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Abstract	22 

Fine-mapping	 refines	 genotype-phenotype	 association	 signals	 to	 identify	 causal	 variants	23 

underlying	 complex	 traits.	 However,	 current	 methods	 typically	 focus	 on	 individual	 genomic	24 

segments	 without	 considering	 the	 global	 genetic	 architecture.	 Here,	 we	 demonstrate	 the	25 

advantages	of	performing	genome-wide	fine-mapping	(GWFM)	and	develop	methods	to	facilitate	26 

GWFM.	 In	 simulations	 and	 real	 data	 analyses,	 GWFM	 outperforms	 current	 methods	 in	 error	27 

control,	mapping	power	and	precision,	replication	rate,	and	trans-ancestry	phenotype	prediction.	28 

For	48	well-powered	traits	in	the	UK	Biobank,	we	identify	causal	variants	that	collectively	explain	29 

17%	of	the	SNP-based	heritability,	and	predict	that	fine-mapping	50%	of	that	would	require	2	30 

million	samples	on	average.	We	pinpoint	a	known	causal	variant,	as	proof-of-principle,	at	FTO	for	31 

body	mass	index,	unveil	a	hidden	secondary	variant	with	evolutionary	conservation,	and	identify	32 

new	missense	 causal	 variants	 for	 schizophrenia	 and	Crohn’s	disease.	Overall,	we	analyse	600	33 

complex	 traits	 with	 13	 million	 SNPs,	 highlighting	 the	 efficacy	 of	 GWFM	 with	 functional	34 

annotations.	 	35 
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Introduction	36 

Genome-wide	association	studies	(GWAS)	have	successfully	identified	numerous	genetic	variants	37 

associated	with	complex	 traits1-3.	However,	 the	underlying	casual	variants	 for	 these	 traits	are	38 

largely	unknown.	 In	 a	 standard	GWAS,	 the	 trait-variant	 associations	 are	 tested	one	at	 a	 time,	39 

leading	to	the	discovery	of	clusters	of	mutually	correlated	marginal-association	signals	due	to	40 

linkage	disequilibrium	(LD)	between	SNPs4.	While	post-GWAS	methods	such	as	LD	clumping5	or	41 

COJO6	are	used	to	identify	independently	significant	association	signals,	SNPs	prioritised	by	these	42 

methods	are	not	necessarily	the	causal	variants7,8.		43 

	44 

Statistical	 fine-mapping,	 often	 employing	 a	 Bayesian	 mixture	 model	 (BMM),	 offers	 a	 direct	45 

approach	to	narrow	down	the	likely	causal	variants9.	In	contrast	to	GWAS,	which	test	marginal	46 

effects,	 fine-mapping	 aims	 to	 detect	 joint-association	 signals	 for	 causal	 inference,	 where	 the	47 

strength	of	joint	association	is	assessed	using	the	posterior	inclusion	probability	(PIP).	PIP	is	the	48 

probability	of	a	SNP	being	included	with	a	nonzero	effect	in	the	model,	which,	in	theory,	controls	49 

false	discovery	rate	(FDR)10.	Due	to	the	computational	burden	and	complexity	of	test	hypotheses,	50 

current	 fine-mapping	 methods	 focus	 on	 genome-wide	 significant	 loci	 only	 or	 consider	 one	51 

genomic	region	at	a	time	(e.g.,	a	LD	block),	in	isolation	from	the	rest	of	the	genome11-14.	Methods	52 

differ	mainly	 in	 the	 algorithm	used	 to	derive	PIP.	 For	 example,	 FINEMAP12	 utilizes	 a	 shotgun	53 

stochastic	search	algorithm	to	explore	possible	causal	configurations,	and	computes	the	PIP	by	54 

averaging	over	those	with	non-negligible	probabilities.	SuSiE11	and	SuSiE-RSS14	assume	a	sparse	55 

effect	model	and	employ	an	iterative	Bayesian	stepwise	selection	approach	to	estimate	the	overall	56 

effect	of	each	SNP	by	summing	up	multiple	singe-effect	vectors.	SuSiE-Inf13	and	FINEMAP-Inf13	57 

further	extend	the	two	models	to	include	an	infinitesimal	component	for	improved	modelling	of	58 

polygenic	architecture	within	a	locus.		59 

	60 

Despite	being	widely	used,	region-specific	analysis	has	limitations.	First,	the	prior	specification	61 

of	genetic	architecture	is	crucial,	but	is	often	conservatively	predetermined	in	these	analysis11,12,15	62 

(e.g.,	prior	probability	of	association	set	to	one	over	the	number	of	SNPs	in	the	region),	which	can	63 

result	in	reduced	power.	Second,	fine-mapping	can	benefit	from	incorporating	functional	genomic	64 

annotations16-18,	but	region-specific	methods	require	step-wise	procedures	so	 that	GWAS	data	65 

and	 functional	 annotations	 are	 not	 modelled	 jointly19.	 Third,	 none	 of	 the	 current	 methods	66 

estimates	the	power	of	identifying	the	causal	variants	for	a	trait,	which	is	critical	to	inform	the	67 
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experimental	design	of	a	prospective	study	(such	a	power	analysis	is	available	in	GWAS20	but	not	68 

in	fine-mapping).	69 

	70 

These	limitations	of	current	fine-mapping	methods	can	be	addressed	through	conducting	a	fine-71 

mapping	analysis	using	a	genome-wide	Bayesian	mixture	model	(GBMM).	GBMMs,	which	have	72 

been	widely	used	 for	predicting	breeding	 values	 in	 agricultural	 species21-23	 and	 complex	 trait	73 

phenotypes	 in	 humans24-27,	 have	 recently	 emerged	 as	 a	 method	 of	 GWFM28,29.	 Compared	 to	74 

conventional	 GWAS	 and	 region-specific	 fine-mapping	 approaches,	 GBMMs	 consider	 genome-75 

wide	 SNPs	 simultaneously,	 which	 are	 all	 utilised	 to	 estimate	 the	 genetic	 architecture	 and	76 

functional	prior27,28.	For	example,	SNPs	with	the	same	class	of	functional	annotation	are	present	77 

across	the	genome.	By	considering	all	SNPs	jointly,	the	importance	of	a	functional	annotation	in	a	78 

local	genomic	region	can	be	prioritised	based	on	the	evidence	for	association	as	a	class	across	the	79 

genome.	 In	 GBMMs,	Markov	 chain	Monte	 Carlo	 (MCMC)	 sampling	 is	 often	 used	 for	 posterior	80 

inference,	 which	 is	 asymptotically	 exact	 and	 superior	 to	 the	 variational	 inference	 regarding	81 

accuracy30,	 but	 computationally	 challenging	 when	 analysing	 high-density	 SNPs.	 Fortunately,	82 

recent	 advances	 in	methodology,	 such	 as	 SBayesRC27,	 have	 allowed	 fitting	 all	 common	 SNPs	83 

efficiently	 in	 a	MCMC-based	 GBMM.	Moreover,	 GBMMs	 estimate	 the	 polygenicity	 and	 variant	84 

effect	size	distribution22,24,26,27,31,32,	providing	an	opportunity	to	predict	the	power	of	prospective	85 

studies	 with	 larger	 sample	 sizes.	 However,	 relevant	 theory	 and	 methods	 have	 not	 yet	 been	86 

developed.		87 

	88 

In	this	study,	we	comprehensively	assess	the	performance	of	GWFM	analysis	using	a	GBMM	(Fig.	89 

1).	 In	 comparison	 to	 state-of-the-art	 methods,	 we	 evaluate	 the	 calibration	 of	 PIP	 through	90 

simulations	with	 various	 genetic	 architecture	 settings.	We	 then	 compare	 the	 performance	 of	91 

identifying	causal	variants,	with	respect	to	mapping	precision,	credible	set	size,	replication	rate	92 

of	discovery	in	an	independent	sample,	and	out-of-sample	prediction	using	fine-mapped	variants.	93 

Moreover,	we	develop	a	LD-based	method	to	construct	local	credible	sets	(LCSs),	where	a	a-LCS	94 

represents	 a	 minimal	 set	 of	 SNPs	 in	 high	 LD	 that	 capture	 a	 causal	 variant	 with	 a	 posterior	95 

probability	of	a,	 and	estimate	 the	proportion	of	 SNP-based	heritability	 explained	by	LCSs.	To	96 

characterise	the	overall	fine-mapping	power	in	the	current	study,	we	propose	a	concept	of	global	97 

credible	sets	(GCSs),	with	a	a-GCS	representing	a	minimal	set	of	genome-wide	SNPs	that	capture	98 

a%	of	all	causal	variants	for	the	trait.	Furthermore,	leveraging	the	genetic	architecture	estimated	99 

from	 SBayesRC,	 we	 develop	 a	 method	 to	 predict	 the	 power	 of	 fine-mapping	 and	 variance	100 

explained	by	the	identified	variants	in	prospective	studies.	With	this	method,	we	can	estimate	the	101 

minimal	 sample	 size	 required	 for	 identifying	a	desired	proportion	of	 causal	 variants	or	 those	102 

variants	explaining	a	desired	proportion	of	the	SNP-based	heritability	(ℎ!"#$ ).	Finally,	we	apply	103 
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SBayesRC	to	the	UK	Biobank	(UKB)	data	with	13	million	SNPs	to	identify	putative	causal	variants	104 

for	600	complex	traits	and	diseases	and	compare	the	fine-mapping	results	using	48	well-powered	105 

traits	from	6	categories.	106 

	107 

Results	108 

Method	overview	109 

We	selected	SBayesRC	as	the	GBMM	for	GWFM	(Fig.	1),	as	it	has	been	shown	to	outperform	other	110 

GBMMs	in	polygenic	prediction27.	SBayesRC	 is	a	hierarchical	multi-component	mixture	model,	111 

where	 LD	 between	 SNPs	 is	 better	 modelled	 by	 matrix	 factorisation	 and	 functional	 genomic	112 

annotations	are	fitted	jointly	with	the	summary	statistics	in	a	unified	computational	framework	113 

(Methods).	 To	 optimize	 its	 performance	 for	 fine-mapping,	 we	 implemented	 an	 algorithm	 to	114 

automatically	determine	the	number	of	mixture	components	in	the	model	(Methods).	In	contrast	115 

to	 the	 existing	 fine-mapping	 methods,	 we	 fit	 all	 SNPs	 simultaneously	 and	 employed	 MCMC	116 

sampling	 to	 obtain	 the	 joint	 posterior	 distribution	 of	 model	 parameters	 and	 PIPs	117 

(Supplementary	Table	1).	In	each	MCMC	iteration,	we	sampled	a	dummy	variable	for	each	SNP	118 

to	indicate	whether	the	SNP	had	a	nonzero	effect,	conditional	on	the	effects	of	other	SNPs.	After	119 

MCMC	sampling,	PIP	was	calculated	as	the	 frequency	with	which	the	SNP	had	nonzero	effects	120 

across	the	iterations	(Methods).			121 

	122 

A	high	PIP	value	provides	evidence	of	a	causal	variant.	However,	a	causal	variant	may	not	have	a	123 

high	PIP	value	if	it	is	in	strong	LD	with	other	SNPs.	For	example,	if	the	causal	variant	is	in	perfect	124 

LD	with	another	SNP,	then	the	PIP	is	expected	to	be	0.5	for	each	variant,	regardless	of	the	sample	125 

size.	Therefore,	the	CS	concept	has	been	introduced	to	capture	causal	variants	in	strong	LD	with	126 

non-causal	SNPs9,33.	It	is	common	to	consider	CS	for	SNPs	that	are	close	in	physical	distance,	such	127 

as	within	a	100kb	window34,35.	However,	we	reason	that	this	approach	will	miss	causal	variants	128 

with	SNPs	in	long-range	LD,	and	therefore	proposed	a	new	method	to	construct	LCS	based	on	LD	129 

between	SNPs	(Methods).	Starting	from	the	SNP	with	the	largest	PIP,	we	aimed	to	construct	a	𝛼-130 

