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ABSTRACT 

Recent genome-wide association studies (GWAS) have revealed shared genetic 

components among alcohol, opioid, tobacco and cannabis use disorders. However, the 

extent of the underlying shared causal variants and effector genes, along with their 

cellular context, remain unclear. We leveraged our existing 3D genomic datasets 

comprising high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq and RNA-seq 

across >50 diverse human cell types to focus on genomic regions that coincide with 

GWAS loci. Using stratified LD regression, we determined the proportion of genome-

wide SNP heritability attributable to the features assayed across our cell types by 

integrating recent GWAS summary statistics for the relevant traits: alcohol use disorder 

(AUD), tobacco use disorder (TUD), opioid use disorder (OUD) and cannabis use 

disorder (CanUD). Statistically significant enrichments (P<0.05) were observed in 14 

specific cell types, with heritability reaching 9.2-fold for iPSC-derived cortical neurons 

and neural progenitors, confirming that they are crucial cell types for further functional 

exploration. Additionally, several pancreatic cell types, notably pancreatic beta cells, 

showed enrichment for TUD, with heritability enrichments up to 4.8-fold, suggesting 

genomic overlap with metabolic processes. Further investigation revealed significant 

positive genetic correlations between T2D with both TUD and CanUD (FDR<0.05) and a 

significant negative genetic correlation with AUD. Interestingly, after partitioning the 

heritability for each cell type’s cis-regulatory elements, the correlation between T2D and 

TUD for pancreatic beta cells was greater (r=0.2) than the global genetic correlation 

value. Our study provides new genomic insights into substance use disorders and 

implicates cell types where functional follow-up studies could reveal causal variant-gene 

mechanisms underpinning these disorders. 
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INTRODUCTION 

Substance use disorders (SUDs) are a group of treatable psychiatric disorders that 

are associated with a variety of adverse outcomes. SUDs pose a pervasive global 

health challenge, affecting individuals across diverse demographic groups and 

populations. SUD severity varies from mild to severe and adverse outcomes generally 

correlate with the severity of the disorder. Alcohol, socially accepted and widely 

available, is one of the most commonly misused substances worldwide [1], leading to 

significant health, social, and economic losses. Excessive alcohol consumption is a 

major cause of premature death and disability, particularly among individuals aged 20-

39, with about 13.5% of deaths in this group linked to alcohol. In the United States, 

10.5% of individuals aged 12 and older suffer from alcohol use disorder (AUD), with 

over 178,000 annual alcohol-related deaths reported by the Centers for Disease Control 

and Prevention [2,3]. Tobacco use disorder (TUD), affecting 22.3% of the global 

population, is the most prevalent substance use disorder, causing nearly 8 million 

preventable deaths annually due to diseases such as cardiovascular and respiratory 

disorders, as well as various cancers [4]. The prevalence of opioid use disorder (OUD) 

has surged over the past three decades, driven by prescription opioid misuse and illicit 

opioids like fentanyl, resulting in approximately 81,806 US opioid overdose deaths in 

2022 [5]. Cannabis use disorder (CanUD) has become more prominent with increasing 

legalization and is associated with morbidity, including certain cancers, cognitive 

impairments, and schizophrenia, contributing to societal problems that include reduced 

productivity and accidents [6-9].  

SUDs have strong familial inheritance patterns [10], with heritability estimates from 

twin studies for these disorders of averaging approximately 50%. AUD heritability 

estimates range from 0.50 to 0.64 [11,12] and are higher for the diagnosis than traits 

like alcohol use initiation (0.30–0.40) [13] and frequency of consumption (0.37–0.47) 

[14], suggesting a greater genetic influence on the progression to problematic use. TUD 

heritability ranges from 0.30 to 0.70, depending on the assessment method used 

[15,16]. CanUD heritability ranges from 0.51 to 0.59, with environmental and genetic 

contributors reported across both use and misuse [17,18]. OUD heritability is around 

50%, with 38% of variation attributed to opioid-specific genetic factors [19]. Studies also 
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highlight that in addition to specific genetic influences for use disorders [20,21], there 

are broader heritable factors influencing SUD susceptibility in general [22]. 

