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Abstract

Beat detection is a key step in the analysis of photo-
plethysmogram (PPG) signals. The ‘MSPTD’ algorithm
was recently identified as one of the most accurate beat
detection algorithms, but its current open-source imple-
mentation is substantially more computationally expensive
than other leading algorithms such as ‘qppgfast’ . The aim
of this work was to develop a more efficient, open-source
implementation of the ‘MSPTD’ algorithm. Five potential
improvements were identified to increase efficiency. Each
potential improvement was evaluated in turn, and an opti-
mal algorithm configuration named ‘MSPTDfast’ was de-
veloped which incorporated all of the improvements found
to reduce algorithm execution time whilst not substantially
reducing the accuracy of beat detection. Performance was
assessed using data collected from young adults during a
lunchbreak in the PPG-DaLiA dataset. The data consisted
of wrist PPG signals acquired using an Empatica E4 de-
vice, alongside simultaneous ECG signals from which ref-
erence heartbeat timings were obtained. ‘MSPTDfast’ was
found to be substantially more efficient than ‘MSPTD’ (a
reduction in execution time of 72.3%), with minimal dif-
ference in beat detection accuracy (F1-score 87.8% vs.
87.7%). In addition, the performance of ‘MSPTDfast’ was
much closer to that of the state-of-the-art ‘qppgfast’ al-
gorithm than the ‘MSPTD’ algorithm, with a compara-
ble F1-score (87.4% vs. 87.7%), and an execution time
which was only 19.2% longer than that of ‘qppgfast’ (vs.
330.8% longer for ‘MSPTD’ ). In conclusion, ‘MSPTD-
fast’ is an efficient and accurate open-source PPG beat
detection algorithm with a substantially faster execution
time than ‘MSPTD’ . It is available under the permissive
MIT licence.

1. Introduction

Photoplethysmography, an optical sensing technology,
is now widely used in physiological measurement. Pho-
toplethysmography sensors are incorporated into many
wearable devices such as smartwatches and smart rings,
and photoplethysmogram (PPG) signals can also be ac-

quired by everyday devices such as smartphones and web-
cams. A plethora of physiological parameters can be esti-
mated from PPG signals, such as heart rate, heart rhythm,
respiratory rate, and blood pressure [1].

A key step in PPG signal processing is beat detection:
identifying individual pulse waves corresponding to heart
beats. Several PPG beat detection algorithms are openly
available, of which ‘MSPTD’ and ‘qppg’ have recently
been found to be most accurate [2]. Since these algorithms
are strong candidates for PPG analysis, it is important to
develop efficient open-source implementations of them.
Previously, an efficient version of ‘qppg’ has been devel-
oped named ‘qppgfast’ [3]. In addition, there have been
efforts to develop efficient implementations of ‘MSPTD’ ,
with ‘MSPTD’ itself being a more efficient version of the
original ‘AMPD’ algorithm [4, 5], and further refinements
having been proposed [6]. However, the open-source im-
plementation of the ‘MSPTD’ algorithm [7] is substantially
more computationally expensive than the ‘qppgfast’ algo-
rithm, limiting its potential utility.

The aim of this work was to develop a more efficient,
open-source implementation of the ‘MSPTD’ algorithm
for photoplethysmography beat detection. A series of po-
tential algorithm improvements were systematically eval-
uated, and a final configuration was tested on wrist PPG
signals from a wearable device.

2. Methods

2.1. The MSPTD Algorithm

The MSPTD algorithm has been described previously,
so is only briefly described here (see [4] for the original
description, [5] for a description of the original algorithm
on which it was based, and [6] for a further explanation).

The algorithm consists of the following steps, as imple-
mented in [7]:
• Segment the signal into 6s windows, with 20% overlap.
• Detrend the signal.
• Produce ‘local maxima scalograms’ (LMSs) for peaks
and onsets, where an LMS is a matrix of logical values
where each column corresponds to a sample in the sig-
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nal, and each row indicates whether or not that sample is
higher (for peaks) or lower (for onsets) than its neighbours
at a particular scale (i.e. a particular separation between
the sample and its neighbours on either side). Consider all
scales from 1 sample separation to a separation of N/2,
where N is the number of samples in the signal.
• Identify the scale, γ, with the most local maxima
(i.e. peaks) or minima (i.e. onsets).
• Truncate the LMS(s) to remove rows corresponding to
scales larger than γ.
• Identify peaks (or onsets) as columns in the LMSs where
all values are true, indicating that those signal samples
were local maxima (or minima) at all considered scales.
• Refine the location of each identified peak (or trough) by
searching for the highest (or lowest) sample within 50 ms
either side of the original location.

