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Abstract 39 

Autism Spectrum Disorder (ASD) displays a notable male bias in prevalence. Research into 40 

rare (<0.1) genetic variants on the X chromosome has implicated over 20 genes in ASD 41 

pathogenesis, such as MECP2, DDX3X, and DMD. The "female protective effect" in ASD 42 

suggests that females may require a higher genetic burden to manifest similar symptoms as 43 

males, yet the mechanisms remain unclear. Despite technological advances in genomics, the 44 

complexity of the biological nature of sex chromosomes leave them underrepresented in 45 

genome-wide studies. Here, we conducted an X chromosome-wide association study (XWAS) 46 
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using whole-genome sequencing data from 6,873 individuals with ASD (82% males) across 47 

Autism Speaks MSSNG, Simons Simplex Cohort SSC, and Simons Foundation Powering 48 

Autism Research SPARK, alongside 8,981 population controls (43% males). We analyzed 49 

418,652 X-chromosome variants, identifying 59 associated with ASD (p-values 7.9×10⁻⁶ to 50 

1.51×10⁻⁵), surpassing Bonferroni-corrected thresholds. Key findings include significant 51 

regions on chrXp22.2 (lead SNP=rs12687599, p=3.57×10⁻⁷) harboring ASB9/ASB11, and 52 

another encompassing DDX53/PTCHD1-AS long non-coding RNA (lead SNP=rs5926125, 53 

p=9.47×10⁻⁶). When mapping genes within 10kb of the 59 most significantly associated SNPs, 54 

91 genes were found, 17 of which yielded association with ASD (GRPR, AP1S2, DDX53, 55 

HDAC8, PCDH19, PTCHD1, PCDH11X, PTCHD1-AS, DMD, SYAP1, CNKSR2, GLRA2, 56 

OFD1, CDKL5, GPRASP2, NXF5, SH3KBP1). FGF13 emerged as a novel X-linked ASD 57 

candidate gene, highlighted by sex-specific differences in minor allele frequencies. These 58 

results reveal significant new insights into X chromosome biology in ASD, confirming and 59 

nominating genes and pathways for further investigation. 60 

1. Introduction 61 

Autism Spectrum Disorder (ASD [MIM 209850]) is a neurodevelopmental condition defined by 62 

social communication atypicalities, restrictive interests and repetitive sensory–motor 63 

behaviors. It is diagnosed in ~1% of the population worldwide1,2, with a 3-4:1 male:female 64 

prevalence ratio3,4. 65 

This difference may have demographic and social components, with one example being that 66 

some autistic traits, such as restricted interests, may be more normalized in females compared 67 

with male individuals, and consequently ASD could be underdiagnosed5.  However, there is 68 

evidence for a significant biological influence on the sex-differential likelihood of ASD6–11. For 69 

example, females with neurodevelopmental disorders, including ASD, tend to have an excess 70 

of deleterious autosomal copy number variants (CNVs), and deleterious autosomal single-71 

nucleotide variants (SNVs)6,7,10–13. Variation in steroid hormones and differential gene 72 
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expression in males and females may also influence ASD likelihood and characteristics8. 73 

Another consideration, which may be influenced by the afore-mentioned observations, is that 74 

in a family with a son having ASD, the likelihood of a female sibling also being affected is 4.2%, 75 

a number that increases to 12.9% if the sib is male14.   76 

Collectively the evidence may suggest a hypothetical "female protective effect" whereby 77 

females require a quantitatively greater etiologic load than males to exhibit the same degree 78 

of clinical presentation of ASD15–17. The sex ratio contribution approaches 1:1 when 79 

considering de novo mutations affecting presumed ‘penetrant’ autosomal genes and copy 80 

number variants (CNVs) in ASD and other neurodevelopmental conditions18–20. However, 81 

some studies suggest that the etiology of ASD includes qualitative sex differences, particularly 82 

involving genetic variations on the X chromosome.21. Sex hormones, known influencers of 83 

typical male and female brain development22, may also contribute to sex-varied penetrance in 84 

ASD23.  For example, a surge of testosterone in the male fetus, combined with XY 85 

chromosomal determinants, may impact the neuroimmune system, affecting dendritic 86 

arborization24 and the number of microglia and neurons25, hence contribute to the sex-87 

difference biology of ASD. 88 

Currently, there are 23 SFARI26 score 1 and 36 SFARI26 score 2 genes with evidence to be 89 

involved in ASD mapping to the X chromosome26. Nine of these reach a sufficient “Evaluation 90 

of Autism Gene Link Evidence (EAGLE)” score to be considered definitively involved in more 91 

narrowingly-defined ASD27 (the SFARI and EAGLE genes are often used in diagnostic testing 92 

panels for ASD)28. Since upwards of 75% of genome-wide studies do not consider rare or 93 

common variants (including polygenic score analysis) on the sex chromosomes in their 94 

analysis 29, it is anticipated there are additional gene loci to be validated and others to be 95 

discovered (Table S1 summarizes the published genome-wide manuscripts examining the X-96 

chromosome). One study has attempted a genetic association test for ASD using common 97 

variants on the X chromosome30, finding TBL1X as a candidate locus (Table S1). 98 
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There are, however, complications in studying the X chromosome as it has a lower genetic 99 

diversity compared to the autosomes, because, apart from the small pseudoautosomal region, 100 

this genomic region does not recombine in males29. Thus, the X chromosome can be more 101 

sensitive to evolutionary events, such as sex-bias admixture, bottlenecks and natural selection, 102 

and it can have different mutation rates from autosomes31. Moreover, in females, the X-103 

inactivation phenomenon can occur where a random X chromosome copy may be inactive (i.e. 104 

