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Abstract 

Background 

Identifying causative variants is crucial for the diagnosis of rare genetic diseases. Over 

the past two decades, the application of genome sequencing technologies in the field 

has significantly improved diagnostic outcomes. However, the complexity of data 

analysis and interpretation continues to limit the efficiency and accuracy of these 

applications. Various genotype and phenotype-driven filtering and prioritization 

strategies are used to generate a candidate list of variants for expert curation, with the 

final report variants determined through knowledge-intensive and labor-intensive 

expert review. Despite these efforts, the current methods fall short of meeting the 

growing demand for accurate and efficient diagnosis of rare disease. Recent 

developments in large language models (LLMs) suggest that LLMs possess the 

potential to augment or even supplant human labor in this context. 
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Methods 

In this study, we have developed Genetic Transformer (GeneT), an innovative large 

language model (LLM) driven approach to accelerate identification of candidate 

causative variants for rare genetic disease.  A comprehensive evaluation was conducted 

between the fine-tuned large language models and four phenotype-driven methods, 

including Xrare, Exomiser, PhenIX and PHIVE, alongside six pre-trained LLMs 

(Qwen1.5-0.5B, Qwen1.5-1.8B, Qwen1.5-4B, Mistral-7B, Meta-Llama-3-8B, Meta-

Llama-3-70B). This evaluation focused on performance and hallucinations.  

 

Results  

Genetic Transformer (GeneT) as an innovative LLM-driven approach demonstrated 

outstanding performance on identification of candidate causative variants, identified 

the average number of candidate causative variants reduced from an average of 418 to 

8, achieving recall rate of 99% in synthetic datasets. Application in real-world clinical 

setting demonstrated the potential for a 20-fold increase in processing speed, reducing 

the time required to analyze each sample from approximately 60 minutes to around 3 

minutes. Concurrently, the recall rate has improved from 94.36% to 97.85%. An online 

analysis platform iGeneT was developed to integrate GeneT into the workflow of rare 

genetic disease analysis. 

 

Conclusion 

Our study represents the inaugural application of fine-tuned LLMs for identifying 

candidate causative variants, introducing GeneT as an innovative LLM-driven 

approach, demonstrating its superiority in both simulated data and real-world clinical 

setting. The study is unique in that it represents a paradigm shift in addressing the 

complexity of variant filtering and prioritization of whole exome or genome sequencing 

data, effectively resolving the challenge akin to finding a needle in a haystack. 

 

Keywords: Rare Genetic Disease, Large Language Models (LLMs), Variant filtering and 

prioritization 

Introduction 

Rare genetic diseases are hereditary, most are chronic and many result in early death, 

predominantly consist of Mendelian disorders. Currently, approximately 10,000 

Mendelian diseases have been identified[1], among which the number of rare genetic 

diseases to be 6,000-8,000[2, 3]. A conservative, evidence-based estimate for the 

population prevalence of rare genetic diseases of 3.5–5.9%, which equates to 263–446 

million persons affected globally at any point in time[3]. Individuals afflicted with a 

rare genetic disease are likely to possess causative variants that are both rare and 

deleterious. Understanding how genomic alterations result in different disease-related 

phenotypes is fundamental to diagnosis of rare genetic diseases[4]. 

 

The advent of high-throughput sequencing technologies over the past two decades has 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2024. ; https://doi.org/10.1101/2024.07.18.24310666doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.18.24310666
http://creativecommons.org/licenses/by-nc-nd/4.0/


significantly reduced the difficulty in obtaining genotype information, thereby 

enhancing the discovery of genes responsible for rare genetic diseases and improving 

diagnostic rates. This advancement, nevertheless, introduces the complexity of sifting 

through a vast array of variants to identify the few that are pathogenic, particularly with 

whole exome sequencing (WES) and whole genome sequencing (WGS)[5].  

