tubular pathomic features and outcomes using CureGN data.  
 

5.4 Feature comparison between cortical subregions in NEPTUNE and reference tissue 

Statistically significant features after full adjustment from the NEPTUNE cortical subregions (non-IFTA, pre-IFTA, 
and mature IFTA) were compared to UMICH reference tissue by analyzing the corresponding feature value 
distributions (Figure 2). 
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RESULTS  

1. Study cohorts and sample collection  

N=254 NEPTUNE participants (N=254 PAS-WSIs) (N=119 MCD/MCD-Like and N=135 FSGS) and N=266 
CureGN participants (N=266 PAS-WSIs) (N=113 MCD/MCD-Like and N=153 FSGS) were retained in this study 
(Figure 1.a). The clinical and demographic characteristics are summarized in Table 1. 
 

2. Tubular segmentation and feature extraction  

N=589,192 tubules and corresponding sub-structures (TBM, TE, TL) (N=282,658 from NEPTUNE, N=301,020 
from CureGN, and N=5,514 from UMICH), and N=6,415,524 nuclei (N=3,184,105 from NEPTUNE, N= 3,179,443 
from CureGN, and N=51,976 from UMICH) were segmented.  
 

3. Identification of top tubular features in NEPTUNE 

Among 401 patient-level tubular features, there were 779 (1%) pairwise correlations >0.90 or <-0.90. Hierarchical 
clustering of 401 patient-level tubular pathomic features resulted in 124 feature groups (groups vary in size from 
1 to 17 features), each of which was represented by the first PC which explained >90% of its variability. Among 
124 feature groups, there were only 2 (0.03%) pairwise correlations >0.90 or <-0.90 (maximum = 0.93).  
 
Using feature groups ranked by MRMR, model performance generally increased as the number of top feature 
groups included in the ridge regression model increased (Supplementary Figures 3a and 3b). For disease 
progression, model performance using the top three feature groups were 98.4% of the model performance using 
all feature groups. For proteinuria remission, model performance using the top seven feature groups was 98.3% 
of the model performance using all feature groups. Supplementary Table 2 lists these selected feature groups, 
including the manually chosen representative features (in bold text), and Table 2 describes the distribution of 
the chosen representative feature from each top feature group. 

4. Prognostic value of selected tubular pathomic features in NEPTUNE 

For the disease progression outcome, including only the top three tubular pathomic features in the model, the 
bias-corrected and internally validated iAUC for prognosticating outcome was 0.749 (Table 3). After adding these 
features to demographic and clinical characteristics, iAUC increased from 0.753 to 0.811. Similarly, adding these 
tubular pathomic features to models that included all visually scored tubulointerstitial morphology descriptors 
increased iAUC from 0.760 to 0.805. In standard Cox regression models, all three features had statistically 
significant associations with disease progression, even in fully adjusted models (Table 4a). Every 100 unit 
increase in mean TBM area was associated with 2.09 (95% CI: 1.46-3.00) times higher adjusted hazards of 
disease progression. Every 0.1 unit increase in mean TE: Tubule area ratio and every 1 unit increase in mean 
nuclei to lumen centroid distance minimum was associated with 66% (95% CI: 39%-81%) and 68% (95% CI: 
37%-83%) lower adjusted hazards of disease progression, respectively. 
 
For the complete proteinuria remission outcome, including only the top seven tubular pathomic features in the 
model, the bias-corrected and internally validated iAUC for prognosticating outcome was 0.724 (Table 3). Adding 
these features to demographic and clinical characteristics increased iAUC from 0.738 to 0.772. Adding these 
tubular pathomic features to models that included visually scored tubulointerstitial morphology descriptors 
increased iAUC from 0.750 to 0.762. After adjustment for demographics, clinical characteristics, and visually 
scored tubulointerstitial morphology descriptors, only one tubular pathomic feature had a statistically significant 
association with complete remission (Table 4b). Every 1 unit increase in mean nuclei to lumen centroid distance 
minimum was associated with 1.43 (95% CI: 1.05-1.94) times higher adjusted hazard of complete remission. 
      