X chromosome dosage compensation)29,31,32. The issue of 50% reduced X-chromosome 105 

coverage in males (46XY) in microarray and sequencing experiments has also led to the 106 

understudy of this important sex chromosome29. 107 

Recent development, however, now enables more robust X-wide association studies (XWAS)  108 

by dealing with X-specific quality control, statistical tests stratified by sex, estimation of 109 

significant thresholds, and accounting for the potential heterogeneity of allelic effect between 110 

males and females and chromosome inactivation bias 29,33. 111 

Here, we conducted a comprehensive XWAS of ASD from 6,873 ASD individuals (5,639 males 112 

and 1,234 females) sourced from three different whole-genome sequencing (WGS) datasets, 113 

alongside 8,981 control individuals (3,911 males and 5,070 females), from two additional 114 

datasets (Figure 1, Figure S1). 115 
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2. Material and methods 116 

 117 

Figure 1: XWAS workflow. A) Outline of the XWAS pipeline detailing data sources including 118 

MSSNG (Autism Speaks), SSC (Simons Simplex Cohort), SPARK (Simons Foundation 119 

Powering Autism Research), 1KGP (1000 Genome Project), HostSeq (The Host Genome 120 

Sequencing Initiative), and MGRB (Medical Genome Reference Bank). The significance 121 

threshold was determined using Bonferroni correction, individually calculated for the Male-122 
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XWAS, Female-XWAS, and Both-XWAS approaches. For Meta-XWAS, we used the threshold 123 

inferred from the Both-XWAS result. B) Replication and robustness studies conducted. 124 

2.1 Database 125 

2.1.1. ASD Datasets 126 

The Autism Speaks MSSNG resource34,35 is a dataset of genetic and phenotype information 127 

from individuals diagnosed with ASD as well as members of their families 34,35. The affected 128 

individuals were diagnosed according to the Diagnostic and Statistical Manual of Mental 129 

Disorders (DSM)36, also supported in many individuals by the Autism Diagnostic Interview-130 

Revised (ADI-R)37,38 and/or the Autism Diagnostic Observation Schedule (ADOS) 39,40. The 131 

Province of Ontario Neurodevelopmental Network (POND) is part of MSSNG and continues to 132 

contribute with new data. We used data from 9,621 individuals for the analysis done here. 133 

The Simons Simplex Collection (SSC) includes WGS data from approximately 2,600 ASD 134 

simplex families (one affected child plus unaffected parents and siblings)41. The ASD 135 

diagnoses were performed following the University of Michigan Autism and Communication 136 

Disorders Center guidance to guarantee uniformity across the 12 university-affiliated research 137 

clinics involved in this initiative. We used 9,209 ASD participants from SSC in this analysis. 138 

Also from SFARI42, the SPARK data (Simons Foundation Powering Autism Research) is an 139 

autism research initiative that includes both WES (Whole Exome Sequence) and WGS data 140 

from US individuals, besides behaviour and phenotypic information. We used WGS from 141 

12,519 individuals for the X-chromosome analysis. 142 

2.1.2. Population/Control Datasets 143 

For ancestry inference, we used genetic information from 3,202 samples from 1000 Genomes 144 

Project of five different ancestries (Africans, Americans, East Asians, Europeans and South 145 

Asians). For this, we used the high-coverage 2020 version released by the New York Genome 146 
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Center (NYGC) (https://www.internationalgenome.org/data-portal/data-collection/30x-147 

grch38)43.  148 

As ASD-controls we used data from 2,561 samples from the Medical Genome Reference Bank 149 

(MGRB)44, which is a WGS dataset from ~4,000 healthy, elderly Australians44. The MGRB 150 

dataset includes most individuals of European ancestry but does not exclude samples from 151 

different genetic backgrounds. We also used 9,802 samples from the Host Genome 152 

Sequencing Initiative (HostSeq)45 which is a collection of 14 Canadian research studies 153 

examining responses to COVID-19. 154 

2.2 Quality Control  155 

2.2.1 Autosomes 156 

After selecting biallelic variants we used the SmartQC software 157 

(https://github.com/ldgh/MosaiQC-public) to perform the basic control quality steps to remove: 158 

(i) variants with the chromosome notation equal to “0”, (ii) remove variants with duplicated IDs, 159 

(iii) remove variants and samples with missing data greater than 10% (plink --geno 0.1; plink -160 

-mind 0.1), (iv) impute sex codes using SNP data through PLINK's '--impute-sex --check-sex' 161 

functionality. (v) remove A|T and C|G variants (ambiguous SNPs), (vi) remove 100% 162 

heterozygous variants (plink --hardy) and (vii) annotate the variants for dbSNP ID and LiftOver 163 

for hg38 if necessary. 164 

Using plink --bmerge, we merged the data from MSSNG, SSC, SPARK, MGRB, HostSeq. The 165 

merged file had a total of 22,242 samples and 1,407,803 variants (Figure 1, Figure S1).  166 

For the XWAS analysis using Principal Components (PCs) based on the autosomal information 167 

as covariates for logistic regression, we cleaned our data based on the pipeline of Leal et al 168 

(2023)46 (https://github.com/MataLabCCF/XWAS) in the merged file with MSSNG, SSC, 169 

SPARK, MGRB, and HostSeq. This cleaning pipeline adds the following steps; (i) removal of 170 

monomorphic SNPs, or those located in structural variants, using the list of SNPs located in 171 
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structural variants from Le Guen et al. (2021)32 created using Tri-Typer47. (ii) remove of 172 

potential probe sites using gnomAD48, and (iii) relationship control using  KING49 to calculate 173 

the kinship coefficient and NAToRA50 to remove samples with relatedness closer than second 174 

degree. After this XWAS cleaning pipeline the autosomal file had 1,075,065 SNPs and 21,089 175 

samples (Figure S1). 176 

The final XWAS analysis was restricted to individuals with more than 75% European ancestry. 177 