Over the past ten years, there have been multiple large genome-wide association 

studies (GWAS) of SUDs, yielding a growing number of genome-wide significant loci 

[23,24]. Substantial progress has been made in identifying AUD loci, starting with the 

genes encoding the alcohol metabolic enzymes ADH1B and ALDH2 [25-33]. Recently, 

larger samples have yielded additional loci, include DRD2, GCKR, KLB and SLC39A8 

[27,29,31,32,34,35]. While genetic factors play a significant role in shaping smoking 

behaviors, recent GWAS have primarily focused on identifying risk variants associated 

with nicotine consumption and TUD. These studies consistently link nicotine 

dependence to cholinergic nicotinic receptor genes, especially at CHRNA5-CHRNA3-

CHRNB4 locus [24], and a variant at the DNMT3B locus with heavy smoking and lung 

cancer risk. Recent multi-ancestral meta-analyses revealed 72 independent risk loci for 

TUD [36], and more than a thousand loci associated with various smoking phenotypes 

[37]. Due to smaller available samples for GWAS, fewer replicable loci have been 

uncovered for CanUD. The largest meta-GWAS of CanUD to date [38] identified several 

significant loci unique both to individual ancestries and in the multi-ancestry analysis, 

with key findings that include loci near SLC36A2, SEMA6D, MCCC2, LRRC3B, PDE4B, 

LAMB2, FOXP1, GABRB1, MAGI2, SCAI, DRD2 and ZFHX3 and confirming loci near 

CHRNA2 [39] and FOXP2 [40]. GWAS for OUD associations have revealed CNIH3, 

KCNG2, APBB2, RGMA, KCNC1, and OPRM1 loci [34,41-43]. Furthermore, a large-

scale GWAS integrating data from seven cohorts identified OUD variant associations at 

OPRM1, FURIN, and 18 other loci using multi-trait methods [44]. A second cross-

ancestry meta-analysis uncovered 14 loci for OUD, 12 of which were novel, including 

RABEPK, FBXW4, NCAM1 and KCNN1 [45]. 

Despite this progress, we are still far from a mechanistic understanding of the 

effector genes and the cellular contexts operating at these genetic loci, as GWAS can 

only identify a genomic region associated with a trait, rather than a specific effector 

gene, and is cell-type agnostic.  

Tools like partitioned Linkage Disequilibrium Score Regression (LDSC) quantify the 

proportion of genome-wide SNP-heritability for a trait attributable to functional genomics 
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categories of one’s choice, using information from all SNPs and explicitly modeling LD 

[46]. By combining 3D chromatin maps (Hi-C, Capture-C) with matched chromatin 

accessibility data (ATAC-seq), we sought to elucidate the specific cellular settings in 

which genetic variation contributes to the risk of AUD, TUD, OUD, and CanUD using 

partitioned LDSC. Capitalizing on existing GWAS results and our genomics datasets for 

>50 cell types, and leveraging LDSC, we report significant enrichments of the SUD 

GWAS signals in regulatory elements of specific cell types, shedding light on the 

etiology of susceptibility to SUDs.  
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METHODS 

Data and resource: Table S1 lists the datasets used in prior studies. The original 

published studies provided configurations and technical details in ATAC-seq, Hi-C, and 

Capture-C library generation.  

ATAC-seq preprocessing and peak calling: Open chromatin regions (OCRs) were 

called using the ENCODE ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-

seq-pipeline). Reads were aligned to the GRCh37/hg19 or GRCh38/hg38 assembly 

genome using bowtie2 [47], duplicates were removed, alignments from all replicates 

were pooled, and narrow peaks were called using MACS2. We lifted all coordinates 

from GRCh37/hg19 to GRCh38/hg38 to ensure consistency between datasets [48]. 

Promoter Capture-C pre-processing and interaction calling: Paired-end reads were 

pre-processed using the HICUP pipeline [49] with bowtie2 and GRCh37/hg19. 

Significant promoter interactions were called using unique read pairs using CHICAGO 

[50]. We analyzed individual fragments (1frag) and binned four fragments to improve 

long-distance sensitivity [51]. Interactions with CHICAGO score > 5 at either 1-fragment 

or 4-fragment resolution were considered significant. Interactions from both resolutions 

were merged and lifted from GRCh37/hg19 to GRCh38/hg38. 