5. External validation of top tubular pathomic features in CureGN 

In CureGN, including only the top three and top seven tubular pathomic features had an iAUC of 0.674 and 0.763 
for disease progression and complete proteinuria remission outcomes, respectively (Table 5), as compared with 
0.749 and 0.724 in NEPTUNE (Table 3). Adding top tubular pathomic features to the models that included 
demographics and clinical characteristics increased iAUC from 0.761 to 0.769 for disease progression, and 
increased iAUC from 0.779 to 0.788 for complete proteinuria remission. Adding these features to the model that 
included visually scored tubulointerstitial morphology descriptors did not increase iAUC for disease progression 
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and increased iAUC from 0.778 to 0.787 for complete proteinuria remission. In standard Cox regression models, 
two of the three top features had statistically significant associations with disease progression in models adjusting 
for only demographics and clinical characteristics (Table 6a). However, when additionally adjusting for all visually 
scored tubulointerstitial morphology descriptors, none remained significant, although the hazard ratios were 
relatively large (HR [95% CI] = 0.74 [0.38, 1.47] for mean TE: Tubule area ratio, and 1.43 [0.94, 2.18] for mean 
TBM Area). For complete proteinuria remission, every 0.1 unit increase in the standard deviation of TBM 
thickness average was associated with 14% lower adjusted hazard of complete remission (95% CI: 0%-26%) 
(Table 6b). 
 
  

6. Distributions of top tubular pathomic features within cortical sub-regions and comparison to reference 
tissue 

Overall, the tubular features values in non-IFTA regions in NEPTUNE MCD/FSGS were comparable to non-IFTA 
cortical regions from nephrectomies, except for nuclei: TE area ratio, nuclei: TE+TL area ratio, and the distance 
between the center of the nuclei and the border of the TL (luminal border of the TE) (Figure 2 F, G, and I). 
Minimal difference was also noted in overall TBM thickness (Figure 2 C), likely reflecting variations across 
different age intervals. Specifically, individuals younger than 18 years old displayed lower feature value 
compared to those older than 18, suggesting potential feature variations between children and adults (Figure 4). 
When tubular feature values were compared across NEPTUNE cortical subregions, TBM thickness and area 
values progressively increase from non-IFTA, to pre- and mature IFTA regions (Figure 2 C-E). As tubules 
progress toward mature atrophy, the ratio between nuclei and TE, TE+TL increases, while the nuclear area ratio 
to TBM decreases, which are due to TE simplification and TBM thickening (Figure 2 F-H and Supplementary 
Figure 4). Notably, the distance between the center of the nuclei and the border of the TL (luminal border of the 
TE) is comparable across NEPTUNE FSGS/MCD cortical regions probably due to acute tubular injury present 
in non-IFTA regions. (Figure 3 – Tubular pathway to atrophy). These features can also provide meaningful 
differentiation between patients’ outcomes with more interpretability (Figure 5). 
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Discussion and Conclusion  

In this study, we have developed a suite of computational image analysis and machine learning algorithms aimed 
at identifying interpretable image-based biomarkers for renal tubules and studied the spatial relationship of 
tubules with interstitial scarring. We have shown that these biomarkers are prognostic of disease progression 
and complete remission in the NEPTUNE MCD and FSGS participants above and beyond conventional 
approaches. The study further delves into the evolution of tubular changes from normal to kidney scarring, by 
comparing tubular features between reference tissue and NEPTUNE WSIs, as well as, across different cortical 
subregions (non-IFTA, pre-IFTA, and mature IFTA regions).  
 
