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Introduction  32 

In Zambia, malaria prevalence varies spatially, posing challenges for intervention strategies. 33 

Asymptomatic and clinical carriers not accessing healthcare further complicate efforts, 34 

necessitating reactive case detection (RCD) to target undetected infections. However, operational 35 

hurdles, such as resource shortages and logistical complexities—including shortages of 36 

community health workers (CHWs), difficulties reaching residents, and limitations in malaria 37 

rapid diagnostic tests (RDTs)—hinder RCD’s effectiveness. Identifying effective improvement 38 

measures given circumstances that may lead to deficient intervention outcomes may improve the 39 

situation. 40 

Methods  41 

A mathematical model of malaria transmission conforming to Zambia’s low transmission areas 42 

defined as areas with an incidence of fewer than 200 malaria cases per 1,000 population per year 43 

was developed to simulate RCD using parameters and data from published articles. We explored 44 

the impact of literature-identified challenges on RCD performance in malaria detection and 45 

potential strategies to enhance detection rates. The examined factors and improvement measures 46 

included increasing CHWs, adjusting reaction time, RDT sensitivity, and implementing focal 47 

mass drug administration (fMDA). 48 

Results  49 

Simulation findings suggest that a shortage of CHWs and limited availability of RDTs have the 50 

highest negative impact on RCD compared to other challenges. In scenarios where CHWs or 51 

RDT availability for RCD were reduced by 50%, annual malaria cases were predicted to increase 52 

by approximately 17%. Only the incorporation of fMDA as an improvement measure succeeded 53 

in countering the situation. Increasing CHWs to offset RCD inefficiencies caused by limited 54 

RDT sensitivity or difficulties in finding individuals resulted in fewer cases than improving 55 

reaction time or increasing the screening radius. 56 

Conclusions  57 

Participation of CHWs is voluntary and primarily motivated by informal incentives, often 58 

provided by donors. Finding sustainable means to ensure the sufficient availability of CHWs 59 

may guarantee continued RCD contributions towards maintaining stable malaria prevalence and 60 

elimination. More research is required to explore the application of RCD in archetypical 61 

transmission areas suitable for RCD as improvement measures to the identified challenges 62 

hindering RCD. Furthermore, archetype-based targeting of interventions, including RCD, may 63 

also be explored to inform the optimisation of intervention resource allocation to overcome the 64 

widening gap in malaria funding. 65 

66 
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Introduction 67 

Malaria has proved difficult to eradicate despite being treatable, likely due to its complex 68 

transmission dynamics [1]. Although some countries have successfully eliminated malaria, 69 

countries in sub-Saharan Africa still carry the highest burden, accounting for over 90% of the 70 

247 million cases reported globally [2]. Furthermore, the malaria burden varies significantly 71 

across sub-Saharan Africa and within countries, including Zambia [2,3]. Complicating the 72 

implementation of intervention strategies are the complexities of transmission and heterogeneity 73 

as well as the presence of individuals who fail to seek treatment despite exhibiting symptoms and 74 

those who remain asymptomatic yet capable of transmitting the disease [4,5].  75 

Although Zambia is not among the top contributors to global malaria cases, as of 2021, 57% of 76 

its population lived in regions classified as having low to very low malaria risk (less than 200 77 

cases per 1,000 people per year) [3]. However, malaria risk and malaria parasite prevalence 78 

exhibit spatial heterogeneity across smaller spatial boundaries, such as health facility catchment 79 

areas (HFCAs)[3,6]. From 2017 to 2021, the distribution of cases per 1000 people per year at 80 

HFCA level remained relatively stable, except for a notable increase in high-risk areas (> 500 81 

cases per 1000 per year) from 24% in 2019 to 47% in 2020 [3]. As Zambia works to increase the 82 

number of low malaria-risk HFCAs and “to increase malaria-free HFCAs from 10 to at least 250 83 

by 2026” through various interventions, the potential for a resurgence of cases in these regions 84 

remains high [5]. This is because the proportion of asymptomatic individuals with low parasite 85 

densities among the infected population rises, as malaria transmission rates decrease [5]. Despite 86 

being less infectious than symptomatic cases, these individuals form an asymptomatic reservoir 87 

capable of transmitting parasites in areas where vectors are present [5]. To combat the 88 

resurgence of cases, interventions including reactive case detection (RCD) are strategically 89 

implemented to target asymptomatic infections and symptomatic individuals not seeking 90 

treatment offering treatment to halt transmission without the need for universal testing or 91 

treatment  [3,5,7].  92 

The existing Zambia-specific research indicates that RCD is effective in several ways but also 93 

impeded by various challenges. A mathematical modelling study conducted by Gerardin et al. 94 