 

Filtering and prioritization strategies aim to balance between maximizing sensitivity 

and minimizing the number of candidate variants, encompassing both genotype-driven 

and phenotype-driven analyses[6]. Genotype-driven analysis typically results in several 

hundred SNV/INDEL variants remaining for consideration[7]. Phenotype-driven 

analysis often serves as a complement to genotype-driven analysis, further refining the 

prioritization of remaining variants by integrating phenotypic information, with the aim 

of elevating genes or variants related to the patient's phenotype for priority review by 

experts. There are phenotype-driven methods have been developed to prioritize genes 

and variants, including VAAST[8], Phevor[9], Phen-Gen[10], PhenIX[11], 

Exomiser[9], Phenolyzer[12], Genomiser[13], Xrare[14], LIRICAL[15], AMELIE[16], 

GEM[17], MOON[18], Emedgene[19], and AI-MARRVEL[20], etc. Those methods 

rely on three elements: phenotypic ontologies, genotype-phenotype databases, and 

algorithms for semantic similarity based on ontologies. Calculating semantic similarity 

based on phenotypes obtained during medical examinations and corresponding 

ontology entries is challenging. Phenotypes are inherently multimodal, and phenotypic 

ontologies, primarily composed of textual entries, may lack expressive power to 

accurately record individual phenotypes. Additionally, phenotypic descriptions are 

often "hasty or imprecise" in real-world settings[21], making it difficult to translate 

them into standardized phenotypic ontology entries. Moreover, phenotypic overlap 

between diseases complicates the situation further. As a result, phenotype-driven 

approaches show less than optimal effectiveness in practice. 

 

Large Language Models (LLMs) have been developed through self-supervised learning 

on extensive text corpora, which equips them with the ability to discern semantic 

relationships between concepts without reliance on phenotype ontologies. There have 

been reports on the performance of LLM in the context of gene prioritization[22, 23], 

shown that LLMs can be used to provide diagnostic support that helps in identifying 

plausible candidate genes. Although these studies have primarily tested the 

performance of basic models in gene-level prioritization, it is theoretically plausible 

that fine-tuned LLMs could achieve superior performance. However, research 

pertaining to this assertion remains unreported. 

 

We designated Genetic Transformer (GeneT) as an innovative LLM-driven approach 

for the filtering and prioritization of candidate causative variants. This study 

investigates the potential of GeneT for candidate causative variant identification 

(Figure 1). We systematically evaluate the ability and accuracy of identifying candidate 

causative variants after fine-tuning various LLMs across gradients of different training 

data volumes. Based on the optimal fine-tuned model, we constructed Genetic 
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Transformer by integrating training sets from diverse data sources. We provide GeneT 

for interpretation experts in real-world clinical setting to assist them in identification of 

candidate causative variants. An online analysis platform iGeneT was developed to 

integrate GeneT into the workflow of rare genetic disease data analysis. 

 

Figure 1: Study overview. A) The workflow of clinical genome sequencing applied 

to the diagnosis of rare genetic diseases. The newly developed LLM-driven filtering 

or prioritization methods hold promise in supplanting conventional approaches reliant 

on phenotype-driven and expert-driven methodologies. B) The fine-tuning process 

and optimization strategies of GeneT. C) The evaluation methods used; D) 

Application in real-world clinical setting. E)  An interactive analysis platform 

incorporating GeneT, iGeneT. 

 

Result 
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Fine-tuned LLMs enable accurate identification of disease-causing 

variations 

We employed a training dataset TIO-1 and a testing dataset TIO-2, comprising synthetic 

cases from HGMD, OMIM, GPCards and 1000 Genomes Project, for fine-tuning and 

evaluating the LLMs (detail see methods). This fine-tuning process aimed to enhance 

the model's proficiency in identifying candidate causative variants. Fine-tuning was 

performed on six pre-trained open source LLMs, including Qwen1.5-0.5B, Qwen1.5-

1.8B, Qwen1.5-4B, Mistral-7B, Meta-Llama-3-8B, and Meta-Llama-3-70B. The 

training dataset, consisting of 12 gradients, ranges from 40 to 20,000 cases for the 

analysis of the scaling law of those models (Table 1). Figure 2 depicts the F1 scores of 

each model across varying training dataset sizes. When the training dataset size is 0, 

i.e., when the base model is used without fine-tuning, the F1 scores of all models are 0. 