In contrast to conventional visual scoring that is based on a semiquantitative metric (mild, moderate, and severe) 
to assess the presence of interstitial scarring (IFTA)27, and carries a variable intra- and inter-reader 8,28, our 
inherently more precise and reproducible computational approach captures the entire spectrum of tubular 
change and their nuanced spatial relationship with normal tissue and emerging interstitial fibrosis.   For example, 
although TBM thickness is traditionally regarded as the visual biomarker for tubular atrophy, we were able to 
measure various additional TBM characteristics, and other morphological tubular features, that not only indicate 
atrophy but also demonstrated prognostic ability for disease progression (Figure 3). Similarly, we were able to 
measure characteristics of the tubules that reflect acute/subacute tubular injury, such as distance from the 
nuclear centroid to the border of the lumen and the area ratio between TE and TUBULE.  
 
To deepen our understanding of tubular changes across normal and scarred parenchyma, we compared the top 
prognostic features between the reference tissues and the NEPTUNE cohort across 3 cortical subregions and 
demonstrated that they reveal the continuum of tubular morphological changes across non-, pre-, and mature 
IFTA regions. For example, we can trace an atrophy progression pathway from reference tissue through non-
IFTA, pre-IFTA and mature IFTA, and the progression of tubular changes from normal to acute/subacute, and 
then to pre-atrophic and finally atrophic tubules. For example, in reference tissue and non-IFTA regions, the area 
ratio between TE and TUBULE has the higher values, with a decreasing trend progressing toward pre-IFTA and 
then to mature IFTA. The higher feature value in reference tissue and non-IFTA regions indicates the presence 
of non-simplified TE and thin TBMs (reflected by low values for area and average and maximum thickness of 
TBMs), consistent with normal or near to normal morphological pattern. Conversely, in pre-IFTA regions, the 
lower area ratio between TE and TUBULE and the lower distance of nuclear centroid to lumen border represents 
a trend toward simplification of TE. Since TE simplification is generally observed in acute/subacute tubular injury, 
one could speculate that a similar process may also be part of the pathway to atrophy when simplification occurs 
in the presence of interstitial fibrosis. In mature IFTA, where tubules display significantly increasing of TBM 
thickness and area, the lowest area ratio between TE and TUBULE is observed (refer to Figure 2 and 3).   
Notably, nephrectomies used as reference tissue are generally selected based on normal clinical parameters 
but may still exhibit some degree of IFTA. To obtain a more precise baseline for tubular morphometry 
measurements, not only did we use nephrectomies from individuals with normal clinical profiles, but we also 
selected tissue portions that appeared normal or near to normal to the pathologist’s eye. 
 
In the broader kidney biomarker space, previous studies have shown the clinical relevance of image-based 
pathomic features extracted from peritubular capillary7 and glomeruli1.  Previous work also extracted features 
from tubules as a unit1,10,32, but they were mainly focused on more basic features such as tubular size or diameter. 
Our scope was much broader, encompassing the development of a suite of segmentation and quantification 
approaches for a greater number of renal tubular structures, including epithelium, lumen, basement membranes, 
nuclei, and the epithelium plus lumen profile. We also employed extensive quality control to each segmentation, 
which was visually reviewed and manually curated when needed, to assure the highest quality prior to feature 
extraction. By producing visually verifiable segmentation results and biologically interpretable features, such as 
the area ratio between TN and TBM, our approach has the potential to reduce the inherent issues of 
interpretability, uncertainty, and the unknown aspects typically associated with modern end-to-end DL 
biomarker29,30 discovery approaches, which are often deemed ‘black boxes’ due to their opaque nature. As such, 
we believe handcrafted approaches such as ours are more likely to have near-term clinical impact due to eased 
clinical adoption. 
.  
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This study did have some limitations worth noting. Currently, our segmentation pipeline is not fully automatic, as 
segmentation algorithms, both traditional and DL, often require tuning of hyperparameters (e.g., threshold for 
binary processing, and area threshold for morphological postprocessing) to yield optimal results. This may have 
potentially introduced latent batch-effects into the extracted features associated with image characteristics (e.g., 
brightness, contrast variance caused during the data collection process, e.g., staining). However, this concern 
is mitigated by the fact that segmentation results are visually verified and corrected by study pathologists, 
allowing for refining results with a pathologist-in-the-loop based on their expertise.  Second, there are several 
limitations in our statistical analysis methods. Some information may be lost when aggregating tubule-level 
features to patient-level features using summary statistics. We used hierarchical clustering that grouped highly 
correlated features together and only one representative feature was chosen in each cluster or group of features. 
However, even highly correlated features can sometimes have different biological mechanisms that may not be 
captured in our analysis. Third, our study did not demonstrate that the tubular features have the same added 
prognostic value of clinical outcome in CureGN participants, highlighting that, despite similarity in the diagnosis 
and some clinical and demographic characteristics, these two cohorts are not entirely directly comparable. Future 
studies aim to use different datasets and expand the CureGN dataset to better investigate this phenomenon. 
Future work also aims to study the integration of spatial transcriptomics to help elucidate the biological relevance 
of these pathomic features and the mechanisms responsible for the development of kidney scarring. 
 