2.2. Potential Algorithm Improvements

We identified the following potential improvements to
the current ‘MSPTD’ implementation:
• Calculate only one LMS, corresponding to either pulse
wave peaks or onsets, instead of the original two LMSs.
• Vectorise the LMS calculation method to avoid its com-
putationally expensive nested for loops, as proposed in [6].
• Reduce the LMS size by excluding scales corresponding
to frequencies below a minimum heart rate, HRmin.
• Downsample the PPG signal prior to beat detection, thus
reducing the size of the LMS.
• Adjust the PPG window duration to be shorter or longer
than the original value of 6 s.

2.3. Evaluating Potential Improvements

For each potential improvement we identified different
options, as summarised in Table 1. Some options deserve
comment: (i) whilst calculating two LMSs to identify both
pulse wave peaks and onsets is expected to be more com-
putationally expensive than only identifying either peaks
or onsets, it may improve the accuracy of beat detection;
(ii) minimum sampling frequencies of 10, 20 and 30 Hz
were chosen as most content in PPG signals is thought to
be below 8-25 Hz [8]; (iii) shorter PPG window durations
will reduce the size of the LMS, but may also decrease the
accuracy of beat detection.

The performance of a refined ‘MSPTD’ algorithm was
assessed when using each possible option whilst all oth-
ers were held at default values. This assessment was per-
formed using the ‘ppg-beats’ framework for assessing PPG
beat detection algorithms [2], which produces two metrics:
(i) the F1-score , indicating the accuracy of beat detection,
where beats are deemed accurate if they are within ± 150
ms of reference ECG beats; and (ii) the algorithm execu-
tion time, the time taken to run the algorithm on a computer

Table 1. Evaluated algorithm configurations, where ∗
indicates a default option.

Potential improvement Options
LMSs to calculate peaks; onsets;

peaks and onsets ∗
LMS calculation method nested for loops ∗;

vectorised approach
LMS scales used N/2 ∗;

only scales >HRmin, with
HRmin ∈ {30, 40} bpm.

Sampling frequency (Hz) 10; 20; 30; original ∗
Window duration (s) 4; 6; 8 ∗; 10

(in this case a MacBook Air M1 2020 without parallelisa-
tion), expressed as a percentage of the PPG signal duration.

The publicly available PPG-DaLiA dataset was used [9].
It contains wrist PPG signals acquired using the Empatica
E4 device, alongside chest ECG signals, collected from
15 subjects in a protocol of daily living activities. The
subjects were aged a median (lower-upper quartiles) of 28
(24–36) years, included three females, and had skin types
on the Fitzpatrick scale of: 2 (1 subject),3 (11 subjects),
and 4 (3 subjects) [2]. We used the subset of data collected
during a lunch break, as it has previously been found to
be suitably challenging for PPG beat detection [2]. This
subset has a duration of 32.4 (28.7-37.2) minutes.

2.4. Designing and Evaluating ‘MSPTDfast’

The ‘MSPTDfast’ algorithm was designed by select-
ing each configuration option which provided the short-
est execution time whilst maintaining a reasonably high
F1-score (a subjective process). Its performance was com-
pared to two state-of-the-art algorithms: ‘MSPTD’ [7] and
‘qppgfast’ [3]. This evaluation was performed in MAT-
LAB (The Mathworks, Natick, MA, USA).

3. Results

3.1. Potential Improvements

Figure 1 panels (a)-(e) show how the execution time (in
blue) and and F1-score (in red) varied when using each
option for each potential improvement.

Calculating only a single LMS corresponding to either
peaks or onsets resulted in substantial reductions in exe-
cution time of 34.7% or 33.9% respectively, compared to
calculating LMSs for both peaks and onsets (see (a)). This
was accompanied by reductions in F1-score of 2.0% or
1.1% respectively. The original ‘peaks and onsets’ option
was selected for ‘MSPTDfast’ as the moderate reduction
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Figure 1. The performance of different algorithm configurations: (a)-(e) show performance when using different poten-
tial improvements, where squares indicate the configurations used in ‘MSPTDfast’ ; and (f) shows the performance of
‘MSPTDfast’ alongside two state-of-the-art algorithms - ‘MSPTD’ and ‘qppgfast’ .

in execution time provided by the other methods was not
considered worthwhile when accompanied by a reduction
in F1-score .