LCS	for	each	“free”	SNP	(SNP	that	has	not	been	included	in	any	LCSs),	by	first	selecting	other	“free”	131 

SNPs	in	high	LD	(r2	>	0.5)	and	then	summing	over	their	PIPs	in	a	decreasing	order	until	the	sum	132 

is	at	least	𝛼	(a	common	strategy	used	in	the	literature11,12).	To	avoid	having	too	many	SNPs	with	133 

small	PIPs	in	the	LCS,	we	calculated	the	posterior	ℎ!"#$ 	enrichment	probability	(PEP),	where	PEP	134 

is	the	probability	that	the	focal	LCS	explains	more	ℎ!"#$ 	than	a	random	set	of	SNPs	with	the	same	135 

size.	The	𝛼-LCS	was	eventually	reported	if	its	PEP	was	greater	than	0.7.		136 

	137 

In	addition	to	LCS,	we	proposed	another	type	of	CS,	GCS.	Given	the	estimated	number	of	causal	138 

variants	from	GBMM	(𝑚%),	a	a-GCS	was	computed	as	the	cumulative	sum	of	decreasingly	ranked	139 
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PIPs	that	is	greater	than	𝛼 ×𝑚% .	It	can	be	shown	that	a	𝛼-GCS	is	expected	to	cover	𝛼%	of	all	causal	140 

variants	for	the	trait	(Methods),	with	the	size	of	𝛼-GCS	reflecting	the	power	of	 identifying	the	141 

causal	variants	given	the	data	(the	higher	the	power,	the	smaller	the	𝛼-GCS	size).	Moreover,	from	142 

the	MCMC	samples	of	SNP	effects,	we	estimated	the	proportion	of		ℎ!"#$ 	explained	by	the	LCSs	and	143 

GCS	(Methods).		144 

	145 

Based	on	𝑚% 	and	the	distribution	of	causal	effect	sizes	estimated	from	GBMM,	we	developed	a	146 

method	to	predict	the	power	and	the	proportion	of		ℎ!"#$ 	explained	by	the	fine-mapped	variants,	147 

given	a	sample	size	(Methods	and	Supplementary	Note).	This	method	allows	us	to	estimate	the	148 

minimal	 sample	 size	 required	 to	 achieve	a	desired	power	of	 identifying	all	 causal	 variants	or	149 

identifying	 the	causal	variants	 that	explain	a	desired	proportion	of	ℎ!"#$ 	of	 the	 trait,	using	 the	150 

ancestry-specific	fine-mapping	result.	Our	method	to	predict	fine-mapping	power	is	analytically	151 

tractable	 and	 has	 been	 implemented	 in	 a	 publicly	 available	 online	 tool	152 

(https://sbayes.pctgplots.cloud.edu.au/shiny/power/).	153 

	154 

We	compared	SBayesRC	to	several	state-of-the-art	fine-mapping	methods,	including	FINEMAP12,	155 

SuSiE11,	FINEMAP-inf13,	SuSiE-inf7,	and	PolyFun+SuSiE19,	as	well	as	another	GBMM,	SBayesC	(i.e.,	156 

two-component	SBayesR24).	All	these	methods	assume	a	point-normal	mixture	prior	for	the	SNP	157 

effects	(Methods	and	Supplementary	Table	1).	A	full	list	of	acronyms	used	in	this	study	can	be	158 

found	in	Supplementary	Table	2.		159 

	160 

Calibration	of	fine-mapping	methods	under	various	genetic	architectures	161 

We	performed	extensive	genome-wide	simulations	to	calibrate	different	fine-mapping	methods	162 

under	various	genetic	architectures,	using	100,000	individuals	with	~1	million	HapMap3	SNPs	163 

from	the	UKB36.	We	started	by	simulating	a	sparse	genetic	architecture,	where	1%	SNPs	were	164 

randomly	 chosen	 as	 causal	 variants,	 with	 their	 effects	 sampled	 from	 a	 normal	 distribution,	165 

contributing	50%	of	 the	phenotypic	variance.	 In	 this	 simulation,	 the	data-generative	model	 is	166 

consistent	 with	 the	 model	 used	 in	 SBayesC	 as	 well	 as	 the	 local	 fine-mapping	 methods	 in	167 

comparison.	 To	 challenge	 these	 methods,	 we	 simulated	 additional	 two	 complex	 genetic	168 

architectures	(Methods).	One	was	a	large-effects	architecture,	where	10	random	causal	variants	169 

contributed	10%	of	the	phenotypic	variance	and	the	remaining	causal	variants	contributed	40%.	170 

Another	 complex	 genetic	 architecture	 was	 based	 on	 the	 sparse	 architecture	 but	 allowed	 for	171 

extensive	LD	between	causal	variants	and	SNP	markers.	This	was	achieved	by	sampling	the	causal	172 

variants	 only	 from	 SNPs	 in	 the	 high	 LD	 and	 high	 minor	 allele	 frequency	 (MAF)	 group,	 and	173 

therefore	 referred	 to	 as	 LD-and-MAF-stratified	 (LDMS)	 architecture.	 To	 calibrate	 each	 fine-174 
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mapping	method,	we	evaluated	how	well	the	reported	PIPs	are	consistent	with	the	actual	fraction	175 

of	causal	variants,	i.e.,	the	true	discovery	rate	(TDR).		176 

	177 

Results	showed	that	overall,	the	GWFM	methods	had	the	best	calibration,	the	enhanced	region-178 

specific	methods	with	an	infinitesimal	effect	(i.e.,	FINEMAP-inf	and	SuSiE-inf)	the	second,	and	the	179 

standard	region-specific	methods	(i.e.,	FINEMAP	and	SuSiE)	the	worst	(Fig.	2).	Under	the	sparse	180 

genetic	 architecture,	 PIPs	 from	SBayesRC/SBayesC	were	 in	 strong	 concordance	with	 the	TDR	181 

across	 its	 full	 spectrum	 (Fig.	 2a).	 The	 concordance	 was	 reasonably	 good	 for	 SuSiE-inf	 and	182 

FINEMAP-inf,	although	with	a	 trend	of	deflation	 in	SNPs	with	 low	PIP,	whereas	 for	SuSiE	and	183 

FINEMAP,	 even	 in	 SNPs	with	high	PIPs,	 a	notable	 inflation	was	observed,	 indicating	 a	 lack	of	184 

control	of	FDR	(=1-TDR)	(Fig.	2b-c).	When	the	large-effects	or	LDMS	architecture	was	used,	the	185 

assumption	in	the	point-normal	BMM	was	violated	in	a	way	that	the	causal	effects	did	not	come	186 

from	 a	 single	 normal	 distribution	 or	 that	 the	 causal	 variants	were	 not	 randomly	 distributed	187 

across	the	genome.	Consequently,	PIPs	from	the	point-normal	BMM	were	no	longer	accurately	188 

tracking	the	true	probabilities	of	causality.	When	the	LDMS	architecture	was	used,	the	FDR	was	189 

even	more	poorly	controlled	in	these	methods	(Fig.	2d-i).	However,	when	SBayesRC	was	used,	190 

with	 LD	 and	MAF	bins	 as	 annotations,	 the	 strong	 concordance	 between	PIP	 and	TDR	held	 in	191 

various	 architectures,	 although	none	of	 these	 architectures	matched	exactly	with	 the	 analytic	192 

model	assumed	in	SBayesRC.		193 

	194 

In	conclusion,	the	region-specific	fine-mapping	methods	tended	to	have	inflated	FDR	when	the	195 

model	assumptions	were	not	met.	 In	contrast,	SBayesRC	produced	robust	PIPs	that	were	well	196 

calibrated	under	various	genetic	architectures.		197 

	198 

Local	and	global	credible	sets	199 

In	 addition	 to	 individual	 SNP	 PIP,	 CS	 is	 another	 critical	 statistic	 in	 fine-mapping.	 Here,	 we	200 

assessed	 the	 performance	 of	 SBayesRC	 in	 identifying	 LCS	 and	 GCS.	 For	 each	 LD	 block,	 we	201 

computed	an	𝛼-LCS	that	contains	at	least	a	causal	variant	with	a	probability	of	𝛼	and	is	enriched	202 

in	ℎ!"#$ 	(PEP	>	0.7).	We	first	evaluated	the	true	discovery	rate	for	identifying	LCS,	defined	as	the	203 

actual	fraction	of	the	LCS	with	at	 least	a	causal	variant.	The	simulation	result	showed	that	the	204 

SBayesRC	has	a	similar	TDR	to	SuSiE-inf,	which	had	the	best	PIP	calibration	among	the	region-205 

specific	fine-mapping	methods	(Fig.	S1a-c).	However,	SBayesRC	was	significantly	more	powerful	206 

(Fig.	3a-c)	and	had	a	remarkably	smaller	LCS	size	than	SuSiE-inf	at	the	same	𝛼	threshold	(Fig.	207 
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3d-f).	For	instance,	when	𝛼=0.9,	SBayesRC	outperformed	SuSiE-inf	by	up	to	221%	improvement	208 

in	power	and	41%	reduction	in	LCS	size	across	the	three	genetic	architectures.			209 

	210 

The	a-GCS	is	expected	to	cover	a	proportion	of	the	causal	variants	across	the	genome	(Methods).	211 

Under	various	simulation	scenarios,	our	GCS	accurately	represented	the	true	proportion	of	causal	212 

variants	(Fig.	S2a-c),	in	contrast	to	the	significant	deflation	observed	with	SBayesC	(Fig.	S2a-c).	213 

Furthermore,	we	observe	a	good	agreement	between	estimated	and	observed	power	at	any	given	214 

PIP	threshold	from	SBayesRC	(Fig.	S2d-f).	Additionally,	SBayesRC	gave	an	unbiased	estimate	for	215 

the	proportion	of	ℎ!"#$ 	explained	by	the	GCS	SNPs,	regardless	of	the	given	a	value,	under	various	216 

scenarios	(Fig.	S2g-i).		217 

	218 

Improved	mapping	precision	for	identifying	causal	variants	219 

Our	 simulation	 results	 have	 shown	 that	 SBayesRC	 had	 the	 best	 calibration	 even	 under	 the	220 

architecture	that	matched	with	the	assumed	model	for	the	region-specific	fine-mapping	methods.	221 

We	next	quantified	the	mapping	precision	of	these	methods.	The	mapping	precision	was	defined	222 

as	the	distance	of	the	identified	variant	that	passed	a	given	PIP	threshold	to	the	nearest	causal	223 

variant.	Hence,	the	smaller	the	distance,	 the	higher	the	mapping	precision,	e.g.,	 the	distance	is	224 

zero	 if	 the	 causal	 variant	 itself	 is	 identified.	 Results	 from	 the	 sparse	 architecture	 simulation	225 

showed	that	97.8%	of	SBayesRC	identified	SNPs	with	PIP	>	0.9	were	the	causal	variants,	and	99%	226 

significant	SNPs	were	located	within	16.4kb	distance	to	the	causal	variants	(Fig.	4a).	With	the	227 

same	PIP	threshold,	95.5%	and	94.3%	of	SuSiE-inf	and	FINEMAP-inf	 identified	SNPs	were	the	228 

causal	variants,	slightly	higher	than	that	of	95.3%	and	94.0%	from	SuSiE	and	FINEMAP,	with	99%	229 

significant	 SNPs	 located	 within	 25.8kb	 (SuSiE-inf)	 and	 31.3kb	 (FINEMAP-inf)	 to	 the	 causal	230 

variants,	 compared	 to	 that	 of	 32.7kb	 and	 36.7kb	 for	 SuSiE	 and	 FINEMAP,	 respectively.	 In	231 

conclusion,	given	a	PIP	threshold	of	0.9,	SBayesRC	led	to	an	at	least	2%	increase	in	TDR	and	a	64%	232 