To achieve this, we conducted an ancestry check utilizing ADMIXTURE software51 with five 178 

clusters. The reference populations included Europeans, Africans, East Asians, South Asians, 179 

and Americans from the 1000 Genomes Project (1KGP)52. After merging our XWAS data with 180 

samples from the 1000 Genomes Project (1KGP), which underwent the same quality control 181 

process, we obtained a dataset containing 24,291 samples (Figure S1). To enhance data 182 

quality for ancestry inference, we conducted a filtering step to exclude variants exhibiting high 183 

levels of Linkage Disequilibrium (LD), using the command 'plink --indep-pairwise 100 10 0.1'. 184 

Additionally, variants located in regions known to be under recent selection were removed from 185 

the dataset53–55. We then ran ADMIXTURE using a total of 131,291 SNPs. 186 

2.2.2 X Chromosome 187 

After completing the general quality control steps described in section 2.2.1, we separated the 188 

variants on the X chromosome (coded as chromosome 23 in PLINK) from those in the 189 

pseudoautosomal regions (coded as chromosome 25 in PLINK). This separation was based 190 

on a dbSNP reference file. We also applied the XWAS cleaning pipeline (Figure 1)46 for the X 191 

chromosome, which includes; (i) selecting the remaining individuals from the autosomal 192 

cleaning process, including samples without relatedness greater than second degree and 193 

samples with more than 75% of European ancestry, (ii) removal of SNPs following the same 194 

parameters used for the autosomes, besides SNPs with differential missingness between ASD 195 

individuals and controls with p-values lower than 10-5, (iii) removal of SNPs with differential 196 

missingness between males and females with p-values lower than 10-5, (v) heterozygous SNPs 197 
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found in males were assigned as missing data. For the XWAS logistic regression we used a 198 

final of 418,652 X chromosomal variants and 15,499 samples (Figure S1).  199 

2.3. XWAS 200 

After data cleaning, we conducted the XWAS analysis using two input files. The first file 201 

contained autosomal data with 1,075,065 variants, intended for principal component 202 

inferences to be used as covariates in the XWAS logistic regression. The second file consisted 203 

of X chromosome data with 418,652 variants. Both files contained data from the same 15,854 204 

samples. Among these samples, 9,550 were male (3,911 controls and 5,639 ASD individuals), 205 

and 6,304 were females (5,070 controls and 1,234 ASD individuals). The principal component 206 

inference was done with the GENESIS package stratified by sex (one PCA for males and one 207 

for females), where all samples with standard deviation greater than three from major clusters 208 

were defined as being outliers and removed from subsequent analyses. For the primary XWAS 209 

analysis, we utilized X chromosome data for principal component analysis (PCA). Additionally, 210 

we conducted a replication analysis using data from autosomal chromosomes. The resulting 211 

10 PCs from males only and females only were employed as covariates for Male-XWAS and 212 

Female-XWAS, respectively. Non-outlier males and females were merged to create both 213 

datasets. Subsequently, this new dataset underwent another PCA, where outliers were 214 

detected and excluded based on the same parameters. The 10 resulting PCs from this process 215 

were used as covariates in “Both-XWAS” (Figure 1). 216 

The final regression analysis was performed using logistic regression in PLINK2 56 (--glm) for 217 

three approaches (Figure 1); (i) Male-XWAS: Based on 5,639 ASD male individuals and 3,911 218 

male controls. This approach used the 10 top PCs from males as covariates; (ii) Female-219 

XWAS: Based on 1,234 ASD female individuals and 5,070 female controls. This approach 220 

used the 10 top PCs from females as covariates; and (iii) Both-XWAS: Based on 6,873 ASD 221 

individuals and 8,981 controls. This approach used the 10 top PCs from both and sex as 222 

covariates. 223 
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We also performed a meta-analysis from the sex-stratified results (Male-XWAS and Female-224 

XWAS) implemented on GWAMA57,58. This result incorporates the "gender_heterogeneity_p-225 

value," which is derived from assessing heterogeneity between sex-specific allelic effects. This 226 

result incorporates the "gender_heterogeneity_p-value," which is derived from assessing 227 

heterogeneity between sex-specific allelic effects using one degree of freedom. This test 228 

involved analyzing males and females separately in each XWAS. It entailed obtaining male- 229 

and female-specific allelic effect estimates in a fixed-effects meta-analysis, followed by testing 230 

for heterogeneity between the sexes 58.  231 

2.4 X-Chromosome Significance Threshold 232 

Given that our association tests are conducted on a single chromosome, the number of 233 

effective tests performed is lower compared to a genome-wide analysis. Typically, in genome-234 

wide analyses, the significance threshold is set at p-value < 5x10-8. To determine an 235 

appropriate significance threshold for our XWAS analysis, we applied a Bonferroni correction 236 

by dividing 0.05 by the number of effective tests 59.  237 

The number of effective tests (Neff) was calculated by dividing the squared number of variants 238 

by the sum of the R2 correlation coefficients between all variants present in the dataset 46: 239 

 (Neff) = V2 /(Σv
 i=1 Σv

 j=1 Lij)  240 

V= Total number of variants 241 

L = the R² correlation coefficient between all variants (V) present in the datasets (L is a matrix 242 

with size V by V); i and j = Matrix indexes. 243 

To generate the R2 matrix among all variants in our dataset, we utilized the command 'plink -244 

-r2 square gz yes-really'. The sum of our corresponding matrix was: Female: 37441288.90; 245 

Male: 27721944.23 and Both: 53006792.62. Thus, the respective number of effective tests 246 

(Neff): Female: 418,6522/37441288.90 = 4,681.18; Male: 418,6522/ 27721944.23 = 6,322.40; 247 
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Both: 418,6522/ 53006792.62 = 3,306.54 with the final significance threshold being; Female: 248 

0.05/4,681.18 = 1.07x10-5; Male: 0.05/6,322.40 = 7.9x10-6; Both: 0.05/3,306.54 = 1.51x10-5. 249 

2.5. sdMAF 250 

Sex differences in allele frequencies were analyzed with the sdMAF software 60,61. We initially 251 

split the pseudoautosomal regions (PAR) with the PLINK62 --split-par hg38 command. Since 252 