These results are unable to effectively discern the pathogenicity of the variations, and 

within the scope of our study, they are consistently characterized as hallucinations. As 

the dataset size exceeds 800, the performance of those models stabilizes, with 

subsequent enhancements becoming insignificant, yielding F1 scores and AUC 

exceeding 0.9 (Figure 2 A; Supplementary Table S1). It is noteworthy that despite 

their smaller parameter size, both Qwen1.5-0.5B and Qwen1.5-1.8B exhibit a F1-score 

comparable to, or even superior to, that of other large-parameter models. 

 

Our model's input prompts encompass a diverse array of variant features, including 

basic features (such as gene symbol, transcript, zygosity and HGVS name), functional 

data, ClinVar clinical significance, gene-associated disease information, population 

data, and ACMG interpretation information (Supplementary Table S2). To delve 

deeper into the learned feature importance of the model, we sequentially incorporated 

additional features into the inference of those fine-tuned models under the condition of 

variant basic information, to observe the changes in the F1 score. When only basic 

information is provided, we observed that models with a larger size of parameters 

perform better. For example, the model Qwen1.5-0.5B with a smaller size of parameters 

achieved an F1-score of only 0.0119, while Meta-Llama-3-70B reached 0.6969 (Figure 

2B; Supplementary Table S2). This may be due to the fact that larger models possess 

a certain reservoir of pathogenic variant knowledge, which plays a positive role in 

determining pathogenic variants. Subsequently, the inclusion of various variant features 

led to an improvement in the F1 score, with the addition of gene-associated disease 

information producing the most significant enhancement. For instance, for Qwen1.5-

0.5B, its F1 score increased from 0.0119 to 0.9188 (Figure 2B). Similar trends were 

observed in other models. This underscores the pivotal role of gene-associated disease 

information in the model's assessment of pathogenicity. 

 

Table 1:  F1 score of six pre-trained LLMs across varying sizes of training datasets 
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Training 

dataset 

size 

Qwen1.5-

0.5B 

Qwen1.5-

1.8B 

Qwen1.5-

4B 

Mistral-

7B 

Meta-Llama-

3-8B 

Meta-

Llama-

3-70B 

0 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

20 0.0000  0.0000  0.0000 0.0000  0.0000  0.0000  

40 0.6667  0.0060  0.1022 0.6667  0.0000  0.0000  

80 0.7904  0.8629  0.8885 0.6667  0.0526  0.0000  

100 0.5690  0.8698  0.8870 0.6667  0.0479  0.0000  

200 0.8876  0.9406  0.9323 0.6667  0.8655  0.0000  

400 0.9290  0.9394  0.9480 0.8335  0.8625  0.8557  

800 0.9426  0.9468  0.9520 0.9136  0.9470  0.9246  

1000 0.9481  0.9586  0.9638 0.9272  0.9553  0.9348  

2000 0.9589  0.9541  0.9729 0.9200  0.9467  0.9690  

6000 0.9825  0.9831  0.9835 0.7930  0.9815  0.9811  

10000 0.9795  0.9835  0.9875 0.9559  0.9771  0.9860  

20000 0.9925  0.9925  0.9905 0.9075  0.9870  0.9890  

 

 

Figure 2: Fine-tuned LLMs enable accurate identification of disease-causing variations. A) 

Performance of fine-tuned LLMs across varying training dataset sizes. B) The F1 scores of the fine-
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tuned LLMs across different features.  