In conclusion, quantitative, reproducible, computationally derived tubular features can enhance our ability to 
prognosticate clinical outcome beyond traditionally used parameters and can enable a more assertive 
stratification of patients for prognosis prediction.   
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Figure 1: Overview of the workflow: a. Study cohorts: Depicts the study sample selection process, where all the 
patients and whole slide images (WSIs) were passed through each of the sample selection processes following 
the patient-level and slide-level exclusion criteria resulting in the inclusion of 520 patients from 2 cohorts and 
520 WSIs in this study. b. Ground truth and algorithmic segmentations: (1) Reference tissue from the University 
of Michigan, (2) Cortical area was annotated and quality controlled (QCed) by study pathologists and (3) 
Utilization of both deep-learning (DL) and traditional image-processing algorithms to segment tubular primitives 
from the PAS WSIs. c. Quantitative feature extraction: Extraction of 99 tubule-level and 5 biopsy-level features 
from the segmentation results in b using image-processing algorithms. d. Statistical analysis: tubular level 
features were aggregated to patient-level features which, along with biopsy-level features, were being clustered 

into feature groups where feature groups were ranked by minimum redundancy - maximum relevance (MRMR) 

and top feature groups were selected by ridge regression, and predictive value was assessed on these top 
features and their associations with outcomes were examined both in NEPTUNE as training and internal 