Using a vectorised approach to calculating the LMSs
substantially increased execution time in our implemen-
tation (see (b)), and therefore the original ‘nested loops’
approach used in ‘MSPTD’ was retained for ‘MSPTDfast’ .

Reducing the number of LMS scales substantially re-
duced the execution time by 39.8% (with HRmin = 30) or
34.8% (with HRmin = 40) (see (c)). Whilst no reduction
in F1-score was observed when using either HRmin value,
we selected the more conservative HRmin = 30 bpm for
‘MSPTDfast’ to retain accuracy at low heart rates.

Reducing the sampling frequency substantially reduced
execution time, with values of 30, 20, and 10 Hz reduc-

ing execution time by by 45.4%, 61.2% and 66.8% respec-
tively (see (d)). These were accompanied by reductions in
F1-score of 0.0%, 0.1% and 0.4%. Therefore, ‘MSPTD-
fast’ was configured to downsample signals to 20 Hz.

Reducing the window duration generally reduced ex-
ecution time, accompanied by a slight reduction in F1-
score (see (e)). A duration of 8 seconds was selected for
‘MSPTDfast’ in preference to even shorter durations which
it was thought could reduce accuracy at lower heart rates.

3.2. The MSPTDfast Algorithm

Figure 1 (f) shows the performance of the ‘MSPTD-
fast’ algorithm alongside two state-of-the-art algorithms:
‘MSPTD’ and ‘qppgfast’ . The new ‘MSPTDfast’ algo-
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rithm had a execution time of approximately three-tenths
(27.7%) of the ‘MSPTD’ algorithm, indicating a greater
than three-fold reduction in execution time. This was
achieved with only a very small reduction in F1-score of
0.1% (87.8% vs. 87.7%). In comparison to ‘qppgfast’ ,
‘MSPTDfast’ had a longer execution time (19.2% longer)
and a comparable F1-score (87.4% vs. 87.7%).

4. Discussion

In this study we developed ‘MSPTDfast’ , an efficient
and accurate open-source algorithm for PPG beat detec-
tion. ‘MSPTDfast’ incorporates the following advances to
improve efficiency compared to the original ‘MSPTD’ al-
gorithm: the size of the 2D LMS matrix is substantially re-
duced in both directions by downsampling the PPG signal
and reducing the number of scales over which beats are de-
tected. In addition, an optimal window duration was used.
The algorithm’s execution time was reduced by 72.3% in
comparison to ‘MSPTD’ whilst retaining beat detection
accuracy. The performance of the new ‘MSPTDfast’ al-
gorithm is now much closer to that of the state-of-the-
art ‘qppgfast’ algorithm (achieving similar accuracy, albeit
with a 19.2% longer execution time) than the ‘MSPTD’ al-
gorithm (with a 330.8% longer execution time).

The improved efficiency was mostly achieved by re-
ducing the time spent on LMS calculation, which is the
most computationally expensive part of the ‘MSPTD’ al-
gorithm. However, the previously proposed improvement
achieved by vectorising the LMS calculation rather than
using nested for loops [6] was not successfully reproduced
in this study. This may represent a shortcoming in our im-
plementation of this approach. To our knowledge the pre-
viously proposed implementation is not openly available,
making it difficult to reproduce this exactly.

A key limitation to this study is that ‘MSPTDfast’ was
only assessed on a single, small dataset. Therefore, it is not
yet clear whether it will generalise well to other datasets.
For this reason we denote the current version of ‘MSPTD-
fast’ as ‘v.1.1’, in the hope that either ourselves or others
will improve it further in the future.

The new ‘MSPTDfast’ algorithm complements ‘qppg-
fast’ . First, it is available under the permissive MIT li-
cense, whereas ‘qppgfast’ is available under the copyleft
GNU General Public License. Second, ‘MSPTDfast’ uses
a general approach which has been applied to disparate
problems from astrophysics to chaos theory [5], with mini-
mal tailoring for the PPG. In contrast, the ‘qppg’ approach
was designed for cardiovascular pulse wave signals [10].

5. Conclusion

‘MSPTDfast’ is an efficient and accurate open-source
PPG beat detection algorithm with a substantially faster

execution time than the ‘MSPTD’ algorithm on which it is
based, and its execution time is much closer to that of the
state-of-the-art ‘qppgfast’ algorithm. It is available at [7].
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