Hi-C pre-processing and interaction calling. As described in our recent study [52], 

paired-end reads from each replicate were pre-processed using the HICUP v0.7.4 

pipeline [49] and aligned by bowtie2 with GRCh38/hg38. The alignment files were 

parsed and processed by pairtools v0.3.0 [53] and indexed and compressed by pairix 

v0.3.7 [54], then converted to Hi-C matrix binary format .cool at multiple resolutions 

(500 bp; 1, 2, 4, 10, 40, and 500 kbp; and 1 Mbp) by cooler v0.8.11 [55] and normalized 

using the ICE method [56]. The matrices from different replicates were merged at each 

resolution using cooler. Mustache v1.0.1 [57] and Fit-Hi-C2 v2.0.7 [58] were used to 

call significant cis-interaction loops from merged replicate matrices at three 

resolutions—1 kb, 2 kb, and 4 kb—with the significance threshold at p-value < 0.1 and 

FDR < 1×10−6, respectively. The identified interaction loops were merged between the 

two tools, and then merged across resolutions prioritizing higher resolution for overlaps. 
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Definition of cis-Regulatory Elements (cREs): We intersected ATAC-seq OCRs of 

each cell type with chromatin interaction loops determined by Hi-C/Capture-C of the 

same cell type, and with promoters (-1,500/+500 bp of TSS) defined by GENCODE v40. 

Reformatting of the GWAS summary statistics for the four substance use 

disorders: Table S2 lists the studies from which we drew European-population GWAS 

summary statistics for each of the four SUDs. We applied --merge-alleles with the list of 

HapMap3 variants to standardize all the GWAS summary statistics files. The baseline 

model LD scores, plink files, allele frequencies, HapMap3 variants list and regression 

weight files for the European 1000 genomes project phase 3 in GRCh38 were 

downloaded from https://alkesgroup.broadinstitute.org/LDSCORE/GRCh38/. 

Cell type specific partitioned heritability of each trait: We used LDSC v.1.0.1  with --

h2 flag [46] to estimate the SNP-based heritability of each trait within 5 sets of input 

regions from each cell type: (1) OCRs, (2) OCRs at gene promoters, (3) cREs, (4) cREs 

with an expanded window of ±500 bp, (5) OCRs that were not cREs and not at a gene 

promoter. Each set of input regions from each cell type was used to create the 

annotation, which in turn was used to compute annotation-specific LD scores for each 

cell type region of interest. These annotation-specific LD scores were used with 53 

categories of the full baseline model (v2.2) to compute partitioned heritability.  

Genetic correlation analysis: We used LDSC with --rg flag [59] to compute the genetic 

correlations between each of the SUDs and type 2 diabetes (T2D) using European-

ancestry meta-analysis summary statistics from the most recent T2D GWAS [60]. The 

genetic correlation between each pair of traits was computed with unconstrained 

intercepts. We computed global genetic correlations using standardized variants from 

the GWAS of each trait. We then partitioned the variants of each trait into cREs of each 

cell type and recomputed the cell type-specific genetic correlation between each SUD 

and T2D. 
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RESULTS 

Enrichment patterns across varying open chromatin region definitions 

To investigate the enrichment of GWAS-discovered genetic variants associated with 

the SUDs across the different cell types, we employed Stratified Linkage Disequilibrium 

Score Regression (S-LDSR) [46] across all cis-regulatory elements (cREs) [61,62] 

identified through ATAC-seq and chromatin capture/Hi-C analysis for each cell type 

(Figure 1). We integrated our repertoire of 59 cell types (Table S1) with the recent 

European-population-GWAS summary statistics for TUD, AUD, CanUD and OUD (Table 

S2). 

 We assessed cell-type specific enrichment of GWAS signals in three genomic 

regions: 1) Total OCR: Open chromatin regions defined by ATAC-seq; 2) Promoter 

OCR: OCRs overlapping a gene promoter; 3) cREs: OCRs not overlapping a promoter 

but showing a chromatin loop with a promoter (putative enhancers/suppressors). 

Different GWAS variants can affect a phenotype by regulating gene expression through 

mechanisms like altering enhancer function (cREs) or transcription factor binding at 

promoters (Promoter OCRs). As a control, we also assessed open chromatin regions 

not overlapping a cRE or promoter ("not-cREs/Prom OCRs"), expecting no significant 

enrichments.  

For all cell types, the variants within the total set of OCRs (Fig.1 “Total OCRs” 

columns) showed a positive risk heritability (Enrichment >1) for at least one disorder, 

including in 44 cell types for AUD, 51 for TUD, 53 for CanUD, and 31 for OUD. Of these, 

only 14 unique cell types (12 for TUD, 4 for AUD, 6 for CanUD and 2 for OUD) showed 

statistically significant enrichments (P<0.05). When limiting the analysis to OCRs at 

gene promoters (Fig.1 “Promoter OCRs” columns), the enrichments were 

significantly decreased for immune cell types, while being increased significantly for 

metabolic and other cell types. This OCR category also yielded the greatest variability of 

enrichment (Enrichment standard error) in all cell types and all disorders (Fig S1). 