(2017) used household locations, demographics, and malaria prevalence data to train an agent-95 

based model to assess the effectiveness of RCD based on different transmission profiles, which 96 
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included, “low-transmission, high household density; high-transmission, low household density; 97 

and high-transmission, high household density [8].” The simulation findings estimated that RCD 98 

is only effective in areas that have newly become low transmission areas [8]. Also, Chitnis et al. 99 

(2019), in a theoretical modelling paper that used Zambian data found that it is more important to 100 

increase the number of index cases followed than to increase the number of neighbours tested per 101 

index case, if RCD is to be effective [9]. Similarly, Reiker et al.’s (2019) mathematical 102 

modelling study suggests that RCD is ideal in areas where transmission is initially low, and that 103 

increasing radius yields relatively better case detection [10]. Furthermore, Larsen et al. (2017) 104 

and Bhondoekhan et al. (2020) suggest that prioritizing locations with high environmental 105 

susceptibility to malaria transmission during RCD operations is crucial in detecting cases in low 106 

transmission areas [4,11]. Additionally, all studies on RCD in Zambia agree that RCD’s efficacy 107 

can be improved and that, on its own, it may not lead to malaria elimination in low transmission 108 

areas. However, if complemented with other interventions such as reactive focal drug 109 

administration (fMDA), it may realistically lead to elimination [4,9–14]. Most importantly, 110 

Chitnis et al. (2019) and Reiker et al. (2019) conclude that prevalence reduction due to RCD is 111 

mainly determined by the proportion of all infections identified within a specific timeframe 112 

[9,10]. 113 

While the studies on RCD in Zambia provide valuable insights, recent advancements in malaria 114 

interventions will affect RCD outcomes differently, such as advancements in malaria rapid 115 

diagnostic test (RDT) sensitivity. Some of these studies also compare the circumstances/settings 116 

in which RCD is most efficient. However, their applicability for informing operational decision-117 

making may be limited, considering the operational challenges that impede RCD implementation 118 

in resource-constrained settings. These challenges frequently result in relatively fewer detections 119 

by RCD, further reducing its effectiveness [5]. An evaluation conducted by Searle et al. (2016) in 120 

the low-transmission regions of the Southern Province of Zambia highlighted several operational 121 

hurdles hindering the implementation of RCD. These hurdles included inadequate supplies of 122 

RDTs, a shortage of community health workers (CHWs), logistical complexities, difficulties in 123 

reaching residents in designated households, and the limited sensitivity of RDTs. [5]. These 124 

challenges directly impact the proportion of all undetected infections identified through RCD [5]. 125 

Given the competing priorities faced by implementers of malaria interventions, including RCD, 126 
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knowing which improvement measures to undertake given circumstances that may lead to 127 

deficient outcomes of an intervention may be improve the situation.  128 

The purpose of this study was to use mathematical modelling to investigate the impact of various 129 

literature-informed challenges affecting RCD to reduce malaria cases. This investigation also 130 

considered their respective potential improvement measures. These measures include increasing 131 

the CHW workforce, improving reaction time, changing diagnostics tests, or pivoting fMDA. 132 

These are targeted for the most common situations that lead to inefficient implementation of 133 

RCD in low transmission areas in Zambia to relatively better inform operational decisions.  134 

Our study is based on hypothesized RCD conditions that most low transmission HFCAs 135 

experience in Zambia, using data from the Southern Province. Hence, the study bears the 136 

'Zambia-like' conceptualization, meaning it can generally represent any area with similar 137 

conditions [5]. 138 

Methods 139 

Study site 140 

In this study, we simulate a single hypothetical low-transmission HFCA. Specifically, the study 141 

used parameters from randomized control trials and cross-sectional studies conducted in low 142 

transmission areas of the Southern Province in the years 2014 to 2018 [4,5,10,11,13–16]. In 143 

Zambia, RCD is currently implemented in low transmission areas as stratified by HFCA [3]. In 144 

such areas, a positive malaria case at the health facility or post triggers an RCD investigation, 145 

which is carried out by CHWs assigned to the health post near the index case. One HFCA serves 146 

approximately 10,000 people, while a health post, a subset of the HFCA, serves between 500 to 147 