PLINK was not able to properly handle male homozygous in the bed file and simply assigned 253 

them all to missing, we bypassed the problem by changing the chromosome code to 22 prior 254 

to generating genotype counts. The chromosome number in the ‘gcount’ file was then re-coded 255 

back to 23 and subsequently pipelined into the sdMAF software as suggested by the sdMAF 256 

documentation61. To select the significant sdMAF results, we utilized the same conservative, 257 

Bonferroni-corrected significance level for XWAS-Both analysis (1.51x10-5), given that we are 258 

testing the same number of SNPs. 259 

2.6 Rare variant analysis 260 

We further investigated the impact of rare genetic variations inside the candidate regions 261 

identified from the XWAS analysis by comparing the frequency of rare predicted damaging 262 

single nucleotide variants (SNVs; gnomAD frequency <0.1%), insertion and deletions smaller 263 

than 50bp (indels; gnomAD frequency <0.1%), and exonic copy number deletions (CNV 264 

deletions; gnomAD frequency <1%) impacting genes between ASD-probands and family 265 

members.     266 

The initial reads were aligned to the GRCh38 human genome reference. Small variants (SNVs 267 

and Indels) and CNVs were called using GATK and in-house CNV calling pipeline, 268 

respectively63. Standard output files were generated, including CRAMs for alignment, and 269 

VCFs for small variants, and CNVs. Per sample analysis metrics were also generated. The 270 

small variant calls were annotated using an ANNOVAR-based pipeline64. Using an in-house 271 

script, we filtered high quality small variants that were found in less than 0.1% of gnomAD 272 
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samples. We then selected only damaging small variants if they result in a stop gain or a 273 

frameshift, or, they are nonsynonymous SNVs predicted to be damaging by  four  different in-274 

silico tools (i.e., sift_score65 <=0.05, polyphen_score66>=0.9, mt_score67>=0.5, and 275 

CADD_phred68 >= 15). For this SNVs analysis, besides the WGS data previous described 276 

(session 2.1.1), we also used whole exome data (WES) from SPARK, given a final number of 277 

47,840 ASD-probands (79% males), 19,820 ASD-unaffected siblings (47% males), and 63,692 278 

ASD-parents (40% fathers).  279 

The deletions were detected using a previously described read depth-based pipeline34,63. We 280 

only considered high-quality deletions, which were tagged based on the following criteria; (i) 281 

length >= 5kb, ii. called by both ERDS69 and CNVnator70 with at least 50% reciprocally 282 

overlapped in length, (ii) having < 70% of its length overlap with repetitive or low complexity 283 

regions of the genome (i.e., telomere, centromere, and segmental duplications), and (iii). for 284 

the X chromosomal calls in males, CNVs in PAR were filtered out. For the CNV comparison 285 

we only used WGS data, and we also included data from the new MSSNG release 286 

(MSSNGdb7), resulting in a total of  9,691 ASD-probands (82% males), 5,591 ASD-unaffected 287 

siblings (38% males) and 17,470 ASD-parents (50% fathers). 288 

For both small variants and deletions, independently, we performed an association analysis 289 

using a conditional logistic regression stratifying the test by the family. For sex-combined 290 

analysis, we also used sex as covariates. 291 

2.7 Brain gene Expression Analysis  292 

Exon-averaged gene expression data were obtained from BrainSpan (Allen Brain Atlas)71. With 293 

this microarray data, we further applied quantile normalization and standardization across both 294 

genes and samples for the comparative analysis. Subsequently, we generated a brain map 295 

plot wherein colors ranging from blue (indicating downregulation) to red (indicating 296 

upregulation) denote the average expression levels of the selected genes within each brain 297 

region. This visualization was created for five developmental stages: Early Fetal (less than 16 298 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.18.24310640doi: medRxiv preprint 

https://paperpile.com/c/m2Zm3u/ehjNU
https://paperpile.com/c/m2Zm3u/hLNGZ
https://paperpile.com/c/m2Zm3u/XQwk1
https://paperpile.com/c/m2Zm3u/Vp9ew
https://paperpile.com/c/m2Zm3u/AXSfw+Klsry
https://paperpile.com/c/m2Zm3u/PWcvK
https://paperpile.com/c/m2Zm3u/CbDTh
https://paperpile.com/c/m2Zm3u/jlHwQ
https://doi.org/10.1101/2024.07.18.24310640
http://creativecommons.org/licenses/by-nc/4.0/


14 

weeks), Late Fetal (more than 16 weeks to birth), Early Childhood (birth to three years old), 299 

Childhood/Teenage (three years to 20 years), and Adulthood (more than 20 years). 300 

3. Results 301 

3.1 Association Test 302 

After performing the four different XWAS tests (Figure 1), which included sex-stratified tests 303 

(Male-XWAS and Female-XWAS), sex-combined mega-analysis (Both-XWAS), and meta-304 

analysis (Meta-XWAS), we identified 59 variants as significant in at least one of the four 305 

approaches (Table S2). These variants correspond to a total of 20 risk loci, encompassing 23 306 

genes with variants in high linkage disequilibrium (r^2 > 0.7) with the lead SNP (Table 1). The 307 

genomic loci detected from the four XWAS approaches utilized are shown in Table 1.  Among 308 

these, 42 were found uniquely by a unitary XWAS approach: 27 in the Male-XWAS, five in the 309 

Female-XWAS, one in the Both-XWAS (performed with males and females together, using sex 310 

as a covariate), and nine in the Meta-XWAS (a meta-analysis of Male-XWAS and Female-311 

XWAS results using GWAMA57 software, because it includes a "meta-analysis using sex-312 

differentiated and sex heterogeneity"57). Additionally, 17 variants showed significant p-values 313 

in more than one test (Table S2). Each test underwent visual inspection via histograms and 314 