Further constraining the LD enrichment assessment to include only  OCRs that 

putatively regulate gene expression via chromatin contacts with gene promoters (Figure 

1 “cREs” column) significantly increased the enrichment for most of the cell types for 
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all disorders, decreased the P-values, and moderately narrowed the dispersion of 

enrichment ranges across different cell types compared to the promoter OCRs. The 

original S-LDSR method analyzed enrichment in the 500-bp flanking regions of their 

regulatory categories [46]. Our expanded analysis of the ±500 bp window for our cREs 

incorporated more weighted variants in the enrichment (Fig S1 – Prop.SNP), nearly as 

many as for the total OCRs in most instances. For GWAS signal distributions with sharp 

peaks, expanding the region by 500 bp dilutes the signal and increases P-values and 

enrichment standard errors without increasing heritability enrichment, as previously 

observed [63]. However, for SUDs, this expansion yielded stronger signals in LDSC 

statistics, lower P-values and enrichment standard errors, and greater enrichment 

across cell types. This suggests that the greater effect size of genetic signals for these 

disorders spans broader regions than our cREs. 

Conversely, when we analyzed OCRs located outside both cREs and promoters 

("not-cREs/Prom OCRs") as a control assessment (Fig S2), we observed generally 

lower enrichment than for the cREs with their expanded regions. However, an opposite 

pattern of enrichment was observed across the cell types (R = -0.01 to -0.2 comparing 

enrichment of “cREs” versus “not-cREs/Prom OCRs”, Fig S3), suggesting distinct 

functions of the GWAS variants attributed to the phenotype within different cellular 

system settings. (Detailed results in Table S3). 

Some cell types showed positive enrichment across all OCR categories, albeit at 

different levels of significance, though the numbers differed for the four disorders: 25 

cell types for AUD, 29 for TUD, 6 for OUD, and 24 for CanUD. The iPSC-derived cortical 

neurons and pancreatic beta cells are two cell types that consistently showed positive 

enrichment across all OCR categories for all four disorders. 

 

Diverse enrichment patterns of SUDs across cell types and chromatin regions 

The general patterns mentioned above varied across the different SUDs. The AUD 

enrichment was more evident in the neural cell types (Fig S4A). iPSC-derived cortical 

neurons and neural progenitor cells and embryonic stem cell (ESC)-derived 

hypothalamic NPCs and neurons showed significantly positive enrichment across 
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almost all OCR categories. Only astrocytes showed significant enrichment within “not-

cREs/Prom OCRs”. On the other hand, several liver and pancreatic cell types 

consistently displayed positive enrichment in all OCR categories. Interestingly, 

hepatocytes and pancreatic beta cells showed significant enrichment for AUD within 

total OCRs and “not-cREs/Promoter OCRs”, while pancreatic alpha cells showed 

significant enrichment for the expanded cRE regions. 

TUD also revealed highly significant enrichment within neural cell types, with 

greater strength within the cREs and promoter OCR regions, and less enrichment within 

the control OCR categories (Fig S4B). Interestingly, the pancreatic alpha and beta cell 

types displayed significant enrichment consistently across all OCR region categories. 

Skeletal myotubes, melanocytes and hMSCs also showed enrichment for TUD loci 

within promoter OCRs and cRE types, while some naïve T-cell types displayed 

significant enrichment for the “not-cREs/Prom OCRs” regions. 

CanUD displayed a contrasting enrichment pattern for OCR categories (Fig S4C). 

The neural cell types showed enhanced enrichment with the ‘not promoter-OCRs or 

cREs’ regions. Metabolic cell types, including several pancreatic, liver, myotube, and 

osteoblast cell types, yielded significant enrichment for cRE regions. This disorder also 

showed the highest involvement of immune cell types, especially various T-helper cells. 

OUD signals had the most sporadic pattern and the greatest number of negative 

enrichments (Fig S4D). Nonetheless, we observed significant positive enrichments for 

cortical neurons and pancreatic beta cells. 