GeneT outperforms state-of-the-art methods on synthetic datasets 

We then fine-tuned the six pre-trained LLMs, using the diversity training dataset TIO-

3 (see methods). In GeneT, patient phenotypes are associated with variant information 

through prompt, and phenotypes are provided in various forms, such as disease names, 

free-text, and HPO/phenotype terms. We generated 200 synthetic whole-genome 

sequencing (WGS) samples for each of the three categories by leveraging data sourced 

from the HGMD, OMIM, and GPCards databases, alongside samples obtained from the 

1000 Genomes Project (see methods). This methodology was employed to assess the 

model's performance across diverse phenotypic data sets. 

 

After the implementation of GeneT, the number of variants in the three test set samples 

decreased significantly, most notably for Qwen1.5-1.8B, from an average of 421, 414, 

and 419 to 9, 5, and 10, respectively. The Mistral-7B performed the least well, with 

more false-positive variants detected (Figure 3 A, B, C). Meanwhile, the fine-tuned 

Qwen1.5-1.8B achieved positive variant recalls of 0.98, 0.99 and 0.98 in the three test 

sets, respectively. Other fine-tuned LLMs exhibit comparable or marginally inferior 

performance (Supplementary Tables S3-8). These results indicate that GeneT has the 

capacity to substantially decrease the number of candidate causative variants while 

upholding a high recall rate for causative variants. 

 

GeneT was then compared with existing state-of-the-art phenotype-driven variant 

prioritization methods on the synthetic samples for performance evaluation. We ranked 

the positive variants identified by GeneT using the predicted token probabilities to 

calculate the cumulative distribution of TopK recall performance. The results suggest 

that GeneT has demonstrated significantly superior performance compared to other 

phenotype-driven methods across the three test sets (Figure 3D, E, F, Supplementary 

Tables S3-8). Except for Mistral-7B, the performance of other fine-tuned LLMs is 

comparable, achieving high cumulative recall (>0.9) at lower TopK thresholds.  

Additionally, the token probabilities predicted by GeneT can be employed to prioritize 

all candidate variants within each sample, extending beyond the variants predicted as 

positive by GeneT. Upon prioritizing all variants based on these probability values, we 

noted that variants predicted as negative but actually positive were positioned at 

relatively higher ranks (Supplementary Figure S1, Tables S3-8). This indicates that 

GeneT can also serve as an alternative for prioritizing variant ranking tools. 
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Figure 3: Performance evaluation on synthetic datasets. The number of candidate 

variants before and after the utilization of GeneT and TopK CDF plots on AD) the 

HGMD-1000Genomes dataset (HKG-I), BE) the OMIM-1000Genomes dataset (OKG-

I), CF) the GPCards-1000Genomes dataset (GKG-I). CDF: Cumulative Distribution 

Function. The numerical values adjacent to each boxplot represent the mean number of 

candidate variations. 

An application in real-world clinical setting confirms GeneT markedly 

boosts expert efficiency and precision in identifying candidate variants 

We provided GeneT as a plugin in our interpretation system for interpretation experts 

in real-world clinical setting to assist them in identification candidate causative variants. 

The efficacy of the GeneT was then evaluated over a one-month period within the real-

world clinical setting. In the realm of clinical genetic testing, the assurance of 

interpretation result reliability often involves the allocation of expert 1 and expert 2 for 

the initial screening of candidate variations and subsequent review of the preliminary 

screening outcomes. GeneT is principally employed to aid expert 1 in the process of 

screening for genetic variations. The results indicated a significant reduction in analysis 

time when utilizing the GeneT results while adhering to the standard operating 

procedure (SOP). The average analysis time decreased from 63.22 minutes to 44.11 

minutes per sample (p=2.57e-13) (Figure 4A). Additionally, if GeneT results are used 

directly, there is potential for a 20-fold increase in speed, reducing the time required 

from approximately 60 minutes to around 3 minutes per sample. Furthermore, a 
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marginal enhancement in the recall rate was observed (p=0.0846), rising from 94.36% 

to 97.40%. Concurrently, the variance in recall rates among interpretation experts 

decreased (Figure 4B). The outcomes of this prospective investigation validate the 

capacity of GeneT to augment interpretive efficiency and precision. These findings 

emphasize the significance of GeneT as a valuable component within the genetic 

analysis workflow. 