1,000 people [4,5,15]. The 148 

Malaria reactive case detection model    149 

To mimic the operation of RCD at the HFCA level, a deterministic non-linear ordinary 150 

differential equation (ODE) model was developed to simulate malaria transmission and RCD 151 

implementation visualized in Figure 1. The figure provides an overview of the RCD malaria 152 

transmission model, generalises susceptible�exposed�infected�recovered (SEIR) model format 153 

with added treatment compartments. The model includes the human population only with vector 154 

dynamics folded into the human force of infection. In this model (Figure 1), individuals progress 155 
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through distinct compartments representing various stages of infection and treatment. Initially,156 

individuals are categorized as susceptible (S), signifying their vulnerability to malaria157 

acquisition. Following exposure to the malaria parasite, individuals transition to the exposed (E)158 

compartment, indicative of infection without immediate infectiousness. Subsequently,159 

individuals may progress to either the asymptomatic (A) or symptomatic (C) compartments,160 

contingent on the manifestation of malaria symptoms. Those symptomatic individuals may161 

undergo therapeutic intervention at a health facility, leading them to the treatment (X) at the162 

health facility or treatment through RCD (V) compartments. Furthermore, some of the163 

asymptomatic (A) individuals may also receive treatment through the screening compartment of164 

RCD compartment V or recover naturally. Ultimately, individuals in the treatment compartments165 

V and X and asymptomatic individuals not treated through RCD advance to the recovered (R)166 

compartment, reflecting either clearance of the infection or the establishment of partial167 

immunity. Tables 1 summarize the parameter definitions that govern the transitions between168 

compartments depicted in Figure 1.  169 

 170 

Figure 1: RCD model flow diagram with compartments S (Susceptible), E (Exposed), A 171 

(asymptomatic), C (Symptomatic/clinical), V (treatment through RCD), X (treatment at health 172 

facility), and R (recovered). The description of parameters governing movements through the 173 

compartments are described in Table 1.  174 

In this study, we assume that mosquito dynamics are static [17]. Consequently, they have a175 

relatively rapid generation turnover and are highly responsive to changes in the proportion of176 

infected humans. Hence, we simplify the vector equations and determine the number of humans177 

who become infected under the prevailing model conditions by focusing on a single force of178 

infection. That way, it allows us to run our simulation without considering the changes in vector179 
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dynamics. We derived the force of infection and model equations in the supplementary file 1. 180 

Furthermore, we introduced a seasonal forcing equation (described in the supplementary file) to 181 

mimic Zambia’s seasonal transmission pattern using rain data from the Climate Hazards Group 182 

InfraRed Precipitation with Station data.  183 

Table 1 Model parameters, values, descriptions, and sources 184 

Symbol Definition   Value Range Source 
a Human feeding rate per mosquito (per 

day) 
0.33  (0.10, 1) [18] 

b Transmission efficiency from mosquito 
to human (per day) 

0.022 (0.010,0.27) [18] 

c Transmission efficiency human to 
mosquito (per day) 

0.24 (0.072, 0.64) [18] 

pa Proportion of asymptomatic infections  0.395 (0.2,0.49) [15] 
da Proportion of asymptomatic infections 

that get screened and treated through 
RCD 

0.22 (0.15,0.3) [5] 

ga Proportion of clinical infections that 
get treatment at health facility  

0.97 (0.84,0.99) [19] 

γ Rate of onset of infectiousness in 
humans (Incubation rate; per day) 

0.071 (0.06,0.08) [20,21] 

τRCD Rate at which infectious population is 
screened and treated via RCD (per day) 

Estimated during analysis 

λ Force of infection  Estimated during analysis 
τ Treatment seeking rate (per day) 0.97 (0.84,0.99) [19] 
δ Natural recovery rare (per day) 0.0035 (0.0014, 0.017) [20,22] 
r Recovery rate after antimalarial 

treatment (AL; per day) 
0.167 (0.125, 0.25) [20,23] 

ρ Loss of immunity (per day) 0.0027 (0.000055,0.011) [18] 
θ Relative infectiousness of 

asymptomatic infections  
0.467 (0,0.50) [17,24] 

ζ Relative infectiousness of treated 
infections 

0.04 (0.0,0.25) [17] 

γm Rate of onset of infectiousness in 
mosquitoes (per day) 

0.1 (0.07, 0.2) [17,18] 

μm Mosquito mortality rate (per day) 0.033 (0.0010,0.10) [18] 
 185 

Reactive case detection rate 186 

The rate of detecting cases τRCD was defined based on Njau and Silal et al. (2021) as equation 1, 187 

where ������  is the proportion of index cases that are followed up, �	��
�	�� is the number of 188 
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new index cases at the health centre, while �
���� is the number of people screened that are 189 

within the proximity of the index  case [17]. Furthermore, the ��� and �����	�������� are 190 

population in the model and the sensitivity of RDTs used during the intervention, respectively 191 

[17].  192 

τRCD � ������� � �	��
�	�� �1 � 1.5�
������� �� � RDTsensitivity        )1* 

To incorporate CHWs, we define ������ as a function of CHWs and index cases as presented in 193 

equation 2, where we estimated the numerator as the average number of index cases investigated 194 

by a single CHW per day based on the information provided by Larsen et al. (2017) [4]. Here, 195 