 

Cortical neurons, neural progenitors, and pancreatic cells as key players in SUD 

pathophysiology and therapeutic targets  

Despite the observed diversity in patterns across distinct SUDs, several cell types 

consistently exhibited significant levels of enrichment. Notably, iPSC-derived cortical 

neurons and neural progenitors, ESC-derived hypothalamus NPCs and neurons, and 

pancreatic alpha and beta cell types were notably consistent across the four disorders 

(Fig S5). The observed pattern of enrichment within cREs and their expanded regions 
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suggest a pronounced association with the genetic architecture underlying SUDs. 

Conversely, there was a significantly lower level of enrichment within the contrasting 

OCR outside of both cREs and promoters ("not-cREs/Prom OCRs").  

The involvement of pancreatic cell types in SUDs prompted us to consider the 

possibility of pleiotropy between SUDs and metabolic diseases such as type 2 diabetes. 

The moderate genome-wide positive genetic correlation (R=0.1) between T2D and both 

TUD and CanUD was significant, whereas it was significantly negative with AUD (Fig 

S6). Interestingly, after partitioning the heritability to each cell type’s cREs, the 

correlation between T2D and TUD within pancreatic beta cells was significantly higher 

than the genome-wide correlation value (R=0.2) (Fig S6A). The significance was 

established with a bootstrap t-test yielding a p-value of 7e-48 (Fig S6B). This implies 

that pancreatic beta cells are crucial in understanding the genetic overlap between T2D 

and TUD, possibly due to shared pathways or regulatory mechanisms active in these 

cells. This finding highlights the importance of examining cell-type-specific genetic 

contributions to understand more fully the complex relationship between metabolic 

disorders and SUDs. 
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DISCUSSION 

We sought to identify cellular contexts mediating the genetic etiology of SUDs by 

examining enrichment patterns of epigenetic features across diverse cell types. Our 

approach integrated GWAS summary statistics with ATAC-seq, and promoter Capture 

C/Hi-C data. Utilizing LD score regression, quantifying polygenic effects and 

confounding factors, we quantified the contribution of SNP-based heritability to SUD 

pathogenesis. The observed positive heritability enrichment across various open 

chromatin features spanning multiple cell types revealed the involvement of metabolic 

and neural systems.   

Within our repertoire of cell types, we hypothesized that most of the GWAS signals 

would reside in cREs or gene promoters, as shown previously [61-68]. The enrichment 

patterns observed for AUD and TUD generally aligned with this. However, for CanUD 

and OUD, the GWAS signals exhibited a distinct pattern not fully captured by our cREs. 

This complexity makes it challenging to identify and characterize all relevant regulatory 

elements contributing to the susceptibility to these disorders. The presumed temporal 

nature of open chromatin regions within a given cell type likely also contributes to less 

observed enrichment within certain cell type cREs [69]. 

Notably, cortical neurons and pancreatic cells were consistently positively enriched 

across all OCR categories for all SUDs, suggesting their potentially crucial role in the 

pathophysiology of SUDs. The enrichment of cortical neurons and neural progenitor 

cells in SUDs aligns with accumulating evidence that implicates these cell types in the 

neurobiology of addiction [70-76].  

The apparent involvement of pancreatic alpha and beta cells in SUDs represents a 

novel and intriguing insight into their pathology, underscoring the interplay between 

metabolic regulation and addictive behaviors. Chronic exposure to substances like 

alcohol, opioids, and cannabinoids can disrupt pancreatic function, leading to 

dysregulated glucose metabolism and increased risk of metabolic disorders like 

diabetes [77-79]. Chronic alcohol consumption increases risk of pancreatic diseases 

such as pancreatitis and pancreatic cancer, likely due to the toxic effects of alcohol on 

pancreatic tissue. However, genetic predisposition can influence the susceptibility of 

pancreatic tissue to alcohol-induced toxicity, making certain individuals more vulnerable 
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to these diseases. Alcohol-induced pancreatic damage can impair insulin secretion, 

cause beta-cell dysfunction, and dysregulate glucagon secretion, contributing to 

metabolic abnormalities and the development of diabetes [80-82]. Opioid drugs exert 

direct effects on pancreatic alpha and beta cells. For example, opioids modulate insulin 

and glucagon secretion by pancreatic islet cells, potentially contributing to the glucose 

dysregulation and metabolic disturbances observed in opioid users [83,84]. 