validation and in CureGN as external validation. 
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Figure 2. Comparison of top 9 features values between reference tissue and cortical subregions. A. Periodic 
Acid-Schiff (PAS)-stained Whole Slide Images (WSIs) of reference tissue from nephrectomies without interstitial 
fibrosis and tubular atrophy (IFTA) (grey boundary), NEPTUNE non-IFTA (blue boundary), pre-IFTA (green 
boundary), and mature IFTA (red boundary) regions. B-J: Violin plots illustrating the top 9 normalized feature 
values in reference tissue (gray violin), non-IFTA (blue violin), pre-IFTA (green violin), and mature-IFTA (red 
violin) regions. B: The ratio between the area of the tubular epithelium and the entire tubule is comparable across 
reference tissue and non-IFTA regions, although several tubules in non-IFTA regions have low values, likely 
reflecting acute tubular injury (simplification of the tubular epithelium). Lower values are also present in tubules 
in pre-IFTA (reflecting simplification of the tubular epithelium), and mature IFTA regions (reflecting simplification 
of the tubular epithelium in the presence of thick tubular basement membranes). C-E: The average (C) and 
maximum thickness (D) and area (E) of the tubular basement membranes are slightly higher and more 
homogeneous in reference tissue compared to non-IFTA regions, likely reflecting an overall older age for 
reference tissue and the presence of acute tubular injury in non-IFTA regions and increases progressively in pre-
IFTA and mature IFTA. F-G: The area of tubular epithelium or tubular epithelium + lumen occupied by nuclei 
increases progressively from reference tissue and non-IFTA regions to pre- and mature- IFTA, indicating 
simplification of the tubular epithelium due to acute tubular injury, pre-atrophy, and full atrophy of tubules, 
respectively. H: The proportion between tubular basement membrane area and nuclear area per tubule are 
comparable between reference tissue and non-IFTA regions. As tubules become progressively pre- and fully 
atrophic the tubular basement membranes become thicker and the ratio between nuclear and tubular basement 
membranes' area lower. I: Overall, the distance between the center of the tubular nuclei and the border of the 
lumen is greater in reference tissue compared to the 3 cortical subregions. The comparable values between non-
IFTA, pre-IFTA, and mature IFTA regions reflects simplification of the tubular epithelium due to acute tubular 
injury, pre- and fully atrophic tubules, respectively. J: In mature IFTA, the inner boundary of the tubular basement 
membrane is more irregular compared to other cortical subregions and reference tissue. The 4 features (B, C, E 
and I) are the features which are still significant after adjustment for NEPTUNE. 
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Figure 3: Illustrations of tubular phenotypes for the top 9 predictive features with the segmentation results: 
tubular epithelium in red, tubular lumen in black, tubular basement membrane in green, and tubular nuclei in 
white. (top panel) The initial five features are displayed in a sequence from left to right, illustrating a progression 
from lower to higher values of the feature. (middle panel) For the next four features, the sequence is arranged 
from left to right, depicting a gradient from higher to lower expression of the (lower panel) Cartoon illustrating 
the spectrum the change from normal to atrophy. A blue scale bar, located in the bottom right corner of each 
tubule image, represents a length of 40 micrometers. 
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Figure 4 Feature comparison for NEPTUNE at different age intervals. For each violin plot, from left to right, it 
represents feature values in non-IFTA regions for patients with age 0~10, 0~18, 11~18 and greater than 18 
respectively. 
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Figure 5 NEPTUNE patient-level feature comparison. Left patient is one patient with disease progression while 
the right patient is the one without disease progression. The table below shows the raw feature values for the 4 
features which are still significant after adjustment between these 2 patients.  
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Table 1: Demographics, clinical characteristics, and tubular morphologic descriptor characteristics at the time of biopsy, and study outcomes of 
NEPTUNE and CureGN patients  

 NEPTUNE 
(n=254) 

CureGN 
(n=266) 

Age, years a 20 (11, 44) 26 (11, 50) 
Male 58% (148) 47% (125) 
Race a, &   

Black 28% (69) 26% (67) 
Other $ 18% (45) 12% (30) 
White 53% (130) 62% (156) 

Hispanic ethnicity a 24% (60) 14% (36) 
Disease diagnosis   

MCD and MCD-Like 47% (119) 42% (113) 
FSGS 53% (135) 58% (153) 

eGFR a, & 85.1 (57.6, 107.0) 88.5 (60.3, 112.7) 
UPCR a, * 3.0 (1.0, 7.9) 4.1 (1.6, 8.2) 
On immunosuppressive medication 
within 30 days before biopsy or 
at biopsy 

30% (77) 35% (92) 

Interstitial fibrosis (%) b, # 5.0 (0.0, 19.0) 5.0 (0.0, 25.0) 
Tubular atrophy (%) b, # 4.0 (0.0, 16.0) 5.0 (0.0, 15.0) 
Acute tubular injury b, #   

0:absent 27% (60) 45% (118) 
1:mild (1-25%) 52% (116) 40% (106) 
2:moderate (26-50%) 17% (38) 12% (32) 
3:severe (>50%) 5% (11) 3% (9) 

Inflammation (%) b, # 1.0 (0.0, 15.0) 0.0 (0.0, 15.0) 
Follow-up time, years 3.7 (2.1, 4.6) 4.9 (3.6, 6.3) 
Rate of disease progression (≥40% 
decline in eGFR with eGFR<90 or kidney 
failure) during study follow-up (# of events 
per 100 person-year) c 

6.3 5.5 

Rate of complete proteinuria remission 
(UPCR<0.3 mg/mg) during study follow-
up (# of events per 100 person-year) d 