333 CHWs investigated approximately 854 index cases in one year in some low transmission 196 

areas of Zambia. Therefore, we divided the total number of index cases investigated by the 197 

number of CHWs and then by the number of days in a year, which gives us equation 2.  198 

������ � 0.007-./�0	
�1 �
���                  )2* 

Incorporating reactive Focal Mass Drug Administration 199 

We additionally explore reactive fMDA as one of the measures to reduce malaria cases by 200 

interrupting transmission in the HFCA. Thus, all individuals within the proximity of the index 201 

case receives treatment, implying that, infections individuals with low levels of parasitaemia who 202 

would not have been detected by RDT gets cleared of parasite [16,22,24,25].  Similarly, the 203 

suspectable and exposed individuals are prevented from transitioning to the infectious category 204 

to transmit, thereby interrupting the transmission cycle with the HFCA [16,22,24,25]. 205 

Mathematical equations describing the incorporation are described by supplementary file 206 

equation 21.    207 

Reactive case detection improvement scenarios 208 

Supplementary Table 1 presents a summary of simulated scenarios compared to the baseline. 209 

These scenarios were formulated to address common situations that often result in inefficient 210 

implementation of RCD. The purpose of formulating these scenarios was to assess their potential 211 

to achieve results similar to or better than the baseline. In these simulations, we assume that other 212 

interventions implemented to keep the low transmission status in the HFCA remain consistent 213 

and that situations only affected RCD implementation.  214 
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The baseline configuration assumed 20 community health workers per health centre dedicated to 215 

RCD, with each CHW representing a health post serving 500 individuals. This configuration was 216 

based on the estimated population of 10,000 in the HFCA, with an area coverage radius of 140 217 

meters per index case [4,5,15]. The reaction time, which refers to the time taken to respond to 218 

reported cases, was set at three days. No fMDA was implemented, and RDTs had a sensitivity of 219 

84% (Sup. Table 1). 220 

In the “Increased number of CHWs” scenario, the number of CHWs per HFCA was increased to 221 

30, while all other parameters remained unchanged from the baseline scenario (Table 2). This 222 

adjustment aimed to improve coverage and response capabilities within the same coverage radius 223 

(Sup. Table 1). In the Increased Radius (250 meters) scenario, the coverage area was expanded 224 

by increasing the radius to 250 meters, while keeping the number of community health workers 225 

and other parameters constant (Table 2). Similarly, in the “Increased radius (450 meters)” 226 

scenario, the coverage radius was further increased to 450 meters (Table 2). 227 

Furthermore, we explored scenarios that combined an increase in the number of CHWs (30) with 228 

an increase in the coverage radius, both for 250 and 450 meters (Sup. Table 1). These scenarios 229 

aimed to improve both personnel and coverage area to improve intervention outcomes. Also, we 230 

simulated fMDA with the assumption that acceptance, coverage and drug efficacy all remain 231 

constant. The scenarios “Improved reaction time” (IRT) and “Increased RDT Sensitivity” had 232 

the same parameters as the baseline, except for changes in the reaction time (2 days) and RDT 233 

sensitivity (99%) (Sup. Table 1). The RDT sensitivity was set at this level, with the potential to 234 

be replaced by polymerase chain reaction as the testing option (Sup. Table 1).   235 

Challenges/situations affecting reactive case detection and potential improvement scenarios  236 

Table 2 summarizes the common situations mentioned elsewhere that may lead to reduced 237 

efficacy of implementation of RCD. It also presents simulated improvement scenarios to assess 238 

their potential for maintaining or improving the effectiveness of RCD when faced with potential 239 

impediments. Here, we assumed that if the health facility is faced with a situation such as a 240 

shortage of CHWs, it is unable to immediately replenish them but requires conducting a different 241 

improvement measure that may maintain or improve the results of RCD.  242 

Table 2 Situations and potential improvement scenarios 243 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 19, 2024. ; https://doi.org/10.1101/2024.07.18.24310660doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.18.24310660


10 

 

Situation  Improvement scenarios simulated  

Shortage of community health 
workers (50% less CHWs) 

Increased reaction time (from three to two days) 

Increased RDT sensitivity (from 84 to 99%) 
Incorporating fMDA 

Limited availability of RDTs (50% 
less RDTs) 

Incorporating fMDA 

Increased reaction time (from three to two days) 
Limited sensitivity of RDTs (70% 
sensitivity) 

Increased radius 250m (from 140 to 250m) 