(16.4kb/25.8kb)	 reduction	 in	 the	 distance	 to	 the	 causal	 variants,	 both	 indicating	 improved	233 

mapping	 precision	 compared	 to	 the	 existing	methods.	We	 also	 ran	 a	 LD	 block-wise	 SBayesC	234 

analysis,	with	model	parameters	estimated	from	each	region	separately.	Our	result	showed	that	235 

the	mapping	precision	remained	notable	higher	than	the	competing	region-specific	fine-mapping	236 

methods	(Fig.	S3).		237 

	238 

In	the	simulation	with	large-effects	architecture,	the	mapping	precision	for	all	methods	decreased	239 

due	to	 the	decrease	of	average	per-SNP	heritability	(from	0.5/10,000	to	0.4/9,990).	However,	240 

SBayesRC	 still	 had	 the	highest	 precision	 among	 all	methods	 (Fig.	4b).	 In	 the	 simulation	with	241 

LDMS	architecture,	SBayesRC	demonstrated	a	substantially	higher	mapping	precision	than	the	242 

other	methods	(Fig.	4c),	likely	because	SBayesRC	allowed	the	model	to	weigh	SNPs	differentially	243 
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based	 on	 their	 LD	 and	 MAF	 property	 so	 that	 the	 causal	 variants	 were	 better	 identified.	244 

Furthermore,	 we	 compared	 SBayesRC	 to	 Polyfun+SuSiE19,	 which	 is	 a	 stepwise	 method	 that	245 

accounts	for	the	effect	size	stratification	(by	LD	and	MAF	annotations)	through	a	prior	estimated	246 

from	stratified	LD	score	regression	(S-LDSC)37,38.	Indeed,	Polyfun+SuSiE	improved	the	mapping	247 

precision	 compared	 to	 the	 region-specific	 methods,	 but	 was	 still	 significantly	 inferior	 to	248 

SBayesRC	(Fig.	4c).	These	simulation	results	suggested	that	SBayesRC	is	a	reliable	method	for	249 

GWFM	and	can	substantially	improve	the	mapping	precision	of	identifying	causal	variants.	250 

	251 

Improved	replication	rate	of	identification	with	less	bias	in	estimation	252 

In	 real	 data	 analysis,	 direct	 evaluation	 of	 mapping	 precision	 is	 not	 feasible,	 because	 which	253 

variants	 have	 causal	 effects	 on	 a	 trait	 are	 often	 unknown.	 Alternatively,	we	 can	 evaluate	 the	254 

replication	 rate	of	 the	 identified	variants	using	an	 independent	 sample13.	Here,	we	define	 the	255 

replication	rate	as	the	proportion	of	variants	with	a	significant	PIP	(e.g.,	PIP	>	0.9)	from	the	GWAS	256 

sample	 to	be	repeatedly	 identified	 in	an	 independent	(replication)	sample	with	 the	same	or	a	257 

smaller	PIP	threshold.	It	is	expected	that	the	method	that	identifies	most	causal	variants	from	the	258 

GWAS	 sample	will	 have	 the	 highest	 replication	 rate,	 as	 the	 false	 positives	 are	 unlikely	 to	 be	259 

replicated.		260 

	261 

We	performed	simulations	using	the	UKB	samples	of	European	ancestry	and	split	samples	into	262 

independent	datasets	for	discovery	and	replication.	Putative	causal	variants	were	identified	at	263 

the	PIP	threshold	of	0.9	in	the	GWAS	data	(n=100,000).	We	then	quantified	the	replication	rate	of	264 

the	 putative	 causal	 variants	 at	 different	 significance	 thresholds	 in	 two	 replication	 datasets	265 

(n=100,000	and	200,000).	Using	SBayesRC,	roughly	33%	of	identified	SNPs	can	be	replicated	at	266 

PIP	>	 0.9	when	 replication	n	 =	 100,000,	 and	 the	 replication	 rate	 increased	 to	 71%	when	 the	267 

replication	sample	size	was	doubled	(Fig.	4d).	It	may	seem	counter-intuitive	that	only	a	fraction	268 

of	SNPs	was	replicated	despite	using	 the	same	PIP	 threshold	of	0.9	 in	both	 the	discovery	and	269 

replication	datasets.	This	discrepancy	is	because	there	exists	a	sampling	variation	in	the	causal	270 

variants	identified	from	distinct	samples.	As	expected,	the	replication	rate	increased	when	using	271 

a	 lower	 threshold	 for	 replication,	 e.g.,	 with	 PIP	 >	 0.1,	 79.6%	 of	 the	 identified	 SNPs	 can	 be	272 

replicated	when	 replication	n=100,000.	Compared	 to	other	methods,	 SBayesRC	demonstrated	273 

significantly	higher	replication	rate	at	each	of	the	PIP	thresholds,	while	differences	among	the	274 

other	four	methods	were	small.	We	also	quantified	the	replication	rate	in	the	reverse	case	where	275 

the	GWAS	sample	size	was	200,000	but	the	replication	sample	size	was	only	100,000,	to	mimic	276 

the	reality	that	the	sample	size	of	replication	data	is	often	much	smaller	than	that	of	discovery.	In	277 

this	 scenario,	we	 found	 that	 19%	 of	 the	 identified	 SNPs	 can	 be	 replicated	 at	 PIP	 >	 0.9	 using	278 
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SBayesRC,	and	the	replication	rate	of	SBayesRC	remains	significantly	higher	than	that	of	other	279 

methods	at	each	PIP	threshold	(Fig.	S4a).		280 

	281 

We	then	assessed	the	replication	rate	in	the	UKB	height	by	constructing	different	discovery	and	282 

replication	datasets	as	in	the	simulation.	The	results	were	consistent	with	the	observations	from	283 

the	simulation	study	(Fig.	4e	and	Fig.	S4b).	Compared	to	the	region-specific	methods,	SBayesRC	284 

improved	 the	 replication	 rate	 by	 11.3%	 (compared	 to	 FINEMAP)	 and	 by	 1.2%	 (compared	 to	285 

SuSiE-inf)	at	PIP	>	0.9	when	replication	n=100,000,	and	improved	the	replication	rate	by	19%	286 

(compared	to	FINEMAP)	and	by	3.5%	(compared	to	SuSiE-inf)	when	replication	sample	size	was	287 

doubled.		288 

	289 

Moreover,	we	examined	the	bias	in	effect	size	estimates	of	putative	causal	variants	identified	from	290 

fine-mapping,	 through	 regressing	 their	 marginal	 effect	 sizes	 estimated	 from	 the	 replication	291 

samples	 on	 the	 joint	 effect	 sizes	 estimated	 from	 the	 GWAS	 sample	 (the	 regression	 slope	 is	292 

expected	to	be	one	for	an	unbiased	estimation).	In	the	simulation	and	UKB	height	analyses,	the	293 

regression	 slope	 from	 SBayesRC	was	 0.978	 and	 0.974,	 respectively,	 superior	 to	 all	 the	 other	294 

methods	 (Fig.	 4f-g),	 likely	 due	 to	 the	 genetic	 architecture	 was	 estimated	 simultaneously	 in	295 

SBayesRC	but	was	preset	or	estimated	locally	in	other	fine-mapping	methods.			296 

	297 

These	analyses	suggested	that	the	identified	SNPs	from	SBayesRC	are	more	likely	to	be	causal	298 

because	of	the	relatively	high	replication	rate	in	independent	samples	and	the	negligible	bias	in	299 

effect	size	estimation,	compared	to	the	other	methods.		300 

	301 

Improved	prediction	accuracy	using	fine-mapped	variants	302 

Another	 approach	 to	 evaluate	 the	 results	 of	 fine-mapping	 is	 to	 conduct	 an	 out-of-sample	303 

prediction	 using	 the	 fine-mapped	 variants.	 Since	 all	 the	Bayesian	methods	used	 in	 this	 study	304 

provide	 the	posterior	mean	of	SNP	effects,	we	computed	polygenic	scores	(PGS)	based	on	the	305 

identified	variants	from	each	of	the	methods	and	evaluated	the	prediction	accuracy	in	a	validation	306 

sample.	 We	 split	 the	 100K	 samples	 into	 95K	 training	 samples	 to	 perform	 the	 fine-mapping	307 

analysis	 using	 all	 these	 Bayesian	 methods	 and	 predicted	 the	 phenotype	 for	 5K	 independent	308 

individuals	 as	 validation	 samples.	 We	 found	 that	 overall,	 SBayesRC	 had	 a	 higher	 prediction	309 

accuracy	 compared	 to	 the	 other	 methods,	 outperforming	 them	 by	 at	 least	 ~17%	 at	 a	 PIP	310 

threshold	of	0.9,	with	a	relatively	smaller	number	of	SNPs	included	in	the	predictor	(Fig.	5a).		This	311 

is	consistent	with	the	result	that	SBayesRC	resulted	in	a	lower	FDR	than	the	other	methods	(Fig.	312 

2a).	313 

	314 
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We	 further	 compared	 the	 performance	 of	 these	methods	 by	 trans-ancestry	 prediction	 in	 real	315 

traits.	 Specifically,	 we	 used	 the	 fine-mapped	 variants	 and	 estimated	 posterior	 effect	 sizes	316 

obtained	from	the	UKB	individuals	of	the	European	(EUR)	ancestry	to	predict	the	phenotypes	in	317 

three	other	ancestries	in	UKB:	African	(AFR),	East	Asian	(EAS)	and	South	Asian	(SAS).	We	selected	318 

6	complex	traits	that	had	at	least	50	identified	SNPs	at	a	PIP	threshold	of	0.9.	We	compared	the	319 

performance	of	trans-ancestry	prediction	between	SBayesRC	and	SuSiE-inf,	because	SuSiE-inf	has	320 

exhibited	a	superior	performance	compared	to	the	others.	The	result	showed	that	compared	to	321 

SuSiE-inf,	SBayesRC	improved	the	trans-ancestry	prediction	accuracy	using	fine-mapped	variants,	322 

with	a	nearly	10-fold	increase	in	the	mean	relative	prediction	R2	(
&!"#$%&'(
) '&!*!+,-+./

)

&!*!+,-+./
) )	across	traits	323 

and	ancestries	(Fig.	5b).	We	further	compared	the	performance	of	SBayesRC	and	SuSiE-inf	for	324 

trans-ancestry	prediction	using	the	identified	credible	set	SNPs.	Similar	to	the	comparison	result	325 

based	 on	 fine-mapped	 variants,	 SBayesRC	 improved	 the	 trans-ancestry	 prediction	 accuracy	326 

based	on	the	SNPs	in	the	90-LCS	(Fig.	S5;	1.7-fold	increase	on	average).	Since	it	is	parsimonious	327 

to	 assume	 that	 the	 common	 causal	 variants	 and	 their	 effect	 sizes	 are	mostly	 shared	between	328 

ancestries39,40,	we	expect	to	observe	a	strong	concordance	in	prediction	accuracy	between	EUR	329 

and	other	ancestries	using	putative	 causal	variants	 identified	 from	 the	EUR	sample	with	high	330 

confidence.	 To	 investigate	 this,	 we	 quantified	 the	 transferability	 of	 fine-mapped	 SNPs	 by	331 

computing	the	ratio	of	per-SNP	prediction	accuracy	in	a	hold-out	EUR	sample	to	that	in	a	different	332 

ancestry.	The	result	showed	that	on	average	this	relative	prediction	accuracy	of	SNP	increases	333 

with	its	PIP	calculated	in	the	EUR	GWAS	sample	(Fig.	5c).	These	results	suggested	that	SBayesRC	334 

has	higher	power	of	fine-mapping	and	higher	accuracy	of	variant	effect	estimation.		335 

	336 

Prediction	of	fine-mapping	power	and	variance	explained	337 

As	a	unique	feature	of	the	GWFM	approach,	the	genetic	architecture	estimated	from	SBayesRC	338 

provides	information	to	predict	the	proportion	of	causal	variants	identified	from	fine-mapping	339 

(power)	 and	 the	 proportion	 of	 ℎ!"#$ 	explained	 by	 these	 variants	 (PHE)	 for	 future	 studies	340 