QQ plots, revealing no distortions as indicated by the genomic inflation factor (λ=0.928 - 1.036), 315 

which measures systematic bias in the statistical test (Figure S2, Figure 2). Among the 59 316 

variants, 30 exhibit a “gender heterogeneity p-value” (test for heterogeneity between sexes 317 

with one degree of freedom)58 below 0.05, all of them in the sex stratified approaches (26 in 318 

the Male-XWAS and four in the Female-XWAS), suggesting significant differences in allelic 319 

effects between males and females for these variants. Notably, two of these variants, identified 320 

in the Male-XWAS within the ASB11 gene, attained a “gender heterogeneity p-value” of less 321 

than 9x10−5. In the presence of heterogeneity in allelic effects between the sexes, a loss of 322 

power for sex-combined association tests can occur if the allele has opposite direction of effect 323 
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in the other sex58. This type of biological phenomena may explain why variants are not detected 324 

in Both-XWAS and Meta-XWAS. 325 

Table 1. Genomic Risk Loci. Genomic loci detected from four XWAS analyses (Male-XWAS, 326 

Female-XWAS, Both-XWAS, Meta-XWAS). The unique ID as well as the p-value refer to the 327 

lead SNPs specified. The 23 genes in the last column are within the gene locus, and 328 

encompass variants exhibiting strong linkage disequilibrium with the lead SNP (r2 > 0.7). 329 

 330 
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331 

Figure 2. ASD-XWAS manhattan and qq plots. Each panel shows a Manhattan plot on the 332 

left part and qqPlot on the right part. The graphs result from XWAS testing using 6,873 ASD 333 

individuals (5,639 males and 1,234 females) and 8,981 controls (3,911 males and 5,070 334 
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females) with a total of 418,652 X chromosomal variants originated from WGS data (46 335 

variants in PAR regions) for (A) Male-XWAS, B) Female-XWAS, C) Both-XWAS, and D) the 336 

Meta-XWAS, a meta-analysis from the sex stratified approaches implemented on GWAMA57. 337 

3.1.2 Robustness Study 338 

We performed XWAS analyses using various configurations, including one ASD dataset 339 

against all controls, as well as all ASD against each control dataset, to mitigate potential bias 340 

stemming from dataset heterogeneity and to conduct robust sanity replications,  (Table S3). 341 

Consequently, we obtained XWAS results for; (i) MSSNG as cases versus HostSeq and MGRB 342 

as controls, (ii) SSC as cases versus HostSeq and MGRB as controls, (iii) SPARK as cases 343 

versus HostSeq and MGRB as controls, (iv) MSSNG, SSC, and SPARK as cases versus 344 

HostSeq as controls, (v) MSSNG, SSC, and SPARK as cases versus MGRB as controls and 345 

(vi) control versus control (sanity test; MGRB was labeled as cases and HostSeq as control).  346 

Among the 27 variants exclusively found in males, all replication tests yielded a p-value below 347 

0.05, except for eight variants solely in robustness test "v" (involving all case datasets versus 348 

MGRB controls). Notably, these eight variants reside within the first significant region identified 349 

in the Male-XWAS, spanning between 15.27 and 15.36 Mb. Even after excluding these eight 350 

variants, we retained 19 significant SNPs in this region with a p-value lower than 0.05 across 351 

all replication tests. 352 

Regarding the five variants in the detected exclusive in Female-XWAS, two did not reach a p-353 

value lower than 0.05 across all robustness tests. One of them, rs749183760 in ENOX2, was 354 

not captured by test "ii". Additionally, the intergenic SNP rs182249604, located within the first 355 

significant genomic region (between 16.7Mb and 17.33Mb), did not yield a p-value lower than 356 

0.05 on test “iii”. However, even after excluding these variants, we still observe significant 357 

SNPs in this region, including variants within the TXLN gene. 358 
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Considering the results from the Both-XWAS replications, there is only one significant variant 359 

(rs767542284 in PDHA1), that also demonstrated a significant p-value in all subset (i-v) 360 

analyses; five of nine variants detected in the Meta-XWAS achieved significant p-values in all 361 

cohort tests, and these are located within DMD, PABPC1L2A and PCDH11X. When comparing 362 

the significant variants detected in both Meta-XWAS and Both-XWAS (8 variants located on 363 

PTCHD1-AS, HDAC8, and LOC124905257 genes), we replicated five results across all cohort 364 

tests (i to v). Notably, the variants that did not reach a significant p-value in all tests include 365 

two variants in the HDAC8 gene (rs5958792, rs73218354) and one intergenic variant 366 

(rs5981334), all of which were not replicated only in test "iii" (SPARK versus all control 367 

cohorts). 368 

All six results identified in both the Female-XWAS and another XWAS (Meta-XWAS, Both-369 

XWAS) were situated within two different genes, ENOX2 and HTR2C. None of these variants 370 

achieved a p-value < 0.05 in test ii (SSC versus all controls). Three significant variants were 371 

detected in both the Male-XWAS and Meta-XWAS. All three variants had significant p-values 372 

in all tests except for one variant (rs12835197 - PCDH19) in test "v" (All cases versus MGRB). 373 

We performed a sanity check employing logistic regression, where controls were compared 374 

against controls (Test “vi”), using MGRB as cases and Hostseq as controls. To fortify the 375 

reliability of our findings, we assessed whether our candidate variants yielded non-significant 376 

p-values (≥0.05) in this sanity test as well. At least one variant in the genes ASB9 and ASB11 377 

from Male-XWAS analysis meet the criteria of the sanity test. Hence, we retained both genes 378 

in the final results. In the Female-XWAS results, three out of the five detected variants failed 379 

to pass the sanity test, resulting in only the ENOX2 gene being included among the final genes. 380 