41.5 35.4 

Data are shown as median (IQR), or %(n). 
a Missing 1% to 5% in NEPTUNE; b Missing for 11% in NEPTUNE;  
# Missing <1% in CureGN; & Missing 1% to 5% in CureGN; *Missing for 18% in CureGN;  
c Among n=250 in NEPTUNE and n=264 in CureGN; d Among n=218 in NEPTUNE and n=104 in CureGN  
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$ Other category includes multi-racial, American Indian /Alaskan Native/First Nation, Asian/Asian American, and Native Hawaiian/Other Pacific 
Island  

IQR: interquartile range; MCD, minimal change disease; FSGS, focal segmental glomerulosclerosis; eGFR, estimated glomerular filtration rate; 
UPCR, urine protein creatinine ratio 

 
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 21, 2024. ; https://doi.org/10.1101/2024.07.19.24310619doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.19.24310619
http://creativecommons.org/licenses/by-nd/4.0/


Table 2: Tubule-level and patient-level characteristics of selected top tubular features using NEPTUNE data. 
 

 

Selected 
for disease 
progression 

Selected 
for 

complete 
remission 

Tubule-level 
Median (IQR) 

Selected 
patient-level 

summary 
statistic 

Patient-level 
Median (IQR) 

Ratio between the area of the tubular epithelium 
and the area of the tubule 

X  0.78 (0.68, 0.85) Mean 0.75 (0.69, 0.79) 

Area of the tubular basement membranes X  
224.70 (155.41, 

348.16) 
Mean 

293.93 (252.62, 
351.89) 

Minimal distance between the center of the nuclei 
and the border of the tubular lumen 

X X 2.87 (2.23, 4.04) Mean 3.37 (2.99, 3.88) 

Average thickness of the tubular basement 
membranes 

 X 1.06 (1.03, 1.14) 
Standard 
Deviation 

0.39 (0.10, 1.00) 

Ratio between the area of the nuclei and the area 
of the tubular epithelium 

 X 0.16 (0.10, 0.27) Skewness 1.02 (0.81, 1.39) 

Ratio between the area of the nuclei and the area 
of the tubular epithelium + lumen 

 X 0.14 (0.09, 0.22) Skewness 1.21 (0.93, 1.63) 

Maximum thickness of the tubular basement 
membranes 

 X 1.37 (1.25, 1.50) Skewness 5.70 (3.00, 8.69) 

Smoothness of the outer border of the tubular 
epithelium (Ramer-Douglas-Peucker epsilon = 10) 

 X 0.94 (0.94, 0.95) Skewness -1.23 (-1.78, -0.65) 

Ratio between the area of the nuclei and the area 
of the tubular basement membrane 

 X 1.18 (0.77, 1.66) 
Standard 
Deviation 

0.62 (0.55, 0.71) 
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Table 3: Comparison of prediction accuracy (iAUC) of clinical outcomes between conventional measures and tubular pathomic features using 
NEPTUNE data. 
 

Variables included in models  Outcomes 

Demographics + 
Clinical 

characteristics 

% Tubular atrophy +  
% Acute tubular 

injury 

% Interstitial fibrosis +  
% Inflammation 

 
Disease Progression  
(n=215 participants) 

Proteinuria Remission 
 (n=189 participants) 

 

Without  
MRMR top 3 

tubular 
features 

With  
MRMR top 3 

tubular 
features  

Without  
MRMR top 7 

tubular 
features 

With  
MRMR top 7 

tubular 
features 

     0.749  0.724 

X    0.753 0.811 0.738 0.772 

X X   0.767 0.810 0.742 0.760 

X X X  0.760 0.805 0.750 0.762 
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Table 4: Associations between top tubular features and clinical outcomes in NEPTUNE from Cox proportional hazards models. Note that all top 
features reflected tubule-level features that were aggregated to the patient-level using summary statistics. Therefore the “mean,” “standard deviation,” 
or “skewness” prefixes in the feature name refers to the mean, standard deviation, or skewness across all tubules within a patient, respectively, 
whereas features with “minimum”, “maximum” or “average” in the middle of the feature name refers to the minimum or average of  multiple 
measurements taken within a tubule, respectively. Demographics and clinical characteristics included age, sex, black race, Hispanic ethnicity, FSGS 
vs. MCD, eGFR at biopsy, UPCR at biopsy, and immunosuppressant use at biopsy. Pathology scoring variables included tubular atrophy, acute 
tubular injury, mononuclear WBC, and interstitial fibrosis. 
 