(Methods	 and	Supplementary	Note).	To	evaluate	our	approach,	we	computed	 the	predicted	341 

values	of	power	and	PHE	at	a	spectrum	of	GWAS	sample	sizes	and	projected	the	outcome	of	fine-342 

mapping	using	SBayesRC	onto	 the	prediction	using	data	 from	 the	 simulated	 trait	with	 sparse	343 

architecture,	height36,	high	density	lipoprotein	(HDL),	schizophrenia	(SCZ)41,	and	Crohn’s	Disease	344 

(CD)42.	These	traits	were	selected	to	represent	different	genetic	architectures	(Fig.	6a-c).	Despite	345 

some	 variations	 across	 traits,	 the	 outcomes	 from	 the	 fine-mapping	 analyses	 were	 overall	346 

consistent	with	the	theoretical	predictions	(Fig.	6d,e).	While	our	theoretical	prediction	does	not	347 
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model	 LD	 between	 SNPs,	 the	 extent	 to	 which	 the	 observed	 values	 were	 consistent	 with	 the	348 

predicted	suggests	that	LD	had	been	effectively,	albeit	not	perfectly,	accounted	for	by	our	LCSs.		349 

	350 

Take	SCZ	for	example.	Using	the	latest	GWAS	summary	statistics	from	the	psychiatric	genomics	351 

consortium	dataset41,	we	identified	13	SNPs	and	222	credible	sets,	collectively	explaining	3.9%	352 

of	 ℎ!"#$ 	at	 the	 liability	 scale43.	 These	 estimates	 are	 highly	 consistent	 with	 our	 theoretical	353 

prediction	given	the	53,386	cases	and	77,258	controls	in	their	study41,	which	is	equivalent	to	a	354 

sample	 size	 of	 228,810	 on	 the	 liability	 scale	 (ref44;	Methods).	 For	 a	 prospective	 study	 using	355 

SBayesRC,	we	predict	 that	~180k	cases	would	be	 required	 to	 fine-map	1,000	common	causal	356 

variants	 (estimated	 to	be	1.2%	of	all	 common	causal	variants),	 assuming	an	equal	number	of	357 

controls	and	a	population	prevalence	of	0.01	(Methods),	collectively	accounting	for	about	20%	358 

of	ℎ!"#$ 	(Fig.	6).	With	~550k	cases	under	the	same	assumption,	we	will	be	able	to	identify	10%	359 

causal	variants	explaining	50%	of	ℎ!"#$ 	in	SCZ.	To	fine-map	variants	accounting	for	80%	of	ℎ!"#$ ,	360 

it	was	estimated	to	require	1.4	million	cases.			361 

	362 

Genome-wide	fine-mapping	in	complex	traits	from	UK	Biobank	363 

We	applied	GWFM	with	SBayesRC	to	600	complex	traits	(598	from	the	UKB)	and	developed	an	364 

online	resource	to	query	these	fine-mapping	results	(see	URLs;	Supplementary	Table	3).	We	365 

selected	these	598	UKB	traits	based	on	z-score	>	4	and	high	confidence	for	heritability	estimates	366 

using	LD	score	regression	(https://zenodo.org/records/7186871).	To	better	capture	the	causal	367 

variants,	we	used	13	million	imputed	SNPs	with	functional	genomic	annotations	from	Finucane	368 

et	al.37.	Here,	we	focus	on	discussing	the	results	for	48	complex	traits	that	had	sufficient	power,	369 

including	SCZ,	CD41,42	and	46	UKB	traits	measured	in	the	European	ancestry	inferred	individuals	370 

(Methods).	At	the	PIP	significance	threshold	of	0.9,	we	identified	2,868	SNPs	associated	with	48	371 

complex	traits,	1,641	of	which	were	not	identified	by	LD	clumping,	and	22,803	0.9-LCSs	with	an	372 

average	size	of	8.7	SNPs.	On	average	across	these	48	traits,	we	estimated	that	although	these	fine-373 

mapped	variants	and	LCSs	only	captured	0.75%	of	the	causal	variants,	they	accounted	for	17.4%	374 

of	the	ℎ!"#$ .	375 

	376 

Given	the	estimated	genetic	architecture	for	these	48	traits,	we	applied	our	theoretical	prediction	377 

approach	to	predict	the	power	of	prospective	GWAS	studies.	With	a	GWAS	sample	size	of	2	million	378 

individuals,	we	predict	that	the	average	power	is	9.5%	(Fig.	7a)	and	average	PHE	is	54.1%	(Fig.	379 

7b).	The	predicted	values	varied	substantially	between	trait	groups.	Blood	cell	traits	had	both	the	380 

highest	 power	 (29.7%)	 and	 highest	 expected	 proportion	 of	 ℎ!"#$ explained	 (86.9%),	 while	381 

cognitive	 traits	have	 the	smallest	power	(16.9%)	and	smallest	expected	proportion	of	genetic	382 

variance	explained	(63.1%).	To	achieve	a	PHE	of	50%,	blood	cell	traits	require	a	GWAS	sample	383 
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size	of	only	1	million	 individuals,	while	 cognitive	 traits	necessitate	 a	 sample	 size	of	5	million	384 

individuals,	due	 to	 the	differences	 in	genetic	 architecture	across	 complex	 traits.	The	 required	385 

sample	 size	 increased	 to	 3	 million	 and	 10	million	 for	 blood	 cell	 counts	 and	 cognitive	 traits,	386 

respectively,	to	achieve	a	PHE	of	80%	(Fig.	7b).		387 

	388 

The	global	credible	set	a-GCS	varied	in	the	credible	set	size	and	PHE	estimate	across	traits	(Fig.	389 

7c).	On	average,	the	0.1-GCS,	i.e.,	covering	10%	of	causal	variants,	consisted	of	1%	of	the	genome-390 

wide	SNPs,	which	 explained	31.8%	of	 the	ℎ!"#$ 	(Fig.	7d).	Among	 the	 analysed	 complex	 traits,	391 

diseases	 had	 the	 largest	 GCS	 sets,	 requiring	 1.9%	 genome-wide	 common	 SNPs	 to	 cover	 10%	392 

common	causal	variants.	In	contrast,	blood	cell	traits	had	the	smallest	GCS,	requiring	merely	0.21%	393 

genome-wide	common	SNPs	to	cover	10%	common	causal	variants.	Interestingly,	the	0.1-GCS	for	394 

blood	cell	traits	explained	44.3%	of	the	total	genetic	variance,	compared	to	20.8%	explained	by	395 

the	GCS	for	cognitive	traits,	highlighting	the	less	polygenic	genetic	architecture	of	blood	cell	traits.	396 

	397 

Over	 the	 48	 complex	 traits,	 the	 number	 of	 fine-mapped	 variants	 from	 SBayesRC	 was	 highly	398 

correlated	with	 the	number	of	 identified	GWAS	 loci	 (Fig.	S6),	 ranging	 from	1	 to	489,	with	an	399 

average	of	86.2	across	complex	traits	(Fig.	S7).	Compared	to	the	genome-wide	SNPs	and	GWAS	400 

identified	 SNPs	 after	 LD	 clumping,	 the	 2,868	 putative	 causal	 variants	 had	 a	 significant	401 

overrepresentation	 in	 functional	 genomic	 regions	 included	 in	 the	 functional	 genomic	402 

annotations37,	such	as	coding,	promoter,	and	enhancer	regions,	and	were	significantly	depleted	403 

in	 repressed	 regions	 (Fig.	 8a),	 suggesting	 the	 importance	 of	 functional	 annotations.	 Of	 these	404 

variants,	651	 (22.8%)	were	 in	association	with	more	 than	one	complex	 trait,	highlighting	 the	405 

prevalence	of	pleiotropy	in	human	genome.	Moreover,	the	number	of	traits	that	the	variant	had	406 

pleiotropic	effects	decreased	with	its	minor	allele	frequency	(Fig.	S8),	consistent	with	that	highly	407 

pleiotropic	 variants	 would	 be	 expected	 to	 be	 removed	 from	 the	 population	 or	 kept	 at	 low	408 

frequencies	due	to	natural	selection45.		409 

	410 

Functional	annotations	helped	pinpoint	the	putative	causal	variants	411 

One	notable	 example	 is	 a	 variant	 (rs1421085)	at	 the	FTO	 locus,	which	was	 identified	 to	be	a	412 

putative	causal	variant	using	SBayesRC	for	body	mass	index	(BMI),	body	fat	percentage	(BFP),	413 

hip	circumference	(HC)	and	waist	circumference	(WC).	It	has	been	previously	validated	that	this	414 

variant	plays	a	causal	role	in	adipocyte	thermogenesis	regulation46.	Unlike	the	results	from	the	415 

standard	GWAS	where	many	SNPs	in	the	FTO	locus	exhibited	a	signal	at	genome-wide	significance	416 

level,	our	analysis	showed	that	only	the	known	causal	variant	(rs1421085)	was	significantly	(PIP	>	417 

0.9)	associated	with	BMI	(Fig.	8b).	In	contrast,	applying	other	methods	(SBayesR	and	SuSiE-inf)	418 

without	functional	annotations	to	the	locus	identified	the	GWAS	lead	SNP	instead,	underscoring	419 
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the	 importance	 of	 incorporating	 functional	 annotations.	 In	 particular,	 the	 annotations	 of	420 

conservation	across	species,	especially	primates,	helped	distinguish	the	causal	variant	from	the	421 

GWAS	lead	SNP	(Fig.	8c).	Moreover,	a	secondary	signal	rs76488452	(PIP=0.85)	was	identified	by	422 

SBayesRC,	which	has	not	been	previously	reported	but	was	included	in	a	local	credible	set	of	5	423 

SNPs	in	both	SBayesR	and	SuSiE-inf	(Fig.	S9).	We	found	this	SNP	resided	in	a	conserved	region	in	424 

primates	and	was	also	significant	in	the	COJO	analysis	(p-value	=	1.8×10-17)	conditional	on	the	425 

known	 causal	 variant.	 Notably,	 the	 secondary	 signal	 (rs76488452)	 was	 only	 nominally	426 

significantly	in	the	GWAS	marginal	analysis	(p-value	=	3.6×10-4),	whose	trait-increasing	allele	was	427 

in	negative	LD	(r=-0.16)	with	that	of	the	known	causal	variant,	indicating	that	this	SNP	is	likely	to	428 

have	a	masked	effect47	(estimated	masked	effect	size	b2	–	r	*	b1	=	0.02,	consistent	with	the	reported	429 

GWAS	marginal	effect	size).			430 

	431 

Another	example	is	from	the	fine-mapping	results	for	SCZ.	We	identified	13	SNPs	at	PIP	>	0.9	for	432 

SCZ	 from	 the	 latest	meta-analysis,	 5	of	which	were	 the	 same	SNPs	 that	were	 identified	using	433 

FINEMAP	in	their	study41,	and	all	the	8	SNPs	identified	by	FINEMAP	were	included	in	our	0.9-434 

LCSs.	We	recapitulated	a	missense	variant	(rs13107325)	in	SLC39A8,	a	gene	highlighted	in	the	435 

latest	 SCZ	 analysis	 for	 its	 function	 in	 regulating	 dendritic	 spine	 density48,49.	 Furthermore,	we	436 

identified	a	secondary	variant	at	the	same	locus,	located	in	important	functional	regions	(Fig.	8d-437 

e).	Among	the	5	novel	fine-mapped	SNPs	that	were	not	identified	by	FINEMAP	with	individual	438 

PIP,	3	were	missense	variants	(Fig.	S10a-c).	We	highlight	rs11845184,	which	is	located	within	439 

SECISBP2L	 (Fig.	 S10a).	 SECISBP2L	 is	 highly	 expressed	 in	 brain-related	 tissues	 (Fig.	 S11),	440 

specifically	 in	 differentiating	 oligodendrocytes,	 where	 the	 SECISBP2L-DIO2-T3	 pathway	441 

mediates	 the	 autonomous	 regulation	 of	 oligodendrocyte	 differentiation	 during	 myelin	442 

development50.	Moreover,	we	identified	novel	putative	causal	variants	for	CD	(Supplementary	443 

