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Abstract— Accurate diagnosis of Alzheimer's disease (AD) 

relies heavily on the availability of complete and reliable data. Yet, 
missingness of heterogeneous medical and clinical data are 
prevalent and pose significant challenges. Previous studies have 
explored various data imputation strategies and methods on 
heterogeneous data, but the evaluation of deep learning algorithms 
for imputing heterogeneous AD data is limited. In this study, we 
addressed this by investigating the efficacy of denoising 
autoencoder-based imputation of missing key features of a 
heterogeneous data that comprised tau-PET, MRI, cognitive and 
functional assessments, genotype, sociodemographic, and medical 
history. We focused on extreme (40-70%) missing at random of 
key features which depend on AD progression; we identified them 
as history of mother having AD, APoE ε4 alleles, and clinical 
dementia rating. Along with features selected using traditional 
feature selection methods, we included latent features extracted 
from the denoising autoencoder for subsequent classification. 
Using random forest classification with 10-fold cross-validation, 
we evaluated the AD predictive performance of imputed datasets 
and found robust classification performance, with accuracy of 79-
85% and precision of 71-85% across different levels of 
missingness. Additionally, our results demonstrated high recall 
values for identifying individuals with AD, particularly in datasets 
with 40% missingness in key features. Further, our feature-
selected dataset using feature selection methods, including 
autoencoder, demonstrated higher classification score than that of 
the original complete dataset.  These results highlight the 
effectiveness and robustness of autoencoder in imputing crucial 
information for reliable AD prediction in AI-based clinical 
decision support systems.  

Index Terms— Dementia, Alzheimer's Disease (AD), Missing at 
Random (MAR), Deep Learning, Denoising Autoencoder, Missing 
Data Imputation, Classification 

I. INTRODUCTION 
Alzheimer's disease (AD), the most common cause of 

dementia, is a progressive brain disorder associated with 
memory loss, affecting day to day activities and cognitive 
decline [1]. Detecting AD and its severity level at early stage 
can enable better disease management and reduced care costs 
[2]. Further, adopting the right measures in clinical diagnosis is 
essential for timely treatment, care and disease management. 
Several assessment strategies and markers are currently 
available, including brain/blood-based biological assessment, 
medical and family history, and neuropsychological 
assessments [3]. Due to the variety of assessments and with 
symptoms overlapping with normal ageing and other types of 
dementia [4], diagnosis of AD remains challenging.  

The implementation of technology-aided decision support 
system, especially involving machine learning, for diagnosis 
may offer a promising path [5]. However, when clinical data 

contains missing values, it significantly impacts early diagnosis 
and treatment, underscoring the importance of implementing 
effective measures to uphold data quality and integrity [6]. In 
particular, missing data, if not handled appropriately, can 
potentially delay treatment and lead to biased diagnostic results, 
including in machine learning decisions.  

 Clinical data may be incomplete in different scenarios. For 
instance, patients may not arrive for medical appointments or 
being unable to complete surveys [6]. Incomplete data is highly 
prevalent in cohort studies, especially within dementia and AD 
studies due to factors such as longer study requirement, 
increased risk of mortality and cognitive decline among older 
adults. These factors impede their ability to participate in 
studies requiring multiple visits, leading to missing data [7]. 
More generally, missing data can be classified into three types: 
missing at random (MAR) that is dependent on observed 
variables, such as when the proportion of missingness increases 
with dementia severity; missing completely at random 
(MCAR), in which the missingness is independent of any 
variables; and missing not at random (MNAR), in which 
missingness is dependent on unrecorded variables [8]. The 
trivial solution is to ignore the missing portion, but that may 
lead to low statistical power for the machine learning models. 
Therefore, it is imperative to employ appropriate strategies for 
data imputation [6].  

Previous studies have made use of different imputation 
methods on clinical datasets in different contexts [9], [10]. For 
example, in a study [11] that focused on the Alzheimer’s 
Disease Assessment Scale – Cognitive Subscale 13 (ADAS-
Cog 13) within the ADNI dataset, it demonstrated the 
importance of imputation by analysing longitudinal ADAS-Cog 
13 scores and their association with baseline patient 
characteristics. By employing multiple imputation by chained 
equations (MICE), the study showed that imputation led to 
valid model estimates with tighter confidence intervals, thereby 
improving the efficiency of statistical analysis. However, the 
study primarily focused on ADAS-Cog 13, which may limit the 
generalisability to more comprehensive data.  

 Another study [12] investigated the impact of common 
imputation methods on missing AD data, with 33% of missing 
data, primarily associated with PET imaging data. Instead of 
discarding incomplete data and analysing only complete data, 
they explored various imputation techniques to enhance the 
dataset. Following imputation, they trained support vector 
machine (SVM) and random forest classifiers to distinguish 
between different progressive levels of AD. Their findings 
underscored the significance of employing imputation 
procedures to enhance classification accuracy and robustness. 
Again, the study did not involve more comprehensive data.  