3.1.3 XWAS replication using Autosomal Principal Components as covariates 381 

Our principal component analysis (PCA) focused solely on the X chromosome due to its unique 382 

biological features (see Methods section 2.3). Therefore, the top 10 PCs were then considered 383 

as covariates46.  We also implemented XWAS with autosomal PCs to assess the 384 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.18.24310640doi: medRxiv preprint 

https://paperpile.com/c/m2Zm3u/seM6o
https://doi.org/10.1101/2024.07.18.24310640
http://creativecommons.org/licenses/by-nc/4.0/


19 

generalizability of findings (Table S4, Figure S3 and Figure S4). The modified model revealed 385 

a total of 58 significant loci spanning over 12 genes: ASB9, ASB11, PIGA, PCDH19, TXLNG, 386 

HTR2C, ENOX2, PDHA1, PTCHD1-AS, DMD, HDAC8, and PABPC1L2A (Table 2); 11 of 387 

these overlap with the genes detected by the primary analysis using X chromosome-only PCs 388 

(Figure S4). The PIGA gene was identified exclusively with the autosomal PC model, noting it 389 

is located in proximity to ASB11(3.8kb) and ASB9 (48.9kb), which were detected in the Male-390 

XWAS results using the X chromosome PCs. Among the 14 genes discovered by the XWAS 391 

using the X chromosome-only PCs only X, LOC124905257 and PCDH11X were not present 392 

when using autosomal PCs in the XWAS.  393 

The genomic control lambdas observed in the QQ plots ranged from 0.913 to 1.119 (Figure 394 

S4). Additionally, the correlation between the XWAS results obtained from X chromosome PCs 395 

and autosomal PCs was 0.76 for males and 0.79 for females (Figure S3). Overall, the results 396 

from the main analysis are generalizable and robust. 397 

3.1.4 Annotation 398 

All XWAS results (Male-XWAS, Female-XWAS, Both-XWAS, Meta-XWAS) were annotated 399 

using both modules of FUMA72: SNP2GENE and GENE2FUNC. SNP2GENE mapped the 400 

genes corresponding to the significantly associated SNPs, while GENE2FUNC annotated 401 

gene expression and gene sets from the previously mapped genes. The 59 significant 402 

associated variants were mapped (within a 10kb distance) to a total of 93 genes (Table S5). 403 

Through the gene-based test conducted using MAGMA73, significant associations were 404 

identified for ASB11 (p-value = 2.87x10-6) in the Male-XWAS (Figure 2, Figure 3-A), where 405 

initial SNPs were mapped to 704 genes given a significance threshold defined as 7.1x10-5 406 

(0.05/704). This gene was also mapped in the Female-XWAS analysis, being situated within 407 

at least 10kb distance from a significantly associated SNP. Notably, ASB11 is located within 408 

one of the most significant Linkage Disequilibrium (LD) regions identified in the Male-XWAS 409 

results, spanning between 15.27 and 15.36Mb, which also encompasses the genes ASB9 and 410 
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PIGA (Genomic Locus 1-Male-XWAS; Table 1). The corresponding LocusZoom plot, along 411 

with the Combined Annotation Dependent Depletion (CADD)68,74 score and RegulomeDB 412 

score75,76 plots for this region, are presented in Figure 3-A. The CADD score assesses the 413 

deleteriousness of genetic variants, while the RegulomeDB score evaluates their functional 414 

significance, aiding in the interpretation of their potential biological effects. When considering 415 

only significant SNPs falling internal to the gene rather than within a 10kb range, 13 candidates 416 

were identified:  ASB11, ASB9, DMD, ENOX2, HDAC8, HTR2C, LOC124905257, 417 

PABPC1L2A, PCDH11X, PCDH19, PDHA1, PTCHD1-AS and TXLNG (Figure 2, Table 2). 418 
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 419 

Figure 3. Annotation details for the genomic risk Locus 1_Male-XWAS and 1_Both 420 

XWAS. A) Details for the genomic risk locus 1_Male-XWAS. The upper panel shows the 421 

LocusZoom plot for the correspondent region with the lead SNP rs12687599 highlighted in 422 

purple. The used LD reference panel was Europeans from 1000G data77 for both sexes 423 
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together. Following the LocusZoom plot, on the left, we provide annotation results displaying 424 

CADD and RegulomeDB scores. On the right, the Manhattan plot illustrates the gene-based 425 

test computed by MAGMA in FUMA. The SNPs were mapped to 704 protein-coding genes, 426 

hence the genome-wide significance threshold (indicated by the red dashed line in the plot) 427 

was conservatively set at P = 0.05/704 = 7.10x10-5. B) LocusZoom plot of the genomic locus 428 

1_Both-XWAS, followed by the CADD and Regulome profiles of the same region. 429 

In the sex-stratified analysis, the majority of the SNPs found to have significant association 430 

were located in intronic regions, accounting for 68.4% of the Male-XWAS results and 60% of 431 

the Female-XWAS results. Within the Both-XWAS results, 45.8% of the SNPs were intergenic, 432 

28.9% were non-coding RNAs, 22.9% were intronic, and an additional 2.4% located in UTR 433 

regions. 434 

3.2 Sex differences in minor allele frequencies (sdMAF) 435 

Evolutionary forces can influence allele frequency on the X chromosome between sexes 436 

compared to the autosomes 78,79.  To ensure the effectiveness of the quality control process, 437 

we have implemented sdMAF60,61 analysis on the same set of genomic data. Subsequently, 438 

we removed all sdMAF significant results from the XWAS findings. These signals could be 439 

capturing either true biological sex differences or genotyping error, inducing spurious 440 

association between ASD and variants. 441 

However, the sdMAF results also provided valuable insights. We applied sdMAF separately to 442 

ASD individuals and controls cohorts; and we observed scatters of statistically significant 443 

variants in both ASD individuals and controls (Figure 4). Single or few scatters were expected 444 

to be caused by genotyping error. The results from the region of FGF13 gene was particularly 445 

prominent. Notably, FGF13 is a previously ASD-associated gene with a SFARI score of 3S 446 