Table	4).	Using	SBayesRC,	we	fine-mapped	31	variants,	of	which	10	were	missense	variants,	and	444 

all	 3	 variants	 identified	 in	 the	 previous	 study	 using	 the	 same	 data	 were	 recapitulated42.	 In	445 

addition,	 compared	 to	 a	 recent	 exome-wide	 association	 study	 for	 CD51,	we	 identified	 4	 novel	446 

genes	(LACC1,	SLAMF8,	MAN2B2	and	GPR35)	with	missense	putative	causal	variants	(Fig.	S12).	447 

These	results	demonstrated	the	power	of	SBayesRC	for	identifying	the	plausible	causal	variants	448 

and	provide	a	valuable	resource	for	downstream	analysis	and	functional	validation.		449 

	450 

Discussion	451 

In	 this	 study,	 we	 comprehensively	 evaluated	 the	 performance	 of	 GWFM	 using	 SBayesRC	 by	452 

extensive	simulation	and	real	data	analyses,	compared	with	the	existing	fine-mapping	methods	453 

that	 consider	 one	 genomic	 region	 at	 a	 time.	 Our	 results	 showed	 that	 both	 PIP	 and	 CS	 from	454 

SBayesRC	 were	 correctly	 calibrated	 under	 various	 genetic	 architectures,	 indicating	 well	455 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2024. ; https://doi.org/10.1101/2024.07.18.24310667doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.18.24310667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

controlled	FDR.	In	contrast,	the	other	methods	produced	mis-calibrated	PIP	and	CS	with	inflated	456 

FDR,	when	the	genetic	architecture	did	not	match	the	model	assumption.	While	all	fine-mapping	457 

methods	 gave	 a	 higher	mapping	 precision	 than	 that	 from	 GWAS7,	 SBayesRC	 had	 the	 highest	458 

precision	across	genetic	architecture	scenarios.	Furthermore,	 in	both	simulation	and	real	 trait	459 

analyses,	SBayesRC	showed	significantly	higher	replication	rate	and	prediction	accuracy	but	less	460 

estimation	bias	 in	 an	 independent	 sample	using	 fine-mapped	 SNPs,	 compared	with	 the	 other	461 

methods.	In	the	real	data	analysis,	we	showed	examples	where	SBayesRC	pinpointed	the	putative	462 

causal	variants	that	were	missed	by	the	other	methods.	All	of	these	results	indicate	that	SBayesRC,	463 

as	a	method	for	GWFM	analysis,	remarkably	improves	the	identification	of	causal	variants.		464 

	465 

We	proposed	a	new	LD-based	method	to	compute	LCSs	and	estimate	their	contribution	to	the	466 

SNP-based	 heritability.	 This	 method	 overcomes	 the	 limitation	 of	 existing	 window-based	467 

approaches	that	causal	variants	with	SNPs	in	long-range	LD	would	not	be	captured.	In	addition	468 

to	 LCSs,	 SBayesRC	 allows	 us	 to	 compute	 a	 GCS	 for	 the	 trait,	 which	 informed	 the	 power	 of	469 

identifying	the	causal	variants	and	the	ℎ!"#$ 	explained	by	the	identified	SNPs	given	the	data.	This	470 

computation	requires	an	unbiased	estimation	on	the	total	number	of	the	causal	variants,	which	471 

can	only	be	done	when	analysing	all	SNPs	jointly	in	the	model.	The	analysis	of	48	complex	traits	472 

showed	that	although	as	many	as	22,803	variants	or	LCS	were	identified,	they	only	captured	0.75%	473 

of	all	common	causal	variants	and	contributed	17.4%	genetic	variance,	suggesting	many	causal	474 

variants	with	very	small	effects	are	yet	to	be	discovered	(Fig.	7c,d).		475 

	476 

We	have	provided	a	theoretical	prediction	of	fine-mapping	power	given	a	sample	size	and	the	477 

estimated	genetic	architecture	(Supplementary	Note).	This	is	useful	to	inform	the	experimental	478 

design	of	 future	 fine-mapping	studies	regarding	 the	sample	size	required	 to	 identify	a	certain	479 

number	of	causal	variants	or	those	explaining	a	certain	proportion	of	ℎ!"#$ .	The	robustness	of	our	480 

prediction	 approach	 is	 supported	 by	 projecting	 the	 outcomes	 of	 real	 data	 analyses	 to	 the	481 

landscape	of	predicted	values.	For	height,	based	on	the	UKB	data	(n	=	350k),	we	predicted	that	482 

when	the	sample	size	increases	to	5	million,	the	number	of	fine-mapping	discoveries	would	be	483 

~10,000	considering	significant	PIPs	only	or	~30,000	considering	both	significant	PIPs	and	LCSs,	484 

explaining	up	to	95%	of	the	genetic	variance	(Fig.	6).	This	prediction	is	consistent	with	the	finding	485 

of	a	recent	GWAS	with	5	million	 individuals,	which	reported	12,111	 independently	significant	486 

SNPs	 identified	 from	COJO	 accounting	 for	 nearly	 all	 of	 the	 common	SNP-based	heritability	 in	487 

height40.		488 

	489 

While	 the	 concept	 of	 credible	 set	 has	 evolved	 over	 time11,12,52,	 it	 is	 still	 common	 to	 focus	 on	490 

individual	SNP	PIP	in	the	downstream	analysis,	probably	because	the	CS	include	too	many	SNPs	491 
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to	follow	up.	Our	study	provided	important	implications	regarding	this	issue.	First,	CS	may	miss	492 

the	true	causal	variant	if	not	all	possible	causal	variants	are	fitted	in	the	model,	underscoring	the	493 

importance	of	 considering	all	 common	SNPs	 in	 the	 fine-mapping	analysis.	 Second,	our	GWFM	494 

approach	can	reduce	the	credible	size,	as	shown	in	both	simulation	and	real	trait	analysis	(only	495 

~8.7	SNPs	per	credible	set),	facilitating	the	consideration	of	CS	in	practice.	Third,	in	the	presence	496 

of	complete	LD	between	SNPs	and	the	causal	variants,	the	PIP	of	a	causal	variant	may	never	be	497 

significant	 regardless	of	 sample	size,	but	 leveraging	 functional	genomic	annotations	may	help	498 

distinguish	causal	from	non-causal	variants.	In	this	sense,	genomic	annotations	play	a	greater	role	499 

than	the	increase	of	GWAS	sample	size.			500 

	501 

The	 advantages	 of	 SBayesRC	 over	 the	 region-specific	 fine-mapping	 methods	 arise	 from	 the	502 

following	 aspects.	 First,	 SBayesRC	 involves	 a	 genome-wide	 analysis	 fitting	 all	 SNPs	 jointly.	503 

Compared	to	the	region-specific	analysis,	genome-wide	analysis	accounts	for	long-range	LD	and	504 

utilises	all	SNPs	to	estimate	the	genetic	architecture,	thereby	improving	fine-mapping.	Of	note,	505 

even	when	 the	 same	 LD	blocks	 are	 used	 in	 both	 types	 of	 analyses,	 the	 latter	 is	 still	 superior	506 

because	of	 the	better	 estimation	of	 genetic	 architecture	parameters	 from	genome-wide	SNPs.	507 

Second,	SBayesRC	assumes	a	more	realistic	distribution	of	SNP	effects	through	using	MAF/LD	508 

groups	along	with	other	functional	annotations.	In	addition,	the	impact	of	annotations	on	the	SNP	509 

effect	 distribution	 is	 estimated	 within	 the	 same	model,	 fostering	 a	 formal	 Bayesian	 learning	510 

process.	The	existing	fine-mapping	methods,	however,	either	do	not	leverage	annotation	data	or	511 

lack	a	unified	framework	for	the	joint	analysis	with	GWAS	data.	Third,	SBayesRC	utilises	MCMC	512 

sampling	to	estimate	model	parameters	and	PIPs,	which	is	asymptotically	exact.	Both	FINEMAP	513 

and	FINEMAP-inf	use	shotgun	stochastic	search,	while	both	SuSiE	and	SuSiE-inf	use	variational	514 

Bayes	 to	compute	 the	Bayes	 factors	 for	 the	causal	models	and	 therefore	 the	PIPs.	 It	has	been	515 

previously	 shown	 that	MCMC	 sampling	 generally	 leads	 to	 a	 higher	 accuracy	 of	 capturing	 the	516 

posterior	distribution	than	the	other	approximation	approaches30.	To	further	justify	our	choice	517 

of	 SBayesRC	 as	 the	 method	 for	 GWFM,	 we	 ran	 SBayesRC	 within	 each	 block	 separately	 and	518 

quantified	the	mapping	precision.	We	found	that	the	mapping	precision	decreased	compared	to	519 

the	genome-wide	SBayesRC	but	remained	higher	than	the	other	methods	(Fig.	S2).	For	example,	520 

99%	of	SNPs	 identified	by	 the	region-specific	SBayesRC	were	 located	within	23.1Kb	 to	causal	521 

variants,	 compared	 to	 the	 number	 of	 16.4Kb	 for	 the	 genome-wide	 SBayesRC	 and	 25.8Kb	 for	522 

SuSiE-inf.	523 

	524 

We	note	several	limitations	of	this	work.	First,	there	are	certainly	more	complicated	scenarios	525 

about	 effect	 size	 distribution	 for	 causal	 variants	 that	 have	 not	 been	 investigated	 in	 our	526 

simulations.	 However,	 to	 our	 knowledge,	 SBayesRC	 is	 one	 of	 the	 most	 flexible	 models	 to	527 
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accommodate	various	scenarios	because	it	assumes	a	multi-component	Gaussian	mixture,	and	528 

we	have	further	allowed	the	method	to	automatically	choose	the	number	of	mixture	components.	529 

Second,	unlike	an	individual-level	model	where	each	PIP	is	calculated	conditional	on	the	effects	530 

from	all	other	SNPs	jointly,	SBayesRC	is	a	summary-level	model	where	LD	between	LD	blocks	is	531 

ignored	 so	 that	 SNPs	 beyond	 the	 region	 contribute	 to	 the	 PIP	 only	 through	 the	 mixture	532 

distribution	of	SNP	effects.	Third,	we	only	applied	our	method	to	the	GWAS	summary	data	from	533 

relatively	 homogenous	 populations	 (inferred	 European	 ancestry)	 and	 the	 robustness	 of	 the	534 

methods	 on	 GWAS	 data	 based	 on	 trans-ancestry	 meta-analyses	 is	 not	 investigated.	 Fourth,	535 

SBayesRC	requires	the	LD	information	estimated	from	a	cohort	that	matches	with	GWAS	ancestry	536 

without	substantial	sampling	variation.	Fifth,	 to	create	the	credible	set,	a	threshold	of	0.5	was	537 

arbitrarily	 chosen	 to	define	 a	 set	 of	 SNPs	 in	high	LD.	 Latest	methodological	 advancements	 in	538 

Bayesian	hypothesis	tests	based	on	hierarchical	clustering	can	be	used	to	relax	this	condition53.	539 

Sixth,	the	prediction	of	mapping	power	is	based	on	the	genetic	architecture	estimates	given	a	SNP	540 

set.	 However,	 the	 SNP	 set	may	 change	with	 the	 sample	 size	 (e.g.,	 more	 common	 SNPs	 to	 be	541 

observed	in	a	larger	sample	size),	which	may	affect	the	polygenicity	and	SNP-based	heritability.	542 

Despite	 these	 limitations,	 our	 study	 provides	 a	 robust	 and	 versatile	 GWFM	 framework	 for	543 

identifying	 causal	 variants,	 highlighting	 the	 advantages	of	 this	 approach	over	 existing	 region-544 

specific	fine-mapping	methods.	With	its	capacity	to	enhance	mapping	power	in	the	current	study	545 

and	to	predict	mapping	power	for	future	studies,	we	believe	GWFM	using	a	state-of-the-art	GBMM	546 

will	become	the	preferred	method	for	analysing	complex	traits.	 	547 
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Methods	548 
Low-rank	GBMM	549 

We	used	state-of-the-art	GBMM	that	employed	a	low-rank	model	to	improve	computational	550 

efficiency	and	robustness27.	As	described	below,	the	low-rank	GBMM	can	be	derived	from	the	551 

individual-level	model.	Consider	a	multiple	linear	regression	of	phenotypes	on	genotypes:	552 