 Inspired by the missingness structure (MAR or MCAR) in 
real-world memory clinic data, a recent study [6] synthetically 
generated similar missingness in an open complete dataset. It 
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systematically evaluated multiple imputation and AD 
classification workflows, having missingness in both the 
training and testing datasets for machine learning, and using the 
original complete data as ground truth for post-imputation 
evaluation. The study showed that iterative imputation on the 
training dataset combined with a reduced-feature classification 
model as the most effective approach in terms of speed and 
accuracy in the imputation. More generally, classification 
accuracy of progressive stages of AD did not vary widely across 
imputation and classification strategies, but the computational 
cost can be orders of magnitude different. However, the study 
was limited to cognitive and functional assessments (CFAs).  

 Another recent study systematically addressed the 
challenge of missing data in AD diagnosis by identifying the 
gradient boosting imputing algorithm to be the best for missing 
values AD dataset [13]. Although this study used more 
heterogeneous and comprehensive data than others, they did not 
involve sub-assessments of CFAs, the MRI data modality was 
limited to a small number of brain regions, and their PET data 
focused on metabolic (FDG) and beta amyloid plaques (PiB 
amyloid and AV45 amyloid). The tau pathology data was based 
on cerebrospinal fluid (CSF). However, it is known that brain 
tau pathology has superior diagnostic utility than brain beta 
amyloid pathology and CSF tau [14]. Moreover, deep learning 
was not evaluated and the authors made use of missingness of 
the MCAR type and not on key data features. The classification 
accuracy after imputation was rather low when missingness 
level was high; hence, the imputation might lack robustness.  

 So far, the imputation methods in the abovementioned 
studies have made use of traditional machine learning 
algorithms. Autoencoder, a deep learning technique, is 
increasingly used for imputing missing data due to their ability 
to learn efficient embeddings (low-dimensional latent features) 
of unlabelled data [15]. In fact, autoencoders have been shown 
to outperform traditional machine learning algorithms, e.g. k-
nearest neighbors, mean, median, RawInput, and SoftInput [8].  

A recent study [16], the only study that has used 
autoencoders to impute missing AD data, used baseline data 
consisting of mini mental state examination (MMSE), magnetic 
resonance imaging (MRI), positron emission tomography 
(PET) (with unspecified tracer), cerebrospinal fluid (CSF) data, 
and other personal information. Principal component analysis 
(PCA) was used for reducing the dimensionality of data while 
SVM was used for binary classification between classes control 
normal (CN), mild cognitive impairment (MCI, a mixed group 
which includes prodromal stage of AD), and AD. The personal 
information comprised gender, age and marital status, without 
family history of AD. Moreover, there was only one cognitive 
and functional assessment, the MMSE. Thus, the data was not 
sufficiently detailed and comprehensive. The type of 
autoencoders used was also unspecified. Importantly, missing 
data was not systematically evaluated in that study.  

 To address the limitations of previous studies on missing 
data imputation for AD classification, in the current study, we 
focused on the imputation of the missingness of the most 
important AD data features with respect to predicting different 
progressive stages of AD. These key data features were 
common features identified from multiple feature selection 

methods, including with an autoencoder to elucidate latent 
features. MAR missing data were then systematically generated 
over different proportion of missingness from a complete, 
comprehensive an open dataset, with the latter acting as ground 
truth. This was followed by the implementation of denoising 
autoencoder on the missing key features. Finally, 3-class 
classification (CN, MCI and AD) of the imputed datasets by the 
random forest classifier was employed, and the results were 
compared with those based on the classification of the original 
complete datasets and the subset of selected features.  

 

II. METHODS 

 Data Description 

The Alzheimer's Disease Neuroimaging Initiative (ADNI) 
dataset, more specifically the ADNIMERGE-3 open repository, 
was employed as the primary data source for this study. The 
data was obtained from the https://adni.loni.usc.edu portal as 
per request and was accessed after approval by the Data Sharing 
and Publication Committee of Image and Data Archive (IDA). 
The dataset comprises of clinical, neuropsychological 
assessments, neuroimaging measures, and genetic markers 
collected from participants diagnosed as healthy (CN), having 
mild cognitive impairment (MCI), or Alzheimer's disease (AD). 
The processed neuroimaging (tau-PET and structural MRI) is 
available from a previous study [17]. The final processed 
dataset consists of 559 samples (participants) encompassing a 
total of 224 features.  

The processed dataset comprised 7 sociodemographic and 
medical history features, 40 CFA scores including their sub-
assessments, and a relatively extensive 177 neuroimaging 
features (from active tau-PET brain regions via co-registering 
with structural MRI [17]). The class labels for training the 
classification model were based on clinician diagnosis, 
comprising 363 CN, 137 MCI and 59 AD cases.  