 

 
 

Figure 4. The effectiveness of GeneT in real-world clinical setting. A) The Time 

consumption and B) Recall rates for interpretation experts with and without the use of 

GeneT, alongside with GeneT_only recall performance. Each data point in the left graph 

corresponds to a sample, whereas the points in the right graph denote interpretation 

experts.  Without_GeneT: Experts in interpretation refrain from utilizing GeneT and 

instead interpret based on their Standard Operating Procedures (SOP). Without_GeneT: 

Interpretation experts utilize GeneT as a point of reference while adhering to their 

original SOP. GeneT_only: Solely employs GeneT analysis, with the time denoting the 

duration for analyzing a single sample using GeneT. 

Hallucinations and reproducibility 

Hallucination is a prevalent issue in LLMs, while reproducibility is a metric of 

significant importance in clinical applications. The assessment of hallucination and 

reproducibility is a crucial aspect of LLM utilization in clinical diagnostics. In this 

paper, we define the hallucination as outcomes incongruent with the anticipated outputs 

of "positive" or "negative". We observed that the pre-training LLM exhibited significant 

hallucination issues before to fine-tuning, despite our constraints on the model's output, 

which were notably improved after fine-tuning, particularly as the size of the fine-

tuning dataset gradually increased (Figure 5, Supplementary Table S1). One of the 

primary reasons for this improvement lies in our transformation of the challenge of 

screening or ranking the entire pathogenic variation into an individual variation 

pathogenicity classification problem. Additionally, we enhanced the prompt by 

incorporating the "COT" directive, enabling the model to engage in step-by-step self-

verification and improving its performance in multi-step reasoning tasks. The prompt 
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also served to restrict the model's output, allowing it to produce only "negative" or 

"positive" results. Furthermore, the integration of the RAG strategy, which links to 

external knowledge bases, bolstered the model's ability to validate answers and to some 

extent, mitigated the generation of hallucinations. 

 

Figure 5. Hallucinations of six LLMs. The abscissa denotes the magnitude of the 

training dataset, while the ordinate signifies the occurrence of hallucinations. As the 

size of training data increases, the hallucinations of the model gradually dissipate. 

 

During text generation, the LLM utilizes probability distributions to select the next 

word, thereby introducing a certain degree of randomness. To maximize the stability of 

LLM output, we set the temperature parameter of the softmax function in the LLM to 

0. We utilized GeneT to perform inference analysis on a randomly chosen set of six 

genetic variants, executing a total of 10,000 replicate experiments for each to evaluate 

the variability in the predictive results. The results of these experiments exactly the 

same, indicate a high level of consistency and reproducibility in the identification of 

candidate variants by GeneT. 

iGeneT: an interactive analysis platform incorporating GeneT 

We developed an interactive analysis platform iGeneT (http://igenet.genomics.cn), 

which integrates GeneT, enabling users to perform variants analysis using an online 

web interface. Users can perform analysis by submitting the sample's clinical phenotype 

and VCF file. 

Discussion 

We present GeneT as an innovative LLM-driven approach for the filtering and 

prioritization of candidate causative variants. Our results demonstrate an exceptional 

performance compared to existing state-of-the-art phenotype-driven variant 
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prioritization methods, achieving the recall rates of 99% and 98% in synthetic datasets 

and real-world clinical setting, respectively. Additionally, the results indicate the 

potential for a 20-fold increase in speed, reducing processing time from approximately 

60 minutes to around 3 minutes per sample.  