𝒚 = 𝐗𝛃 + 𝐞																																																																											(1)	553 

where	𝐲	is	an	𝑛 × 1	vector	of	complex	trait	phenotypes	and	X	is	an	𝑛 ×𝑚	matrix	of	mean-centred	554 

genotypes,	𝛃	is	𝑚 × 1	vector	of	SNP	effects	on	 the	 trait,	 and	𝐞	is	𝑛 × 1	vector	of	 residuals	with	555 

var(𝐞) = 𝐈𝜎($.	Let		556 

𝐊 = 𝚲'
0
)𝐔)𝐗)𝑛'*																																																																					(2)	557 

where	𝚲 	and	𝐔 	are	 diagonal	 matrix	 of	 eigenvalues	 and	 matrix	 of	 eigenvectors	 for	 the	 LD	558 

correlation	matrix	𝐑 = 𝐗)𝐗/𝑛,	respectively.	It	follows	that	𝐊)𝐊 = 𝐏𝑛'*,	where	𝐏	is	the	projection	559 

matrix	of	𝒚	on	the	column	space	of	𝐗,	and	𝐊𝐊) = 𝐈𝑛'*.	Multiplying	both	sides	of	Eq	(2)	by	𝐊	gives	560 

𝐊𝐲 = 𝐊𝐗𝛃 + 𝐊𝒆																																																																						(3)	561 

or	562 

𝐰 = 𝐐𝛃 + 𝛜																																																																										(4)	563 

When	only	 the	 top	q	principal	components	of	𝐑	are	used,	 the	dimension	of	𝐰	is	𝑞 × 1	and	𝐐	is	564 

𝑞 ×𝑚.	Since	𝑞 ≪ 𝑛,	this	model	would	have	a	substantially	lower	rank	than	Eq	(1),	improving	the	565 

computational	efficiency	 for	 the	estimation	of	𝛃.	With	a	recognition	of	𝐛 = 𝐗)𝒚/𝑛	is	 the	GWAS	566 

marginal	 effect	 estimates,	𝐰	can	 be	 directly	 computed	 from	 the	GWAS	 summary	 statistics.	 In	567 

practice,	we	compute	𝐰	and	𝐐	within	quasi-independent	LD	blocks	in	the	human	genome.	With	568 

this	low-rank	model,	we	can	estimate	𝛃	for	all	common	variants	jointly	through	considering	𝛃	as	569 

random	effects.	In	addition,	this	model	allows	a	direction	estimation	of	the	residual	variance,	as	570 

var(𝛜) = 𝐈𝜎($𝑛'*,	which	can	be	used	as	a	nuisance	parameter	to	accommodate	heterogeneity	in	571 

the	summary	statistics	and	LD	reference27.		572 

	573 

SBayesC	and	SBayesRC	574 

GBMMs	are	flexible	in	the	specification	of	the	prior	distribution	of	SNP	effects.	In	SBayesC,	the	575 

prior	for	the	effect	size	of	variant	𝑗	is,		576 

𝛽+ 	~	𝑁J0, 	𝜎,
$L𝜋 + 𝜙(1 − 𝜋)																																																													(5)	577 

where	𝜎,
$	is	the	common	variance	across	all	the	causal	variants,	𝜋	is	the	proportion	of	SNPs	with	578 

nonzero	effects,	and	𝜙	is	a	point	mass	at	zero.	Both	𝜎,
$	and	𝜋	are	considered	as	unknown,	with	a	579 

scaled	inverse	chi-squared	prior	distribution	and	a	uniform	prior	distribution,	respectively27.		580 

	581 

SBayesRC27	is	an	extension	of	SBayesR24,	which	allows	for	a	more	realistic	prior	distribution	of	582 

SNP	effects	by	assuming	a	multiple	component	mixture	distribution	583 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2024. ; https://doi.org/10.1101/2024.07.18.24310667doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.18.24310667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

𝛽+ 	~	∑ 𝜋-𝑁J0, 	𝛾-𝜎.$L/
-0* 																																																																	(6)	584 

where	𝜸 = 	 J𝛾*, 𝛾$, 𝛾1, 𝛾2,𝛾/L
) = (0, 1 × 10'/, 1 × 10'2, 1 × 10'1, 1 × 10'$)) 	are	 the	prespecified	585 

coefficients	 to	 constrain	 the	 variance	 in	 each	 effect	 size	 distribution	with	 respect	 to	 the	 total	586 

genetic	 variance	 (𝜎.$) ,	 and	𝜋- 	is	 the	 prior	 probability	 for	 the	 SNP	 effect	 belong	 to	 the	 kth	587 

distribution.	To	further	account	for	the	stratification	of	causal	variants	and	their	effects	regarding	588 

functional	 annotations,	 SBayesRC	 assumes	 a	 SNP-specific	 prior	 probability	 of	 distribution	589 

membership,	𝜋+- ,	depending	on	the	annotations	at	each	SNP,	through	a	generalised	linear	model.	590 

Specifically,		591 

𝑓J𝜋+-L = 𝜇- + ∑ 𝐴+4%
40* 𝛼-4 																																																																(7)	592 

where	𝑓(∙)	is	the	probit	link	function,	𝜇- 	is	the	intercept,	𝐴+4 	is	the	value	of	annotation	𝑙	on	SNP	𝑗	593 

(either	 binary	 or	 continuous	 annotations),	 and	𝛼-4 	is	 the	 effect	 of	 annotation	 𝑙 	on	 the	 prior	594 

probability	of	the	SNP	effect	belonging	to	the	kth	distribution.	Details	of	the	method	can	be	found	595 

in	ref27.		596 

	597 

Calculation	of	PIP	598 

We	assessed	the	strength	of	joint	association	of	each	SNP	using	the	posterior	inclusion	probability	599 

(PIP),	i.e.,	the	probability	of	a	SNP	being	included	with	a	nonzero	effect	in	the	model,	given	the	600 

data.	 Let	𝛿+ 	be	 the	 indicator	 variable	 for	 the	 distribution	membership	 for	 SNP	𝑗 ,	 with	𝛿+ = 1	601 

indicating	a	null	effect	and	𝛿+ = 2,… , 𝐾	indicating	a	nonnull	component.	We	computed	PIP	 for	602 

SNP	𝑗	as		603 

PIP+ = 1 − PrJ𝛿+ = 1l𝑦L = 1 − 5(7|910*);0
∑ 5(7|910-);2
3
240

																																									(8)	604 

The	likelihood	function	when	𝛿+ = 1	are	605 

𝑓(𝑦|𝛿+ = 1) ∝ exp	{− 75675
$=7)

}																																																													(9)	606 

where	𝑦% 	is	the	adjusted	𝑦	for	all	other	effects	except	that	for	SNP	𝑗.		607 

The	likelihood	function	when	𝛿+ = 𝑘	is	608 

𝑓(𝑦|𝛿+ = 𝑘) ∝ exp	{− 75675
$=7)

}𝜆-
0
)𝐶-

'0)exp	{ >
)

$?2
}																																													(10)	609 

where	𝜆- =
=7)

@2=8)
,	𝐶- = 𝑛 + 𝜆- ,	𝑟 = 𝑋)𝑦% = 𝑋)𝑒 + 𝑛𝛽.	A	 full	derivation	of	equation	above	can	be	610 

found	in	the	supplementary	Note.		611 

	612 

For	all	GBMM	analyses	 in	 this	study,	we	ran	Markov	chain	Monte	Carlo	 (MCMC)	sampling	 for	613 

10,000	iterations	with	the	first	2,000	samples	as	burn-in	and	we	used	the	posterior	mean	over	614 

8,000	posterior	samples	to	estimate	𝝅	and	PIPs.	615 

	616 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2024. ; https://doi.org/10.1101/2024.07.18.24310667doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.18.24310667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Automatic	determination	of	mixture	components	617 

The	standard	SBayesRC	requires	specification	of	the	number	of	mixture	components	before	the	618 

analysis.	It	has	been	shown	that	the	performance	of	polygenic	prediction	is	robust	to	the	number	619 

of	mixture	 components27.	 However,	 this	may	 be	 a	 problem	 for	 fine-mapping	 if	 a	 small	 effect	620 

component	is	unnecessarily	included,	where	null	SNPs	are	fitted	by	chance	to	explain	negligible	621 

variance.	This	is	because	these	SNPs	may	affect	the	distribution	of	PIPs	and	cause	a	bias	in	the	622 

estimation	 of	 the	 number	 of	 causal	 variants.	 In	 this	 study,	 we	 have	 allowed	 the	 method	 to	623 

automatically	 determine	 the	 number	 of	 mixture	 components	 for	 SBayesRC.	 The	 procedure	624 

started	with	running	SBayesRC	using	the	default	setting	of	five	mixture	components.	After	500	625 

iterations	of	MCMC,	the	smallest	component	would	be	removed	if	the	genetic	variance	explained	626 

by	the	SNPs	in	this	component	were	less	than	half	of	that	in	the	second	smallest	component.	This	627 

procedure	was	repeated	until	no	component	was	removed	from	the	model.	The	rationale	is	that	628 

in	most	 complex	 traits,	due	 to	 the	action	of	negative	selection,	most	variation	 is	attributed	 to	629 

variants	with	small	effects31,32,54.	Hence,	if	the	smallest	component	is	capturing	true	genetic	effects,	630 

it	should	contribute	to	a	significant	proportion	of	variance,	unlikely	to	be	substantially	lower	than	631 

the	second	smallest	component.		632 

	633 

Local	and	global	credible	sets	634 

Similar	to	prior	work14,	we	defined	the	local	credible	set	SNPs	as	the	minimum	set	of	SNPs	that	635 

contains	at	least	one	causal	variant	with	a	probability	of	a.		To	identify	the	a-LCS,	we	ranked	SNPs	636 

based	on	their	PIPs	and	constructed	candidate	credible	set	for	each	“free”	SNP	which	was	not	in	637 

any	LCSs.	For	the	focal	SNP,	the	candidate	credible	set	was	created	by	including	“free”	SNPs	in	638 

high	LD	(r2	>	0.5)	with	a	focal	SNP	and	computed	the	a-LCS	by	summing	over	PIPs	in	a	decreasing	639 

order	 until	 the	 sum	 is	 at	 least	 α.	 This	 process	 was	 iteratively	 repeated	 until	 all	 SNPs	 were	640 

exhausted.	 For	 each	 a-LCS,	 we	 calculated	 an	 LCS	 posterior	 SNP-heritability	 enrichment	641 

probability,	where	PEP	is	the	probability	that	the	focal	LCS	explains	more	ℎ!"#$ 	than	a	random	set	642 

of	SNPs	with	the	same	size.	We	reported	all	the	0.9-LCS	with	PEP	>	0.7	for	each	LD	block.	The	true	643 

discovery	rate	was	quantified	as	the	proportion	of	identified	a-LCS	containing	at	least	one	causal	644 

variant,	and	the	power	was	calculated	as	the	proportion	of	simulated	causal	variants	included	in	645 

the	identified	a-LCS.		646 

	647 

Analogous	 to	 the	 LCS,	 which	 identifies	 a	 set	 of	 SNPs	 that	 capture	 a	 causal	 variant	 with	 a	648 

probability	of	a,	the	GCS	identifies	a	set	of	SNPs	that	capture	all	causal	variant	with	a	probability	649 

of	a,	which	 is	 equivalent	 to	 finding	 a	 set	 of	 SNPs	 that	 capture	a%	of	 the	 causal	 variants.	We	650 

computed	the	a-GCS	as	the	cumulative	sum	of	decreasingly	ranked	PIPs	that	was	greater	than	651 