Increased radius 450m (from 140 to 450m) 
Increased reaction time (from three to two days) 
Increased number of CHWs (50% more CHWs) 
Increased radius 250 + 50% more CHWs 
Increased radius 450 + 50% more CHWs 

Difficulties in finding residents in 
designated households (50% 
availability) 

Increased reaction time 

Increased RDT sensitivity 
Increased number of CHWs (50% more CHWs) 

  244 

Malaria risk stratification  245 

In Zambia, there is an annual program that stratifies each HFCA based on malaria transmission 246 

intensity levels. These levels are categorized as "no malaria" (level 0), "very low" (level 1, 247 

between 0 and 50 cases per 1000 population/year), "low" (level 2, between 50 and 200 cases per 248 

1000 population/year), "moderate" (level 3, between 200 and 500 cases per 1000 249 

population/year), and "high" (level 4, with over 500 cases per 1000 population/year [3,26]. In 250 

this study, we used the same stratification as thresholds to ascertain that our model outputs are 251 

within the malaria risk classifications and to inform the impact of RCD hurdles and their 252 

respective improvement measures while assuming that all other interventions remain 253 

implemented at a constant rate.  Our model was run at a HFCA level (10,000 individuals) and 254 

day as the unit of change. Therefore, for the HFCA to qualify as a low transmission area (less 255 

200 cases per year), it is required to have approximately less than 5.48 cases per day, thus, a sum 256 

of 2000 cases per 365 days. The total of 2,000 cases per 365 days is derived from each HFCA 257 

consisting of 10 populations of 1,000 people each, which, when multiplied by 200, results in 258 

2,000. 259 

Uncertainty intervals for model results 260 
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To account for model uncertainty, we generated uncertainty intervals for all the results. We did 261 

this by running 100 simulations using randomly generated parameter values within the lower and 262 

upper bounds for all parameters in each model scenario. After generating results from 100 263 

simulations for each scenario, we grouped daily malaria case values and obtained the median, 264 

5th, and 95th quantile values for each day. The median value was used as the central value for 265 

each day, while the 5th and 95th quantile values were used as the lower and upper uncertainty 266 

values, respectively. This process was repeated for all model scenarios. 267 

Results 268 

Impact predictions for key challenges affecting the efficiency of reactive case detection.  269 

Figure 2 shows daily malaria cases for a hypothetical HFCA. In the figure, the baseline (purple 270 

trend line) represents a scenario in which all interventions including RCD are being implemented 271 

in accordance with recommended guidelines for low transmission areas, while the red horizontal 272 

dotted line represents the threshold at which the HFCA ceases to be classified as a low 273 

transmission area (Figure 2). Overall, simulating a 50% reduction in the literature-identified 274 

challenges affecting the effectiveness of RCD and reducing RDT sensitivity to 70% did not 275 

result in the HFCA completely exiting its low transmission status, indicated by the red dotted 276 

line (Figure 2). Nevertheless, a 50% reduction in the number of CHWs (red) and availability of 277 

RDTs (blue) for RCD resulted in the highest deviation of malaria cases from the baseline 278 

compared to the use of less sensitive RDTs (light blue) and not reaching 50% of individuals in 279 

their households (green), which had the least impact (Figure 2).  280 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 19, 2024. ; https://doi.org/10.1101/2024.07.18.24310660doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.18.24310660


12 

 

 281 

Figure 2: Impact prediction of key challenges impacting the efficiency of RCD. In this 282 

simulation, the four scenarios are compared to baseline and ability to influence malaria risk 283 

stratification status. In this figure, the red horizontal dotted line represents the threshold at 284 

which the HFCA remains a low-risk area. “50% < available RDTs” indicates a 50% reduction 285 

in the availability of RDTs, “50% < CHWs” represents a 50% shortage of CHWs, “50% < 286 

residents” denotes that only 50% of residents are available in designated households, and “70% 287 

RDT sens.” represents the use of RDTs with 70% sensitivity. 288 

Impact predictions of RCD improvement measures for shortage of community health workers 289 

In the scenario of a 50% shortage of CHWs, as shown in Figures 2 and 3, results in the HFCA to 290 

near exiting the low-risk strata, with approximately 1914 cases per year (approximately 191.4 291 

cases per 1000 population per year). The simulation results shown in Figure 3 demonstrate that 292 

incorporating fMDA (light green) as an improvement measure results in relatively fewer cases 293 

compared to all other measures, including the baseline (purple). Increasing RDT sensitivity 294 

(red), even up to 99%, as an improvement measure made the least difference compared to the 295 