a) Disease progression 

 
Unadjusted 

Adjusted for demographics 
and clinical characteristics 

Adjusted for demographics, 
clinical characteristics, and 

pathology scoring variables* 

 HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value 

Mean of ratios between the area of the tubular 
epithelium and the area of the tubule (per 0.1) 

0.37 (0.26, 0.54) <0.0001 0.27 (0.16, 0.46) <0.0001 0.34 (0.19, 0.61) 0.0003 

Mean of area of tubular basement membrane (per 100) 1.88 (1.51, 2.34) <0.0001 1.88 (1.41, 2.51) <0.0001 2.09 (1.46, 3.00) 0.0001 

Mean of minimal distance between the center of the 
nuclei and the border of the tubular lumen (per 1) 

0.33 (0.19, 0.57) 0.0001 0.29 (0.16, 0.55) 0.0001 0.32 (0.17, 0.63) 0.0009 

 
 
b) Complete remission 

 
Unadjusted 

Adjusted for demographics 
and clinical characteristics 

Adjusted for demographics, 
clinical characteristics, and 

pathology scoring variables* 

 HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value 

Standard deviation of average thickness of the tubular 
basement membranes (per 0.1) 

0.90 (0.87, 0.94) <0.0001 0.91 (0.87, 0.96) 0.0011 0.93 (0.87, 1.01) 0.0706 

Skewness of ratios between the area of the nuclei and 
the area of the tubular epithelium (per 10) 

0.26 (0.05, 1.36) 0.1118 0.70 (0.15, 3.30) 0.6482 0.76 (0.20, 2.85) 0.6822 

Skewness of ratios between the area of the nuclei and 
the area of the tubular epithelium + lumen (per 1) 

0.88 (0.75, 1.03) 0.1141 0.98 (0.86, 1.13) 0.8106 0.98 (0.87, 1.10) 0.7067 

Skewness of maximum thickness of the tubular 
basement membranes (per 1) 

1.09 (1.05, 1.13) <0.0001 1.04 (0.98, 1.09) 0.1930 1.02 (0.96, 1.08) 0.5773 
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Skewness of smoothness of the outer border of the 
tubular epithelium (Ramer-Douglas-Peucker epsilon = 
10) (per 1) 

1.39 (1.14, 1.71) 0.0013 1.16 (0.94, 1.43) 0.1666 1.14 (0.92, 1.42) 0.2219 

Standard deviation of ratio between the area of the 
nuclei and the area of the tubular basement membrane 
(per 0.1) 

0.78 (0.68, 0.90) 0.0006 0.89 (0.77, 1.02) 0.0970 0.99 (0.84, 1.16) 0.9037 

Mean of minimal distance between the center of the 
nuclei and the border of the tubular lumen (per 1) 

1.69 (1.31, 2.19) 0.0001 1.46 (1.10, 1.94) 0.0081 1.43 (1.05, 1.94) 0.0228 

  
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 21, 2024. ; https://doi.org/10.1101/2024.07.19.24310619doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.19.24310619
http://creativecommons.org/licenses/by-nd/4.0/


Table 5: Comparison of prediction accuracy (iAUC) of clinical outcomes between conventional measures and tubular pathomic features using 
CureGN data 
 

Variables included in models  Outcomes 

Demographics + 
Clinical 

characteristics 

% Tubular atrophy +  
% Acute tubular 

injury 

% Interstitial fibrosis +  
% Inflammation 

 
Disease Progression  
(n=197 participants) 

Proteinuria Remission 
 (n=87 participants) 

 