 

In this study, GeneT supports phenotypes presented in various forms, such as disease 

names, free-text descriptions, and HPO/phenotype terms. In contrast to phenotype-

driven methods, LLMs possess the capability to discern semantic relationships between 

concepts without relying on phenotype ontologies. Moreover, LLMs have the potential 

to leverage additional phenotypic information, including medical records, speech, 

images, and radiographs, which can not only facilitate the identification of candidate 

variants but also help prevent diagnostic delays [24]. 

 

This study concentrates on the primary findings at the single-variant loci level, 

including single nucleotide variants (SNVs) and insertions/deletions (InDels) within the 

protein-coding regions. GeneT is also discernible, albeit with slightly lower 

performance in other contexts currently. These contexts include  (1) secondary findings, 

which are results that are not related to the indication for ordering the sequencing but 

that may nonetheless be of medical value or utility to the ordering physician and the 

patient. [25]; (2) other types of variations within coding regions, as well as those in 

other regions, such as copy number variations (CNVs), repeat expansions, and 

structural variations (SVs), which are anticipated to account for part of the remaining 

positive cases[26]; (3) compound loci situations, such as compound heterozygosity[27, 

28], complex compound patterns[29, 30], and digenic inheritance[31, 32]. However, 

these scenarios were not specifically trained for or evaluated in the current study and 

will be the focus of future model enhancements. 

 

Our study reveals that a model with 0.5 and 1.8 billion parameters demonstrates optimal 

performance, suggesting that smaller parameter size LLMs may be more adept than 

larger parameter size LLMs for executing binary classification tasks. The prevailing 

notion that "bigger is better"[33] has been a central theme in the recent evolution of 

LLMs. While our study also indicates that larger parameter size LLMs exhibit stronger 

overall capabilities (Figure 2B), they may not be ideally suited for applications 

requiring on-device processing capabilities, energy efficiency, a minimal memory 

footprint, and swift response times. These attributes are crucial for ensuring privacy, 

security, and the sustainable deployment of AI-driven solutions. 

 

In conclusion, we present GeneT as an innovative LLM-driven approach for the rapid 

and accurate identification of causative variants in rare genetic diseases. This research 

represents a paradigm shift in the methodology for interpreting genetic disorders. By 

leveraging the extensive knowledge base of large language models (LLMs), their 

advanced semantic comprehension, and the capacity for comprehensive training and 

fine-tuning, we can integrate the analytical reasoning and specialized expertise of 

domain professionals. Beyond its application in the identification of candidate 
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causative variants, the powerful potential of LLMs extends to assess the risk of genetic 

disorders based on phenotype, variant interpretation, and genetic counseling. This 

approach holds the promise to replace traditional algorithms and either augment or even 

supplant human labor in these contexts, thereby accelerating the diagnosis of rare 

genetic diseases. 

Material and methods 

Datasets 

We have established multiple training and testing datasets for model fine-tuning and 

testing, constructed from data sources, including HGMD[34], OMIM[35], 

GPCards[36], and the 1000 Genomes Project[37]. All variants have been annotated by 

an in-house pipeline, integrating tools such as BCFanno[38] and SIGVAR[39]. To 

mitigate the influence of the training set on the testing set, it is ensured that the testing 

set comprises variants not present in the training set. 

The HGMD-1000Genomes Dataset: Based on the HGMD Professional database 

release 2018.3, we selected DM-marked variants absent from the ClinVar database. 

Utilizing these variants, we have constructed two datasets (as detailed below), 

specifically designated for model fine-tuning and testing. 

⚫ HKG-T: 26826 cases, with phenotype and pathogenic variant from HGMD, non-

pathogenic variants from 1000 Genomes.  

⚫ HKG-I: 200 synthetic WGS cases using phenotype and pathogenic variants 

randomly extracted from HGMD inserted into genome-wide VCF files released by 

the 1000 Genome Project. Through variant annotation and preliminary filtering 

analysis, nearly 400 candidate variants remained for each sample.  