50% CHW shortage scenario (Figure 3). However, improving the reaction time (light blue) from 296 
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the recommended three days to two days resulted in relatively fewer cases but not less or equal 297 

to the number of in the baseline scenario (Figure 3).  298 

 299 

Figure 3:  Impact predictions of improvement measures for shortage of CHWs. In this 300 

simulation, the number of CHWs was reduced by 50%, represented by “50% < CHWs,” i.e., 301 

from 20 to 10 CHWs per 10,000 population. The “50% < CHWs + RDT sens.” scenario depicts 302 

the use of more sensitive (99%) RDTs as an improvement measure to counter the impact of 303 

reduced CHWs. Similarly, “50% < CHWs + fMDA” and “50% < CHWs + IRT” represent using 304 

fMDA and improving the reaction time from three to two days, respectively as countermeasures. 305 

Impact predictions of RCD improvement measures for the limited availability and sensitivity of 306 

RDTs 307 

Similar to the impact of a 50% shortage of CHWs, a 50% limited availability of RDTs, as 308 

depicted in Figures 2 and 4a, suggests that this scenario almost results in the HFCA exiting the 309 

low-risk strata, with approximately 1903 cases per year (approximately 190.3 cases per 1000 310 

population per year).. The simulation results presented in Figure 4a indicate that the limited 311 
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availability of RDTs (blue) is better improved by incorporating fMDA (red) rather than 312 

improving the reaction time (green) from three to two days.  313 

On the other hand, the scenario of limited sensitivity of RDTs (blue obscured by green) is best 314 

improved when an increase in the number of CHWs dedicated to RCD and an expanded radius 315 

(red) as shown in Figure 4b. Thus, combining “increased the number of CHWs” by 50%, from 316 

20 per HFCA to 30, and “expanding the radius to 450 meters” results in relatively fewer cases 317 

than the baseline (orange). However, augmenting the CHW workforce alone also leads to an 318 

approximately similar trend (Figure 4b). Notably, increasing the radius and reaction time 319 

independently had a negligible impact (Figure 4b), suggesting that the increase in CHWs is the 320 

main contributor to case reduction in the increased CHWs and radius “combined” scenario. 321 

Furthermore, uncertainty intervals for the baseline, reduction in RDT sensitivity and the 322 

improvement measures overlap signifying, potential for non-difference among (Figure 4b). 323 
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324 

Figure 4: Impact predictions of RCD improvement measures for the limited availability and325 

sensitivity of RDTs: (A) 50% of the secondary cases were tested, while fMDA (50% < available326 

RDTs + fMDA) and a two-day reaction time (50% < available RDTs + IRT) were simulated as327 

improvement measures. (B) Simulation of RDT sensitivity reduced to 70% and increase of radius328 

(70% RDT sens. + radius 450), reaction time (70% RDT sens. + IRT), and 50% more CHWs329 

(70% RDT sens. + 50% > CHWs) as improvement measures. Furthermore, in B, the blue, light330 

blue and green share a similar trend, therefore obscuring each other, indicating negligible effect331 

from the reduced RDT sensitivity.  332 

5 

 
nd 
le 

 as 
ius 

s 
ht 

ect 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 19, 2024. ; https://doi.org/10.1101/2024.07.18.24310660doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.18.24310660


16 

 

Impact predictions of RCD improvement measures for difficulties in finding residents in 333 

designated households 334 

Impact predictions of all investigated improvement measures for difficulties in finding residents 335 

in designated households resulted in relatively fewer cases than the baseline (purple) as depicted 336 

in Figure 5. The success of the improvement measure is attributed to the impact of not finding 337 

individuals in households (blue almost sharing the same trend as purple baseline) had negligible 338 

effect on the overall number of cases (Figure 5). Among the simulated improvement measures, 339 

improving the reaction time (light blue) from three to two days and increasing the number of 340 

CHWs by 50% (green), had the most impact at addressing the issue, as observed in Figure 5. 341 

Conversely, increasing RDT sensitivity (red), even up to 99%, had the least improvement but 342 

showed slightly lower infections than baseline (Figure 5). Similar to the RDT sensitivity 343 

reduction scenarios in Figure 4b, the difficulties in reaching residents scenarios show in Figure 5 344 

the uncertainty intervals for the baseline and the improvement measures overlap signifying, 345 

potential for non-difference among them.  346 

 347 
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Figure 5: Impact predictions of improvement measures for difficulties in finding residents in 348 

designated households. In this simulation, residents’ availability was reduced by 50% (50% < 349 

residents), while a two-day reaction time (50% < residents + IRT), 99% RDT sensitivity (50% < 350 

residents + RDT sens.), and 50% CHWs increase (50% < residents + 50 > CHWs) were 351 

simulated separately as improvement measures.   352 

Discussion 353 

We simulated an RCD focused model using parameters and data conforming to Zambia’s low 354 

transmission areas using a deterministic non-linear ordinary differential equation (ODE) model. 355 