𝛼 ×𝑚% ,	where	𝑚% 	was	the	estimated	number	of	causal	variants	from	GBMM	for	the	trait.	The	𝛼-652 
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GCS	is	expected	to	cover	𝛼%	of	all	causal	variants	for	the	trait,	i.e.,	the	power	of	identifying	the	653 

causal	variants	given	the	data	(Supplementary	Note).		654 

	655 

Estimation	of	power	and	variance	explained	given	the	data	656 

For	the	identified	SNPs	using	individual	PIP	or	credible	set,	we	estimated	the	power	of	identifying	657 

the	causal	variants	given	the	data	at	a	given	threshold	a,	658 

TPRa =
∑ ABCB1|	BCB1EaF1

G;
																																																															(11)	659 

A	formal	derivation	is	given	in	the	Supplementary	Note.		660 

	661 

Moreover,	 we	 estimated	 the	 proportion	 of	 SNP-based	 heritability	 explained	 (PHE)	 by	 LCSs.	662 

Specifically,	we	computed	PHE	for	a	focal	set	(i)	of	SNPs	in	each	MCMC	iteration	using	the	sampled	663 

values	of	SNP	effects,	664 

	PHEH%H%9,I =
∑ JK:5:59,1

) |	+	∈	IM1

∑ AK:5:59,:
) F<

:40
																																																												(12)	665 

where	βH%H%9,+ 	is	the	sampled	effect	for	SNP	j	from	MCMC	iteration	r	in	the	scaled	genotype	unit.	666 

Finally,	we	computed	the	posterior	mean	across	MCMC	iterations	as	the	estimate	for	PHEi,		667 

	PHEI =
∑ 	BNO:5:59,=9

P
																																																																				(13)	668 

where	L	is	the	total	number	of	MCMC	iterations.			669 

	670 

Prediction	of	power	and	variance	explained	for	prospective	studies	671 

We	 aim	 to	 predict	 the	 power	 of	 identifying	 a	 certain	 proportion	 of	 the	 causal	 variants	 in	 a	672 

prospective	fine-mapping	analysis,	given	a	sample	size	(n)	and	the	genetic	architecture	of	the	trait,	673 

when	 PIP	 from	 a	 GBMM	 is	 used	 as	 the	 test	 statistic.	 As	 shown	 in	 the	 Supplementary	Note,	674 

assuming	that	variance	explained	by	the	causal	variant	is	𝑣,	the	sampling	distribution	of	PIP	from	675 

the	multi-component	mixture	model,	e.g.,	SBayesRC,	is	676 

𝑃𝐼𝑃 = 1 − *
*Q∑ R2STU{W2X}>

24)
																																																													(14)	677 

where	𝐴- =
;2
;0
𝜆-
0
)𝐶-

'0)	and	𝐵- =
Z=7)

$?2
		are	two	constants	given	the	genetic	architecture	parameters	678 

(𝝅 	and	ℎ!"#$ ),	 with	𝜆- =
=7)

@2=8)
	and	𝐶- = 𝑛 + 𝜆- ,	 and	𝑍 	is	 a	 data-dependent	 random	 variable	679 

following	a	non-central	Chi-square	distribution	with	the	non-centrality	parameter	𝑁𝐶𝑃 = Z[
=7)
:	680 

𝑍	~	𝜒*$(
Z[
=7)
)																																																																									(15)	681 

Given	the	threshold	of	PIP	being	𝛼	for	the	hypothesis	test,	the	power	to	detect	this	causal	variant	682 

can	be	calculated	as	683 

𝑃𝑜𝑤𝑒𝑟[ = Pr(𝑃𝐼𝑃 > 𝛼|𝑣) = ∫ 𝑓(𝑃𝐼𝑃|𝑣)d𝑃𝐼𝑃*
\ 																																									(16)	684 
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where	𝑓(𝑃𝐼𝑃|𝑣)	is	Eq	(14)	above.	To	compute	the	power	for	identifying	any	causal	variant,	we	685 

integrated	out	𝑣	by	686 

𝑃𝑜𝑤𝑒𝑟 = ∫ ∫ 𝑓(𝑃𝐼𝑃|𝑣)𝑓(𝑣)d𝑣d𝑃𝐼𝑃]
^

*
\ 																																													(17)	687 

where	688 

𝑓(𝑣) = 𝑓,(𝑣
0
))𝑣'

0
)																																																																(18)	689 

and	𝑓,(∙)	is	the	distribution	of	𝛽	estimated	from	the	SBayesRC	model.	690 

	691 

Therefore,	 given	 a	 sample	 size,	 the	 expected	 number	 of	 causal	 variants	 identified	 from	 fine-692 

mapping	is	693 

𝐸[𝑁𝐶𝑉] = 𝑚(1 − 𝜋*) × 𝑃𝑜𝑤𝑒𝑟																																																						(19)	694 

The	expected	proportion	of	genetic	variance	explained	by	the	fine-mapped	variants	is	695 

𝐸[𝑃𝐻𝐸] = 𝑚(1 − 𝜋*)𝜎.'$ ∫ 𝑃𝑜𝑤𝑒𝑟[ × 𝑣𝑓(𝑣)d𝑣
]
^ 																																						(20)	696 

Since	it	is	computationally	challenging	to	obtain	an	analytical	solution,	we	opted	to	estimate	these	697 

quantities	through	Monte	Carlo	simulation	(Supplementary	Note).		698 

	699 

Disease	sample	size	at	the	liability	scale	700 

For	diseases	or	binary	traits,	we	converted	the	GWAS	summary	statistics	from	the	linear	mixed	701 

model	 to	 the	 liability	 scale	prior	 to	 running	GBMM.	Based	on	 the	method	 in	Yang	 et	 al.44,	we	702 

estimated	the	sample	size	at	the	liability	scale	that	gives	an	equivalent	power	to	detect	a	locus	703 

affecting	a	quantitative	trait	with	the	same	properties,		704 

𝑁(_ =
I)`(*'`)"?0
(*'a))

																																																																		(21)	705 

where	𝐾	is	the	disease	prevalence,	𝜈	is	the	sample	prevalence,	𝑖 = ℎ/𝐾		with	h	being	the	height	of	706 

standard	normal	curve	at	the	truncation	point	𝑡 = 1 − 𝐾,	and	𝑁^*	is	the	total	number	of	cases	and	707 

controls.	Given	 the	z-score	 (zj)	 from	the	original	GWAS	summary	data	 for	SNP	 j,	 the	marginal	708 

effect	and	its	standard	error	at	the	liability	scale	can	be	estimated	as	following	ref55			709 

𝑆𝐸+ = �
*

$b1(*'b1)("7@Qc1
))
																																																												(22)	710 

𝑏+ = 𝑧+ × 𝑆𝐸+ 																																																																						(23)	711 

where	𝑝+ 	is	the	minor	allele	frequency	of	the	SNP.		712 

	713 

The	 results	 from	 GBMM	 using	 the	 converted	 summary	 statistics	 will	 be	 directly	 comparable	714 

across	traits	regardless	of	the	sample	prevalence	and	the	type	of	traits.	In	our	prediction	analysis	715 

of	power,	we	compared	results	between	diseases	and	quantitative	traits	based	on	the	equivalent	716 

sample	size	estimated	from	Eq	(23).	Similarly,	to	estimate	the	number	of	cases	required,	in	a	case-717 

control	study	with	equivalent	number	of	controls,	to	achieve	a	certain	power,	we	rearranged	the	718 
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same	equation	so	that	719 

𝑁%de(e =
*
$
(*'a))"7@
I)`(*'`)

																																																																	(24)	720 

	721 

Simulations	based	on	imputed	genotype	data	from	the	UK	Biobank	722 

To	evaluate	the	performance	of	GBMM,	we	ran	simulations	using	the	imputed	genotype	data	from	723 

the	 UK	 Biobank	 after	 quality	 controls	 (QC).	 In	 this	 study,	 we	 selected	 300,000	 unrelated	724 

individuals	 and	 included	 ~1.2	 million	 HapMap3	 SNPs	 with	 MAF	 >	 0.01,	 Hardy-Weinberg	725 

equilibrium	test	P	>	1´10-6,	genotyping	rate	>	0.95,	and	imputation	information	score	>	0.8	for	726 

simulations.		727 

	728 

We	randomly	sampled	𝑚% = 10,000	casual	variants	from	the	genome	for	100,000	individuals	and	729 

simulated	complex	trait	phenotypes	based	on	the	following	model:	730 

𝒚 = 𝐗𝜷 + 𝒆																																																																								(25)	731 

where	𝐗	is	 the	genotype	matrix	 for	 the	causal	variants,	𝛽I~𝑁(0, ℎ$ 𝑚%⁄ )	and	𝑒+~𝑁(0, 𝑣𝑎𝑟(𝐗𝜷)/732 

(1 ℎ$⁄ − 1)) 	with	ℎ$ = 0.5 	being	 the	 proportion	 of	 phenotypic	 variance	 explained	 by	 all	 the	733 

causal	variants.	To	check	the	robustness	of	GBMM,	we	also	ran	simulations	under	various	settings.	734 

For	simulations	under	LD-MAF	stratification	model,	we	partitioned	all	 the	genome-wide	SNPs	735 

into	 four	 LD	 and	MAF	 groups	 (by	 their	median	 values)	 and	 only	 sampled	 the	 10,000	 causal	736 

variants	in	the	high	LD	and	high	MAF	group.	For	the	major	gene	model	simulation,	we	separated	737 

the	sampling	of	effect	size	for	causal	variants	from	two	distributions,	i.e.,	10	random	SNPs	with	738 

effects	from	𝑁(0, 0.2 ∗ ℎ$ 10⁄ )	and	the	rest	SNPs	with	effects	from	𝑁(0, 0.8 ∗ ℎ$ 9990⁄ ).		739 

		740 

We	ran	a	standard	GWAS	using	 the	genotypes	with	 the	simulated	phenotypes	under	different	741 

settings.	We	then	used	the	GWAS	summary	data	to	perform	GBMM	(SBayesRC27	and	SBayesC24)	742 

implemented	in	GCTB,	SuSiE11,	FINEMAP12,	SuSiE-inf13,	FINEMAP-inf13	and	PolyFun-S19	to	detect	743 

fine-mapped	 variants	 and	 compute	 corresponding	 PIPs	 and	 effect	 sizes.	 We	 used	 imputed	744 

genotypes	from	10,000	random	samples	from	UK	Biobank	as	the	LD	reference	in	this	study.	We	745 

repeated	 the	whole	 process	 100	 times	 and	 then	 quantified	 the	 true	 discovery	 rate,	mapping	746 

precision	 and	 replication	 rate	 for	 each	method.	 The	mapping	 precision	was	 computed	 as	 the	747 

physical	distance	between	the	identified	SNPs	and	nearest	causal	variants.		748 

	749 

Real	data	analysis	750 

We	 analysed	 598	 UK	 Biobank	 complex	 traits	 GWAS	 summary	 data	 from	 Neale’s	 lab	 (Data	751 

Availability)	and	the	schizophrenia41	and	Crohn’s	disease42	GWAS	summary	data.	We	selected	752 

these	598	traits	with	z-score	>	4	and	high	confidence	for	heritability	estimates	using	LD	score	753 
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regression.	We	 used	 the	 annotations	 from	 baseline	model	 BaseLineLD	 v2.238	 and	 extract	 the	754 

imputed	 SNPs	 with	 MAF	 >	 0.001	 and	 that	 are	 in	 common	 with	 the	 annotations,	 leading	 to	755 

13,065,104	imputed	SNPs	passed	the	quality	control.	We	used	10,000	random	samples	from	the	756 

UK	Biobank	 as	 the	 LD	 reference	 to	 run	 the	 SBayesRC	 and	 other	 region-specific	 fine-mapping	757 

analysis.	We	further	extracted	48	well-powered	traits	with	relatively	large	sample	size	(n	>	100,	758 

000),	high	heritability	(h2	>	0.1)	and	at	least	a	fine-mapped	SNP	at	PIP	>	0.9.		759 