Endocannabinoid receptors, including cannabinoid receptor 1 (CB1), are expressed in 

pancreatic alpha and beta cells, suggesting a direct influence of cannabinoids on 

pancreatic function. The activation of CB1 receptors can impair insulin secretion from 

beta cells and stimulate glucagon release from alpha cells, implicating the 

endocannabinoid system in the regulation of pancreatic hormone secretion and glucose 

metabolism [85-87]. Furthermore, a recent study uncovered a direct link between 

pancreatic cells and nicotine use, mediated by the key diabetes-associated transcription 

factor TCF7L2 [88]. The study showed that TCF7L2 regulates nicotine intake by 

modulating nicotinic receptors in the habenula, a brain region involved in stress 

responses. This regulation influences blood glucose levels through signaling via the 

autonomic nervous system to the pancreas, with chronic nicotine use disrupting normal 

glucose regulation.  

Interestingly, pancreatic beta cells share features with the brain, including a common 

set of expressed genes, which suggests an evolutionary link [89]. During pancreatic 

organogenesis, the depression of Polycomb enables beta cells to present with a 

neuronal gene expression program [90], with the overall beta cells’ gene expression 

pattern and chromatin marks being closer to neuronal tissue types than other tissues. 

Insulin-producing neurons precede beta cells phylogenetically, with rodents, human (in 

vitro), and most invertebrates having neurons that produce insulin to manage blood 

glucose levels [91]. Given the shared features of pancreatic beta cells and neurons that 

extend from transcription to post-transcriptional regulation [92], understanding brain-

pancreas interactions could aid in understanding the relationship between addiction and 

metabolic health. 

Several cell types exhibited a degree of negative heritability enrichment, with all 

traits yielding a negative enrichment in at least one cell type. Significant negative 
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enrichments were observed in a few cell types, for different disorders, and for different 

OCR categories. However, these cell types displayed typical levels of enrichment for 

other traits and those traits demonstrated normal enrichment ranges across other cell 

types. This suggests that the observed negative enrichments are unlikely to stem from 

misclassified alleles in trait summaries or biased genetic regions of interest within cell 

types. 

Our findings in immune cell types are consistent with numerous studies that have 

shown the influence of SUDs on the immune response system and associated cell 

types. For instance, there are immunomodulatory effects of chronic alcohol 

consumption, including alterations in cytokine production, heightened CNS 

inflammation, impaired immune cell function, and increased susceptibility to infection 

[93-97]. Similarly, tobacco use has been linked to systemic inflammation, immune 

dysregulation, and heightened risk of autoimmune diseases [98-104]. Additionally, 

opioid misuse has been shown to disrupt immune homeostasis, leading to 

immunosuppression [83,105-109]. Finally, cannabis use has been associated with 

immunomodulatory effects, such as altered cytokine profiles, impaired T-cell function, 

and dysregulated immune cell signaling [110-114]. 

In considering these effects, it is important to factor in the effective sample sizes of 

the GWAS efforts, which can introduce noise and contribute to negative enrichments 

observed in regression analyses. This limitation, inherent to partial linkage regression 

methodologies, highlights the need for careful interpretation of disease variant 

enrichment in specific cellular contexts.  

In conclusion, by elucidating relevant regulatory regions across various cell types, 

we gained insight into the genetic underpinnings of SUDs. Our study has indicated in 

which specific cellular environments the genetic susceptibility for SUDs appear to lie. 

These observations warrant further research aimed at unraveling the underlying causes 

of these disorders in specific cellular contexts. This could offer new avenues for 

advancing our understanding of SUDs and aiding in the development of more effective 

targeted interventions. 
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FIGURE LEGENDS 

Figure 1: Heritability enrichment of substance use disorders across diverse cell 
types 

1st left column: Bar-plot shows total number of open chromatin regions (OCRs) identified 
by ATAC-seq for each cell type on bulk cells (green), or on single cell (pink); proportion 
of cREs identified by hi-C (yellow), or Capture-C (blue). 

12 dot-plot panels display the heritability enrichment (LDSC analysis) for each cell type 
across 4 SUDs in 3 categories of OCRs: 

Total OCRs: all OCRs identified by ATAC-seq  

Promoter OCRs: OCRs overlapped with gene promoters  

cREs: of each cell type  

Whiskers represent enrichment standard errors. Grey-scaled dots correspond to P-
values in -log10, with red asterisks indicating significant P-values (< 0.05). Dot size 
corresponds to the proportion of SNP contribution to heritability. Dashed line at 1 
indicates no enrichment. 
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