Without  
MRMR top 3 

tubular 
features 

With  
MRMR top 3 

tubular 
features  

Without  
MRMR top 7 

tubular 
features 

With  
MRMR top 7 

tubular 
features 

     0.674  0.763 

X    0.761 0.769 0.779 0.788 

X X   0.793 0.786 0.790 0.792 

X X X  0.786 0.780 0.778 0.787 
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Table 6: Associations between top tubular features and clinical outcomes in CureGN from Cox proportional hazards models. Note that all  top features 
reflected tubule-level features that were aggregated to the patient-level using summary statistics. Therefore the “mean,” “standard deviation,” or 
“skewness” prefixes in the feature name refers to the mean, standard deviation, or skewness across all tubules within a patient, respectively, whereas 
features with “minimum”, “maximum” or “average” in the middle of the feature name refers to the minimum or average of multiple measurements taken 
within a tubule, respectively. Demographics and clinical characteristics included age, sex, black race, Hispanic ethnicity, FSGS vs. MCD, eGFR at 
biopsy, UPCR at biopsy, and immunosuppressant use at biopsy. Pathology scoring variables included tubular atrophy, acute tubular injury, 
mononuclear WBC, and interstitial fibrosis.  
  

a) Disease progression 

 

Unadjusted 
Adjusted for 

demographics and 
clinical characteristics 

Adjusted for demographics, 
clinical characteristics, and 

pathology scoring 
variables* 

 HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value 

Mean of ratios between the area of the tubular epithelium 
and the area of the tubule (per 0.1) 

0.32 (0.23, 0.46) <0.0001 0.54 (0.33, 0.88) 0.0141 0.74 (0.38, 1.47) 0.3925 

Mean of area of the tubular basement membranes (per 100) 2.47 (1.89, 3.21) <0.0001 1.84 (1.28, 2.64) 0.0010 1.43 (0.94, 2.18) 0.0928 

Mean of minimal distance between the center of the nuclei 
and the border of the tubular lumen (per 1) 

0.90 (0.64, 1.28) 0.5591 1.04 (0.70, 1.56) 0.8487 1.11 (0.68, 1.79) 0.6797 

 
 

b) Complete remission 

 

Unadjusted 
Adjusted for 

demographics and clinical 
characteristics 

Adjusted for 
demographics, clinical 

characteristics, and 
pathology scoring 

variables* 

 HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value 

Standard deviation of average thickness of the tubular 
basement membranes (per 0.1) 

0.85 (0.79, 0.92) <0.0001 0.84 (0.74, 0.95) 0.0045 0.86 (0.74, 1.00) 0.0435 

Skewness of ratios between the area of the nuclei and the 
area of the tubular epithelium (per 10) 

0.41 (0.14, 1.24) 0.1163 0.73 (0.27, 2.03) 0.5525 0.58 (0.20, 1.63) 0.3005 

Skewness of ratios between the area of the nuclei and the 
area of the tubular epithelium + lumen (per 1) 

0.93 (0.84, 1.02) 0.1406 0.97 (0.89, 1.06) 0.5643 0.96 (0.88, 1.05) 0.3586 
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Skewness of maximum thickness of the tubular basement 
membranes (per 10) 

1.69 (1.08, 2.63) 0.0205 0.55 (0.25, 1.21) 0.1401 0.54 (0.23, 1.25) 0.1490 

Skewness of smoothness of the outer border of the tubular 
epithelium (Ramer-Douglas-Peucker epsilon = 10) (per 1) 

1.42 (1.15, 1.76) 0.0010 1.01 (0.71, 1.45) 0.9361 0.91 (0.64, 1.30) 0.6082 

Standard deviation of ratio between the area of the nuclei 
and the area of the tubular basement membrane (per 0.1) 

0.77 (0.59, 1.00) 0.0463 1.00 (0.73, 1.37) 0.9867 1.19 (0.84, 1.68) 0.3344 

Mean of minimal distance between the center of the nuclei 
and the border of the tubular lumen (per 1) 

1.23 (0.90, 1.69) 0.1904 0.69 (0.41, 1.16) 0.1583 0.67 (0.39, 1.16) 0.1503 
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