Our primary objectives were to assess the impact of various literature-informed challenges 356 

affecting RCD to reduce malaria cases and their potential improvement measures. The analysis 357 

was undertaken with the purpose of informing the order for prioritizing the RCD challenges and 358 

guiding the appropriate improvement measures for each respective challenge. Considering that 359 

Zambia’s malaria risk stratification is done at a HFCA level and RCD is only conducted in low 360 

transmission HFCAs, the study was set up at this level. 361 

The simulated impact of RCD challenges on malaria cases within a HFCA revealed that a 362 

shortage of CHWs and RDTs was predicted to have the most negative impact on RCD. In 363 

contrast, not finding individuals in households was predicted to have least impact. In scenarios 364 

where the availability of CHWs and RDTs was reduced by 50%, while keeping other parameters 365 

constant, annual malaria cases increased by approximately 17%. In both cases, the only effective 366 

countermeasure was the incorporation of fMDA, which resulted in an approximate 37% 367 

reduction in annual cases within the HFCA. However, using more sensitive RDTs and reducing 368 

the response time to counter the 50% shortage in CHWs resulted in only two and seven percent 369 

reductions in annual cases, respectively. Furthermore, in scenarios where RDT sensitivity was 370 

reduced to 70%, annual cases increased by 5%, while reducing the availability of individuals for 371 

testing by 50% led to approximately 0.8% increase in annual cases within the HFCA. In both 372 

scenarios, increasing the number of CHWs by 50% to offset their negative effects on RCD 373 

resulted in approximately 12% and 14% decreases in annual cases when using 70% sensitive 374 

RDTs and when availability of individuals was reduced by 50%, respectively. Additionally, in 375 

both scenarios, increasing CHWs by 50% as a countermeasure led to relatively fewer cases 376 

compared to adjusting the reaction time from three to two days or increasing the screening radius 377 

from an index case up to 450m from the initial 140m. However, combining an increase in radius 378 

with a 50% increase in CHWs only reduced the number of annual cases by 13%, compared to the 379 
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12% reduction observed when only CHWs were increased to counter a 70% reduction in RDT 380 

sensitivity. 381 

Considering that RCD operations in settings like Zambia are primarily conducted by CHWs, the 382 

number of index cases investigated directly depends on the number of CHWs, as set up in our 383 

model[4,27]. Our findings suggest that having more CHWs available for RCD results in more 384 

index case follow-ups. As such, our finding that the number of CHWs has the most substantial 385 

effect on the effectiveness of RCD aligns with Chitnis et al. (2019), who suggested that RCD is 386 

only successful in low transmission areas if many index cases are followed up  [9]. However, 387 

Reiker et al. (2019) added that it is important to assess follow-up capacity rather than merely 388 

considering the actual number of cases. They argued that the potential number of index cases is 389 

limited by those who either do not seek official care or are asymptomatic, suggesting that the 390 

number of investigated index cases should be adjusted based on treatment-seeking behaviour  391 

[9,10].  392 

Consistent with several studies, our research also indicates that MDA interventions may be the 393 

most effective alternative in various situations where RCD's effectiveness is limited. For 394 

instance, Ntunku et al. (2022) noted that RCD requires notably more personnel time compared to 395 

fMDA and therefore uses fewer resources [28]. Additionally, even though we modelled our 396 

baseline scenario with assumption that RCD was conducted perfectly, it did not result in zero 397 

infections in the HFCA over time. This supports findings from other studies that highlight that 398 

the ability of RCD to eliminate malaria depends on multiple factors, such as environmental risks 399 

and other archetypical factors, which our model may not have considered [5,9,10,14]. 400 

Nevertheless, our model results demonstrated that RCD managed to maintain the number of 401 

cases within the low transmission strata, and when we reduced the number of CHWs by half, the 402 

number of cases nearly surpassed the low transmission threshold. 403 

The study offers valuable insights into the challenges that impact the effectiveness of RCD and 404 

potential countermeasures. Implementers can utilize these insights to evaluate their resource 405 

capacity and combinations to suit an ideal RCD programme. For example, if the ratio of CHWs 406 

dedicated to RCD to the catchment population exceeds 1:1000 or if the health centre frequently 407 

experiences stockouts of RDTs, it might be necessary to consider fMDA as an alternative 408 

measure to interrupt infections in the HFCA. Otherwise, other improvements are likely to be 409 
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ineffective. In situations where only less sensitive RDTs are available, the health facility may 410 

consider recruiting more CHWs to increase the number of index cases followed up as an 411 

improvement measure. However, failing to find secondary individuals should have relatively less 412 

priority compared to addressing other RCD challenges. In Zambia, the COVID-19 pandemic 413 