(Figure 4). Interestingly, the detection of this region is solely through sdMAF but not via logistic 447 

regressions, highlighting the potential of sdMAF being used as a tool for association studies of 448 

sex-biased diagnoses. 449 
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 450 

Figure 4. sdMaf Results. A) Left, the Manhattan plot illustrates the sdMAF p-values obtained 451 

from ASD datasets exclusively. Right, the Manhattan plot represents the sdMAF p-values 452 

obtained from control datasets only. B) The LocusZoom plot displays the region identified in 453 

the sdMAF-cases results, highlighting the gene FGF13. The LD reference panel used was 454 

Europeans from 1000G data77 for both sexes together. 455 

3.3 Rare variants analysis 456 

Recognizing the significant role of rare variants in ASD genetic architecture 34,80–83, we checked 457 

in the same ASD datasets (MSSNG, SSC and SPARK) for rare predicted damaging small 458 

variants (SNV/indels with less than 0.1% of frequency on gnomAD48) and CNV deletions (<1% 459 

frequency in gnomAD48) overlapping at least one exon of the 14 significant detected genes (13 460 

from XWAS and one from sdMAF).  461 

Among the total of 14 XWAS genes analyzed (Figure 5), 11 exhibited rare predicted damaging 462 

SNVs. Among the remaining three genes, two were non-coding RNAs (LOC124905257 at 463 

HG38 chrX:20606477:20727481 and PTCHD1-AS at HG38 chrX:22193005:23293146), while 464 

the third was PABPC1L2A (HG38 chrX: 73077276:73079512). In the male frequency 465 

comparisons, almost all genes showed a higher frequency of these variants in ASD-probands 466 
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compared to other family members, except for PCDH11X and PCDH19. In females, five genes 467 

(ASB11, DMD, HDAC8, PCDH19, and HTR2C) showed a higher frequency in ASD-probands. 468 

Combining both sexes, four genes (ASB11, DMD, HDAC8, HTR2C, and FGF13) showed a 469 

higher frequency in ASD-probands. 470 

We successfully identified rare deletions overlapping exons in the joint ASD datasets for the 471 

gene detected in sdMAF (FGF13) and for three of the 13 genes from the main XWAS results, 472 

including PTCHD1-AS, DMD, and ENOX2 (Figure 5, Table 2). Comparing the frequency of 473 

these CNVs in unaffected family members, we observed an enrichment in cases compared to 474 

unaffected family members for deletions impacting PTCHD1-AS in males, DMD and ENOX2 475 

in females and both sexes combined, and FGF13 in males and both sexes combined. 476 

However, none of the association test results reached a p-value lower than 0.05, but this might 477 

be expected because of sample size. 478 
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 479 

Figure 5. Rare Variant Frequency Analysis. The figure compares the frequencies of rare 480 

variants among different groups: ASD-Probands (red bars), ASD-Unaffected Siblings (green 481 

bars), and ASD-Parents (gray bars). The left panel shows the frequency of rare predicted 482 

damaging SNVs (<0.1% frequency in general population) across 11 genes (ASB9, ASB11, 483 

TXLNG, PDHA1, PTCHD1-AS, DMD, HDAC8, PCDH11X, PCDH19, HTR2C, ENOX2, FGF13) 484 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.18.24310640doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.18.24310640
http://creativecommons.org/licenses/by-nc/4.0/


26 

detected through XWAS common variant data analysis (Table 2). The right panel illustrates 485 

the frequency of rare CNV deletions overlapping exons (< 1% frequency in general population), 486 

found in four XWAS-genes (PTCHD1-AS, DMD, ENOX2, FGF13). In each graph, the 487 

corresponding p-value from a conditional logistic regression is shown at the bottom, conducted 488 

separately for males, females, and both sexes combined (using “sex” as covariate). 489 

3.4 Brain Gene expression analysis 490 

Utilizing data from BrainSpan (Allen Brain Atlas)71, we generated a visualization to examine 491 

the mean expression patterns of 12 of 14 candidate genes detected in our previous analysis 492 

across various brain regions during distinct developmental periods (Figure 6). Data for 493 

LOC124905257 and PTCHD1-AS were not available in BrainSpan. In general, the ASD-XWAS 494 

candidate genes showed different expression levels in all different time ranges when compared 495 

with the plotted controls (Figure 6 last three columns). 496 

During the early fetal stage, the 12 XWAS genes exhibit up-regulation in the cerebellum, which 497 

contrasts with the pattern observed in the Female-XWAS genes, showing notably low 498 

expression levels in the same region. In males, XWAS genes in the early fetal stage 499 

demonstrate down-regulated expression in the primary motor cortex and the primary visual 500 

cortex, alongside up-regulated expression in the prefrontal, primary somatosensory, and 501 

posteroventral parietal cortex. In this stage, the most expressed brain regions in Female-502 

XWAS genes include the primary visual, primary auditory, and temporal cortex. 503 

Transitioning to the late fetal stage, the most pronounced pattern includes down-regulated 504 

expression of Male-XWAS genes across nearly all analyzed brain regions. In contrast, All-505 

XWAS genes exhibit heightened expression in the primary auditory, temporal, and prefrontal 506 

cortex. In early childhood, spanning the initial three years of life, a consistent down-regulated 507 

expression pattern is observed in the cerebellum across all approaches (All XWAS genes and 508 

sex-stratified comparisons). Furthermore, during this phase, the posteroventral parietal cortex 509 

displays elevated expression levels for All-XWAS genes. 510 
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From ages three to 20 (childhood to teenage years), X candidate genes remain downregulated 511 

in the cerebellum, while both sex-stratified approaches indicate up-regulation in the primary 512 

auditory and visual cortex. Additionally, the prefrontal cortex exhibits high expression levels for 513 

Male-XWAS genes. 514 

In adulthood (after 20 years), the cerebellum maintains a down regulated pattern for all XWAS 515 

genes and for the genes identified in Male-XWAS, while exhibiting slightly higher expression 516 

levels in the genes identified in Female-XWAS. Conversely, the prefrontal cortex demonstrates 517 

low expression levels for the genes identified in Male-XWAS, with an upregulation pattern 518 

observed in the genes identified in Female-XWAS. 519 
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 520 