	760 

For	 the	 polygenic	 score	 prediction	 analysis	 using	 fine-mapped	 variants	 only,	 we	 performed	761 

quality	control	for	the	imputed	genotype	data	provided	by	the	UKB	analysis	team36.	We	kept	SNPs	762 

with	MAF	>	0.01,	Hardy-Weinberg	Equilibrium	test	P	>	10-10,	imputation	info	score	>	0.6	within	763 

each	 ancestry	 samples.	 We	 removed	 samples	 with	 mismatched	 sex	 information,	 samples	764 

withdrawn	from	participation	and	cryptic	related	samples	following	ref27.	We	separate	the	final	765 

UKB	dataset	 into	4	ancestries,	European	(EUR,	N=	347,800),	East	Asian	(EAS,	N=2,252),	South	766 

Asian	(SAS,	N=9,436)	and	African	(AFR,	N=7,006).	The	phenotypes	with	continuous	values	were	767 

filtered	within	 the	 range	 of	mean	 +/-	 7SD	 and	 then	 rank-based	 inverse-normal	 transformed	768 

within	each	ancestry	and	sex	group.	The	GWAS	were	performed	using	PLINK2	software5	with	sex,	769 

age	and	first	10	principal	component	as	covariates.	Linear	regression	was	used	for	continuous	770 

traits	and	logistic	regression	for	binary	traits.		771 

	772 

Supplementary	Information	773 

Supplementary	 data	 include	 12	 supplementary	 figures,	 4	 supplementary	 table	 and	 a	774 

supplementary	note.	775 

	776 

Data	Availability	777 

Our	SBayesRC-enabled	genome-wide	fine-mapping	results	for	600	complex	traits	are	available	at	778 

link	 (https://sbayes.pctgplots.cloud.edu.au/data/SBayesRC/share/Finemap/v1.0/).	 The	 UK	779 

Biobank	 data	 are	 available	 through	 formal	 application	 to	 the	 UK	 Biobank	780 

(http://www.ukbiobank.ac.uk).	The	GWAS	summary	data	for	598	complex	traits	in	UK	Biobank	781 

are	 from	 http://www.nealelab.is/uk-biobank/.	 All	 the	 other	 datasets	 used	 in	 this	 study	 are	782 

available	in	the	public	domain.		783 

	784 

Code	Availability	785 

Summary-data-based	 genome-wide	 Bayesian	 mixture	 models	 are	 implemented	 in	 a	 public	786 

available	 software	 GCTB	 at	 https://cnsgenomics.com/software/gctb/#Download.	 Methods	 to	787 

compute	 LCS	 and	 GCS	 have	 also	 been	 implemented	 in	 GCTB	788 
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(https://cnsgenomics.com/software/gctb/#Genome-wideFine-mappinganalysis).	 Online	 tool	789 

for	predicting	fine-mapping	power:	https://sbayes.pctgplots.cloud.edu.au/shiny/power/.	790 
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	960 
Figure	 1	 Schematic	 overview	 of	 genome-wide	 fine-mapping	 analysis	 using	 GBMM.	 GBMM	961 

requires	 the	 GWAS	 summary	 statistics	 and	 genome-wide	 LD	 reference	 to	 fine-map	 the	 likely	962 

causal	 variants	 for	 complex	 traits,	 and	 can	 incorporate	 functional	 annotations.	 Compared	 to	963 

regional-based	fine-mapping	approaches,	GBMM	estimates	priors	with	genome-wide	SNPs	and	964 

MCMC	sampling	algorithm,	and	is	more	flexible	on	the	assumption	of	the	underlying	distribution	965 

of	causal	effects	(Table	S1).	The	illustration	was	created	with	BioRender.com.		966 
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	967 

Figure	2	Comparison	in	the	calibration	of	PIP	between	GBMM	and	existing	fine-mapping	methods	968 

under	simulations	with	various	genetic	architectures.	Shown	are	relationship	between	PIP	and	969 

the	true	discovery	rate	across	100	PIP	bins.	Results	showed	in	each	column	correspond	to	the	970 

results	 from	 GBMM	 (SBayesC	 and	 SBayesRC),	 SuSiE-inf	 and	 FINEMAP-inf	 and	 SuSiE	 and	971 

FINEMAMP	 respectively.	 Results	 shown	 in	 each	 row	 correspond	 to	 the	 sparse	 genetic	972 

architecture,	major	gene	genetic	architecture	and	LDMS	architecture	respectively.			973 
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975 

Figure	 3	Comparison	 in	 local	 credible	 set	 (LCS)	 between	 SBayesRC	 and	 SuSiE-inf.	 Shown	 in	976 

panels	(a-c)	are	power	comparison	between	SBayesRC	and	SuSiE-inf	at	 the	same	alpha	cutoff.	977 

Shown	in	panels	(d-f)	are	credible	size	comparison	between	SBayesRC	and	SuSiE-inf	at	the	same	978 

alpha	cutoff.	Results	showed	in	each	column	correspond	to	the	simulation	under	sparse	model	(a,	979 

and	d),		major	gene	model	(b	and	e)	and	LDMS	model	(c	and	f).		980 
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	981 

Figure	 4	 Comparisons	 of	mapping	 precision,	 independent	 sample	 replication,	 and	 effect	 size	982 

estimation	bias	among	fine-mapping	methods.	Panel	(a-c)	shows	the	distance	between	the	causal	983 

variants	and	the	SNPs	identified	by	different	methods	at	PIP	of	0.9	in	simulations	based	on	sparse	984 

(a),	 large	 effects	 (b)	 and	 LDMS	 (c)	 genetic	 architectures	 (Methods).	 Panel	 (d-e)	 show	 the	985 

replication	rate	of	discovery	using	different	methods	at	a	given	PIP	threshold	in	the	replication	986 
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sample	(x-axis)	using	simulations	(d)	and	real	data	analysis	for	height	in	the	UKB	(e).	Simulations	987 

are	based	on	a	sparse	model	and	results	in	(d)	are	the	mean	values	over	ten	simulation	replicates.	988 

Panel	(f-g)	show	the	regression	of	the	estimated	marginal	effect	size	in	replication	samples	on	the	989 

estimated	joint	effect	size	in	discovery	samples	using	different	fine-mapping	methods.	Dash	line	990 

shows	the	regression	slope,	which	is	closer	to	one	for	a	less	biased	method.	The	marginal	effect	991 

estimated	in	the	independent	replication	samples	was	used	as	a	proxy	to	the	true	value	because	992 

it	is	an	unbiased	estimate.	The	brown	solid	line	is	the	y=x	line.		993 

	 	994 
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995 

Figure	5	Out-of-sample	prediction	accuracy	using	identified	variants	from	different	fine-mapping	996 

methods.	(a)	Comparison	of	the	prediction	R2	using	the	fine-mapped	SNPs	from	different	methods	997 

in	the	simulation	based	on	the	sparse	architecture	(Methods).	The	number	above	each	bar	is	the	998 

number	of	fine-mapped	SNPs	from	each	method	at	different	PIP	cut-offs.	(b)	Comparison	of	trans-999 

ancestry	prediction	accuracy	using	fine-mapped	variants	from	SBayesRC	and	SuSiE-inf	from	the	1000 

analysis	of	samples	of	European	ancestry	for	6	complex	traits	in	the	UK	Biobank,	with	variants	1001 

with	PIP	>	0.9.	(c)	The	relationship	between	trans-ancestry	prediction	transferability	and	PIP	in	1002 

European	ancestry.	The	transferability	was	computed	as	non-EUR-R2/	EUR-R2.	The	solid	lines	are	1003 

regression	lines	across	traits	in	each	ancestry.	Results	are	the	mean	values	over	100	simulation	1004 

replicates.		1005 
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	1006 
Figure	6	Projection	of	genome-wide	fine-mapping	outcomes	to	the	theoretical	power	prediction	1007 

in	 complex	 traits	 with	 diverse	 genetic	 architectures.	 (a-c)	 show	 the	 results	 of	 SBayesRC	1008 

estimation	 for	 the	 SNP-based	 heritability	 (ℎ!"#$ )	 (a),	 the	 proportions	 of	ℎ!"#$ 	explained	 by	1009 

different	 mixture	 components	 (b),	 and	 the	 proportions	 of	 SNPs	 with	 effects	 from	 different	1010 

mixture	components	(𝝅)	(c),	for	the	simulated	trait,	height,	Crohn’s	disease	(CD),	schizophrenia	1011 

(SCZ),	and	high	density	lipoprotein	(HDL).	(d-e)	shows	the	theoretical	prediction	of	the	power	of	1012 

identifying	 causal	 variants	 (d)	 and	 the	 proportion	 of	ℎ!"#$ 	explained	 by	 the	 identified	 causal	1013 

variants	at	different	GWAS	sample	sizes	for	these	traits.	Dot	shows	the	observed	trait	outcome	1014 

based	on	local	credible	sets	(including	singleton	LCSs)	identified	from	SBayesRC.	Note	that	the	1015 

results	shown	in	(a,	c)	were	used	as	input	data	for	our	method	that	predicts	fine-mapping	power	1016 

given	sample	sizes	(d-e).		 	1017 
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	1018 

Figure	 7	 Theoretical	 identification	 and	 prediction	 of	 genome-wide	 credible	 SNPs	 across	 48	1019 

independent	 complex	 traits.	 Panel	 (a-b)	 shows	 the	 theoretical	 prediction	 of	 power	 and	1020 

proportion	of	SNP-based	heritability	explained	by	GCS	SNPs	at	different	GWAS	sample	sizes	for	1021 

the	 48	 complex	 traits,	 respectively.	 Panel	 (c)	 shows	 the	 proportion	 of	 identified	GCS	 SNPs	 at	1022 

different	 alpha	 threshold	 (proportion	 of	 causal	 variants	 captured)	 for	 the	 48	 complex	 traits	1023 

(average	sample	size	=	291K).	Panel	(d)	shows	the	proportion	of	ℎ!"#$ 	explained	by	the	GCS	SNPs	1024 

at	different	alpha	threshold.	Colours	indicate	different	trait	categories.		1025 
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	1027 

Figure	8	Genome-wide	fine-mapping	with	functional	annotations	helped	pinpoint	the	putative	1028 

causal	 variants.	 Panel	 (a)	 shows	 enrichment	 of	 the	 genome-wide	 fine-mapped	 SNPs	 from	1029 

SBayesRC	and	GWAS	clumped	SNPs	 in	 the	22	main	 functional	 categories	defined	 in	 the	LDSC	1030 

baseline	model.	Panel	(b)	shows	the	prioritized	causal	variant	at	the	FTO	locus	for	BMI.	The	top	1031 

track	shows	the	FTO	locus	plot	of	the	standard	GWAS	for	BMI,	and	the	second	track	shows	the	1032 
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similar	plot	but	with	the	PIP	from	SBayesRC	for	BMI.	The	starred	SNP	is	the	known	causal	variant	1033 

(rs1421085)	 for	 obesity	 at	 the	FTO	 locus	 supported	by	previous	 functional	 studies.	 Panel	 (c)	1034 

shows	the	per-SNP	heritability	enrichment	for	the	causal	variant	(rs1421085),	 the	GWAS	lead	1035 

variant	 (rs11642015)	 and	 the	 secondary	 signal	 (rs76488452)	 for	 BMI	 at	 the	 FTO	 locus.	 The	1036 

annotations	 on	 the	 x-axis	were	 those	 present	 at	 least	 once	 in	 these	 three	 variants,	 excluding	1037 

quantitative	annotations	and	duplicated	annotations	with	flanking	windows.	Panel	(d)	shows	the	1038 

prioritized	causal	variant	at	the	SLC39A8	locus	for	SCZ.	The	top	track	shows	the	SLC39A8	locus	1039 

plot	of	the	standard	GWAS	for	SCZ,	and	the	second	track	shows	the	similar	plot	but	with	the	PIP	1040 

from	SBayesRC	for	SCZ.	The	starred	SNP	is	the	missense	variant	(rs13107325)	fine-mapped	for	1041 

SCZ	at	 the	SLC39A8	 locus.	Panel	 (e)	 shows	 the	per-SNP	heritability	enrichment	 for	 the	 causal	1042 

variant	(rs13107325)	and	the	secondary	signal	(rs34333163)	for	SCZ	at	the	SLC39A8	locus.		1043 

	1044 

	1045 
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