The OMIM-1000Genomes Dataset: Based on the archived OMIM updated on 

February 22, 2011(https://ftp.ncbi.nih.gov/repository/OMIM/ARCHIVE), we extracted the 

descriptions in the "CLINICAL FEATURES" section from omim.txt.Z file as 

phenotypes and matched them with the variants on pathogenic genes in ClinVar. We 

have constructed two datasets (as shown below), designated for model fine-tuning, and 

TopK evaluation, respectively. 

⚫ OKG-T: 19770 cases, with phenotype and pathogenic variant from OMIM and 

ClinVar, non-pathogenic variants from 1000 Genomes.  

⚫ OKG-I: 200 synthetic WGS samples using phenotype and pathogenic variants 

from OMIM (manually curated post 2012) inserted into genome-wide VCF files 

released by the 1000 Genome Project. Through variant annotation and preliminary 

filtering analysis, nearly 400 candidate variants remained for each sample.  

The GPCards-1000Genomes Dataset: Based on the records downloaded from 

GPCards, we documented a table file of sample phenotypes and genotypes, from which 

we extracted a subset for use in this study. We excluded variants recorded in ClinVar 

and, based on phenotype deduplication, randomly selected 200 variants to serve as the 

testing set, with the remainder constituting the training set. We have constructed two 

datasets (as shown below), designated for model fine-tuning, and TopK evaluation, 

respectively. 
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⚫ GKG-T: 8748 cases, with phenotype and pathogenic variant from GPCards, non-

pathogenic variants from 1000 Genomes.  

⚫ GKG-I: 200 synthetic WGS samples using phenotype and pathogenic variants 

from GPcards inserted into genome-wide VCF files released by the 1000 Genome 

Project. Through variant annotation and preliminary filtering analysis, nearly 400 

candidate variants remained for each sample. The testing set has variants that are 

not found in the training set.  

Three-in-One Datasets: The diversity of the training data is a crucial factor in 

enhancing model performance, as it enables the model to better understand and process 

various types of inputs, thereby achieving superior results in practical applications. To 

ensure the efficacy of model training, we constructed two comprehensive three-in-one 

datasets to enhance the diversity of the training set for fine-tuning the Large Language 

Model (LLM) (as shown below). 

⚫ TIO-1: 20000 cases, constructed from three distinct datasets in specific 

proportions: 25% OKG-T, 45% HKG-T, and 35% GKG-T. This dataset is utilized 

for gradient testing of the Large Language Model (LLM). 

⚫ TIO-2: 2000 cases, constructed from three distinct datasets in specific proportions: 

25% OKG-T, 45% HKG-T, and 35% GKG-T. This dataset is utilized for gradient 

testing of the Large Language Model (LLM), all variants not present in the training 

set TIO-1. 

⚫ TIO-3: 55344 cases, integrating the OKG-T, HKG-T, and GKG-T datasets. It is 

employed for GeneT fine-tuning and TopK CDF assessment. 

Phenotype-driven methods 

Four phenotype-driven tools were selected for comparison: PHIVE[40], PhenIX[11], 

Exomiser[9], and Xrare[14]. These have been chosen as benchmarks due to their 

demonstrated utility and the availability of comparative data, enabling a rigorous 

evaluation against other emerging tools in the field. This selection aims to provide a 

representative cross-section of the current state-of-the-art in phenotype-guided variant 

prioritization, facilitating a comprehensive analysis of their respective capabilities and 

shortcomings.  The HPO terms input into the tools are uniformly extracted from the 

patient's phenotype descriptions using PhenoTagger[41]. Xrare is executed using the 

xrare37-pub:2021 docker image. exomiser(v13.3.0) is executed using its default 

algorithm hiPhive, while phenIX and PHIVE are executed using the phenix and phive 

algorithms from the exomiser suite, respectively. 