Figure 6. Gene Expression by Brain Regions in different development times. Brain map 521 

showing the gene expression levels in different parts of the brain in five developmental stages 522 

(Early Fetal, Late fetal, Early childhood, Childhood/Teenage and Adulthood). Left to right 523 

shows the gene expression levels from all 12 ASD-candidate genes with available expression 524 

data (ASB11, ASB9, DMD, ENOX2, FGF13, HDAC8, HTR2C, PABPC1L2A, PCDH11X, 525 

PCDH19, PDHA1, TXLNG), followed by three genes from Male-XWAS (ASB11, ASB9, 526 

PCDH19), three genes from Female-XWAS (TXLNG, HTR2C, ENOX2) and the correspondent 527 

control comparison with all the ~800 X chromosome genes in both sexes and also in male 528 
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brains only and female brains only. The color scales go from blue (downregulated) to red 529 

(upregulated). 530 

4. Discussion 531 

Our XWAS analyses identified 59 SNP variants on the X chromosome that exhibited a 532 

statistically significant association with ASD (Table S2). These variants were mapped to 91 533 

distinct genes, of which 11 had previously been associated with ASD through the detection of 534 

rare variants or CNVs, as reported in databases (Table S5). Out of the 59 significant variants 535 

identified in the main analysis, 35 were also successfully detected in our robustness study 536 

(Table S3), spanning all five different tests. Among these, 33 variants passed the sanity test 537 

by not reaching a significant value in the Control vs Control test “vi”. These 33 X-Chromosome 538 

variants were located in intergenic regions as well as in the genes ASB9, ASB11, PDHA1, 539 

LOC124905257, PTCHD1-AS, HDAC8, PABPC1L2A, and PCDH11X (Table 2).These new 540 

results will increase our understanding of the genes involved in ASD and provide a basis for 541 

improving polygenic risk scores (PRS), which currently are significantly underpowered 542 

regarding ASD34,84.  543 

In the Male-XWAS results we detected an LD region encompassing the genes ASB9, ASB11 544 

and PIGA. The lead SNP, rs12687599, is reported in the GWAS catalog85 for being associated 545 

with sex hormone-binding globulin levels86. Autism was previously associated with a 546 

decreased level of maternal serum sex hormone binding globulin87. This finding could imply an 547 

etiological association between sex hormone pathways and ASD status particularly in males 548 

16,23. Still in the Male-XWAS, we identified the gene PCDH19, also found in the Meta-XWAS. 549 

This gene has the highest significance score of 1 in the SFARI database, indicating its 550 

significant relevance to ASD26. It is also classified as syndromic, primarily expressed in brain 551 

tissue and plays a role in cell adhesion88, suggesting that mutations within it are associated 552 

with an increase in ASD likelihood and are consistently linked to neurodevelopmental and 553 

neuropsychiatric characteristics beyond those necessary for an ASD diagnosis.  554 
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The Both-XWAS and Meta-XWAS identified significantly associated variants in the lncRNA 555 

PTCHD1-AS (PTCHD1 antisense RNA)89. This gene is part of a complex on chromosome 556 

Xp22.11, which also encompasses DDX53, placing this locus among the most prevalent and 557 

impactful genetic factors for ASD90 and other neurodevelopmental disorders. Ross et al., 558 

202189, conducted an analysis compiling data from previously reported variants on PTCHD1-559 

AS. They found that 69% of these variants associated with this long non-coding RNA (lncRNA) 560 

are linked to ASD or ASD-related features. Consequently, the EAGLE score, a metric 561 

evaluating a gene's relevance to ASD, definitively assigns PTCHD1-AS a final score of 17.627. 562 

However, despite this association, the functional significance of these variants remains 563 

unknown. 564 

In the Meta-XWAS we identified significant variants associated with ASD in DMD and HDAC8. 565 

Notably, HDAC8 was also highlighted in the Both-XWAS results. Both genes carry a syndromic 566 

status on the SFARI gene score. Both DMD and HDAC8 are linked to intellectual disability, 567 

with DMD additionally implicated in attention-deficit hyperactivity disorder (ADHD) and extra-568 

pyramidal syndrome (EPS). The DMD gene was the only gene to reach a significant 569 

enrichment p-value (0.01) when comparing rare deletions in probands against unaffected 570 

family members specifically for females. This finding suggests a potential sex-specific effect of 571 

rare deletions in the DMD gene, with females exhibiting a significant enrichment compared to 572 

unaffected family members. Our previous genomic studies of CNVs 34 further support the 573 

importance of rare deletions in DMD. 574 

We also applied a case-only sdMAF analysis in a complementary way to the traditional case-575 

control association analysis. This analysis pointed out a significant peak overlapping FGF1391 576 

with variants in this gene being involved in infantile-onset developmental and epileptic 577 

encephalopathy, which can be important associated features of ASD.  578 

In summary, our XWAS study of individuals with ASD and controls has generated significant 579 

new data that further validate the roles of specific genes in autism and unveil novel candidates 580 
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for future research. Our approach, utilizing XWAS 'common variant' analyses alongside 581 

parallel 'rare variant' examinations of the same samples, provides a unique paradigm for 582 

dissecting the genomic architecture involved in ASD and potentially other complex conditions. 583 

Additionally, while the development of an X-chromosome-based Polygenic Risk Score (X-584 

PRS) is of interest, it is beyond the scope of this paper and may require new methodologies29.  585 

Table 2. Significantly associated ASD genes based on our main XWAS and sdMAF 586 

results. The values in red are the p-values considered significant based on the specific 587 

Bonferroni corrections (Males: 7.9x10-6, Females: 1.07x10-5, Both: 1.51x10-5).  588 

 589 
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