period poses a good example where the shortage of RDTs scenario is more applicable. In the 414 

same period, the Zambian healthcare system had 16,000 CHWs trained to undertake community-415 

focused malaria interventions, but a number of them were inactive [3]. Reasons for the inactivity 416 

included the limited supply of antimalarial drugs (ACTs) and RDTs caused by COVID-19-417 

induced supply chain interruptions [3]. 418 

It is worth noting that, the context governing the setup of how RCD is conducted may vary the 419 

outcomes of the results presented in this study. Furthermore, it is essential to note that this study 420 

faces certain limitations, including the assumption that CHWs possess “perfect” knowledge of 421 

how to conduct RCD. This is contrary to the evaluation by Searle et al. (2016), where it was 422 

established that the operational challenges for inadequate implementation of RCD may have also 423 

been due to various CHWs’ related inadequate technical capacity, such as the inability to 424 

distinguish the houses within the prescribed radius from the index case's house [5,29]. 425 

Additionally, our model assumed that RCD was conducted daily, which is somewhat unrealistic 426 

given that CHWs have roles other than conducting RCD in the HFCA. Also, certain operational 427 

qualifiers/disqualifiers for RCD/MDA, such as travel history, season, and risk for drug 428 

resistance, were ignored. Furthermore, the study assumed that antimalarial drugs were in 429 

abundant supply despite the shortage of RDTs, which may be unlikely, as alluded to earlier that 430 

both were in short supply during the peak of COVID-19 [3]. As such, our model may be 431 

overstating the number of secondary cases that may be treated via MDA if RDTs are in short 432 

supply. Moreover, the model was not calibrated to any real data; therefore, all findings remain 433 

hypothetical and do not necessarily represent any true HFCA. Nevertheless, the outcome trends 434 

for the generated scenarios and the approach may be extended to other low-transmission 435 

catchment areas of Zambia with similar characteristics.  436 

Based on results from [11,12,14–16,25,29–34] and this study, it is evident that the success of an 437 

RCD program in a Zambia-like setup highly depends on CHWs. However, their involvement is 438 

voluntary and primarily influenced by non-formal incentives, often provided by donors [29,35]. 439 
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Finding sustainable means such as following World Health Organization’s 2018 guidelines for 440 

CHWs remuneration to ensure the sufficient availability of CHWs may guarantee continued 441 

RCD contributions towards maintaining stable malaria prevalence and ultimately contributing to 442 

achieving elimination [35]. The current CHWs' contribution towards malaria programming and 443 

incentive situation warrants detailed research to optimize RCD implementation while 444 

considering potentially sustainable motivating incentives and monitoring and evaluation to 445 

maintain an optimal RCD programme. Furthermore, the coming of COVID-19, which 446 

interrupted several supply chain mechanisms including that for malaria supplies is a wake-up call 447 

to further look into improvement measures for other interventions other than RCD. The 448 

interventions of interest may include interruption of case management (antimalarial supplies and 449 

test kits), bednets, and IRS insecticides.  450 

Lastly, considering the complexity of malaria transmission and several assumptions that were 451 

imposed on this study's model. To make the modelling results more applicable across different 452 

contexts, we have research plans to stratify regions such as HFCAs into transmission archetypes 453 

based on malaria risk profiles, ecological, environmental, health system, and socioeconomic 454 

factors, and tailoring interventions to suit specific archetypes may improve the outcomes and 455 

expedite the contribution to malaria elimination. The archetyping approach may guide which low 456 

transmission areas will benefit most from RCD instead of alternative interventions or a 457 

combination of interventions.  Conversely, interventions requiring fewer resources than RCD to 458 

avert the same number of malaria cases in certain archetypes may be opted for in place of RCD 459 

or a combination of interventions. Furthermore, the archetype-based targeting approach can also 460 

inform the optimization of interventions, including RCD. This way, the potential resources 461 

required to achieve elimination can be identified and planned for effectively. 462 

Conclusion  463 

This study contributes to the existing research literature by examining the impact of challenges 464 

faced by RCD on malaria cases at an HFCA level. It also highlights the effectiveness of potential 465 

improvement measures for these challenges. The study used mathematical modelling to simulate 466 

several scenarios to mimic RCD challenges and their respective potential improvement measures 467 

in a Southern province of Zambia-like setting.  468 
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The exploration of improvement measures for RCD provided in this study offers opportunities to 469 

focus on measures that yield relatively better outcomes in specific situations. This approach may 470 

enhance the effectiveness of RCD in resource-constrained settings. Consequently, the 471 

contribution of RCD to malaria elimination may remain substantial, despite any challenges that 472 

may arise during its implementation. 473 
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