Pre-trained LLM 

We have chosen six diverse pre-trained Large Language Models (LLMs) for fine-tuning 

purposes, encompassing a spectrum of parameter sizes ranging from 0.5 billion to 70 

billion. Specifically, the models selected are: 

1. "Qwen1.5-0.5B", "Qwen1.5-1.8B" and "Qwen1.5-4B", which are pre-trained LLMs 

open-sourced by Alibaba[42]. These models are characterized by a relatively modest 

parameter size, offering a compact yet robust foundation for fine-tuning endeavors. 
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2. “Mistral-7B”, a large-scale model developed by the French startup Mistral AI. The 

model adopts advanced training techniques and a large amount of corpus data, 

providing powerful language processing capabilities and a wide range of applications. 

Whether it's text generation, sentiment analysis, or question-answering systems, 

Mistral-7B can deliver outstanding performance. 

3. "Meta-Llama-3-8B" and "Meta-Llama-3-70B," representing the state-of-the-art in 

LLM technology and recently open-sourced by Meta[43]. These models are 

distinguished by their extensive parameterization and have demonstrated superior 

performance in various language tasks, positioning them as exemplary candidates for 

advanced fine-tuning applications. 

The selection criteria were designed to ensure a diverse representation of LLMs across 

different parameter sizes and linguistic focuses, allowing for a nuanced investigation 

into the fine-tuning outcomes and potential optimizations across a wide array of 

applications. 

Prompt Engineering 

We designed a structured prompts for LLM fine-tunning and inferencing, followed the 

GPT guidelines[44, 45] to design our prompts. We wrote clear instructions by following 

the suggested tactics (e.g., ask the model to adopt a role, use delimiters to clearly 

indicate distinct parts of the input, specify the output format).  

 

Supplementary Table S9 shows the prompts with which we experimented. Prompts P1 is 

zero-shot, P2 is few-shot, P3 constitutes a few-shot, chain-of-thought prompt 

instructing the LLM specifically on how to perform the variant identification. While P4 

constitutes a one-shot, chain-of-thought prompt and RAG. In P1, we instruct the LLM 

to identify whether the variant is negative or positive. In P2, additional a few outputs 

example is provided. In P3, the LLM is prompted to identify whether the variant is 

negative or positive based on the chain of thinking. Lastly, P4, a few-shot, chain-of-

thought prompt augmented by variant rich-annotated information. 

 

To ascertain the optimal prompt for subsequent research and application endeavors, we 

conducted an evaluation of the performance of four distinct prompts using GPT-4, and 

identified P4 as the selected prompt. 

Fine-tuning LLM 

In the process of fine-tuning Large Language Models (LLMs), we have systematically 

combined datasets, pre-trained LLMs to train a cohort of models for subsequent 

evaluation and application. This ensemble includes 78 models designated for gradient 

testing, encompassing 6 distinct LLMs, 13 variations across data gradients. 

Additionally, we developed another model that combine different training sets to 

enhance dataset diversity. 

 

The training of these models was executed on a cluster comprising 2 high-performance 
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GPU servers (8 CUDA-capable GPUs, namely NVIDIA A100 Tensor Core GPU with 

80 GB graphic memory), leveraging the Swift training framework to facilitate the 

computationally intensive tasks associated with LLM fine-tuning. The full-parameter 

fine-tuning mode is used, with "sft_type" set to "full", and training is set for 5 epochs.  

Evaluation 

We implemented a training data size gradient analysis. This approach involves 

incrementally varying the amount of data used in the fine-tuning process to observe its 

impact on the performance. Specifically, the gradient analysis examines how the 

performance changes with different data sizes, offering insights into the robustness and 

scalability of the fine-tuned LLMs across a spectrum of data availability. 

 

We conducted an assessment of the variant ranking performance utilizing the TopK 

cumulative distribution function (TopK CDF) as a primary metric. This statistical 

measure is widely recognized for its ability to consolidate the true positive rate and 

false positive rate across various threshold settings into a single value, thereby 

providing a comprehensive evaluation of the ranking efficacy. 
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