The sociodemographic and medical or family background 
features comprised of age, gender, years of education, maternal 
and paternal family history of AD, and the number of copies of 
the APoE ε4 alleles (henceforth referred simply as APoE4). 
The CFAs’ scores were derived from various measures, 
including the Alzheimer's Disease Assessment Scale (ADAS), 
Cognitive Battery Assessment, Clinical Dementia Rating 
(CDR), Mini-Mental State Exam (MMSE), Modified Hachinski 
Ischemia Scale, Neuropsychological Battery Test, logical 
memory immediate recall test (LMIT), logical memory delayed 
recall test (LMDT), the Neuropsychological Inventory (NPI), 
and the Geriatric Depression Scale (GDS). The dataset included 
individual question scores from ADAS and individual subscales 
from NPI, while other CFAs and individual CFA subscales 
from ADNI were excluded due to significant missing data. The 
tau-PET neuroimaging data utilised the [18F]AV-1451 tracer for 
detecting tau deposition [18].  

 Data Preparation and Preprocessing 

As part of the preprocessing pipeline, the participant 
identification (ID) column (‘RID’) was first removed. The 
gender column (‘PTGENDER’) was standardised by 
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subtracting 1 from its values to ensure consistency in 
representation [19].  

Certain columns in the dataset contained negative values, 
which required adjustment to ensure compatibility with 
subsequent processing steps. The columns with negative values 
were identified, all of them were CFA columns including 
COMP_MEM_SCORE, PHC_MEM, PHC_EXF, PHC_LAN, 
and COMP_EXEC_FUNC_SCORE, then transformed by 
adding the absolute value of their minimum to all values, 
effectively shifting the distribution to non-negative values.  

Afterwards, normalisation [20] of features was performed as 
a part of preprocessing using min-max scaling method [21]. 
Features with a maximum value exceeding 1 were identified, 
excluding the target variable (AD_LABEL) and clinical 
dementia rating (CDR). These features were then normalised by 
subtracting their minimum value and dividing by the range 
between the maximum and minimum values. The preprocessed 
dataset was then used for feature selection.  

 Feature Selection 

1) Boruta 
 

The Boruta algorithm [22] is a feature selection technique 
based on random forests, designed to distinguish relevant 
features by comparing their importance with that of random 
features. It iteratively evaluates the significance of each feature 
and selects those that demonstrate significance above a 
predefined threshold. In this study, the Boruta algorithm was 
chosen for its ability to handle complex datasets with high-
dimensional features. Moreover, Boruta harnesses the 
collective learning strengths of random forests, ensuring robust 
feature selection by considering feature interdependencies [22].  

2) Logistic Regression with L1 Regularization (Lasso) 
 

Lasso regression with L1 regularisation [23], also known as 
Lasso regression, is a linear model which penalises the absolute 
magnitude of the coefficients, produces sparse solutions, with 
certain coefficients being set to zero. This property makes 
Lasso regression suitable for feature selection by identifying 
and prioritising the most relevant features while disregarding 
irrelevant ones [24]. In this study, Lasso regression was 
employed to complement the Boruta algorithm and provide 
additional insights into feature importance based on the model 
coefficients.  

3) Autoencoder 
 

Autoencoder-based feature selection implements deep 
learning techniques to learn the compact representations of 
high-dimensional data. By training an autoencoder model to 
reconstruct the input features, the encoder layer learns to 
capture the essential information from the data, effectively 
performing feature extraction [25]. In this approach, a three-
layer autoencoder was utilized, comprising an input layer, an 
encoding layer, and a decoding layer. The input layer defined 
the shape of the input data, while the encoding layer, 
implemented as a dense layer with encoding neurons and ReLU 
activation, learns to encode the input features into a lower-

dimensional representation, capturing the most important 
features. Subsequently, the decoding layer, composed of a 
dense layer with the same number of neurons as the input layer. 
This autoencoder-based feature selection was employed to 
unveil the latent features that contribute significantly to the 
variability in the ADNI dataset. Notably, this approach 
complements traditional feature selection techniques by 
capturing nonlinear relationships and revealing hidden patterns 
in the data.  

 Generating Missing Data of Selected Features 

MAR is a common issue in AD data, influencing the 
reliability of analyses and the effectiveness of predictive 
models [26]. To simulate MAR, we intentionally introduced 
varying degrees of missingness (40%, 50%, 60%, and 70%) 
individually in the three pivotal variables of our dataset based 
on the selected key features that were more likely to be missing 
with later progressive stage of AD [6]. For example, we first 
identified the maternal dementia history (MOTHDEM) column 
as a key feature for MAR generation. Then, to introduce 
specific level of missingness in the MOTHDEM column, we 
devised a method that relies on the relationship between 
MOTHDEM and another pivotal variable, such as CDR, that is 
objectively and strongly associated with AD diagnosis. 
Specifically, this method introduces missingness in 
MOTHDEM based on CDR values. For example, if CDR 
indicates MCI (CDR = 0.5), we randomly select a fraction of 
observations and make the corresponding MOTHDEM values 
missing; higher missingness fraction for AD (CDR = 1). This 
approach allows us to simulate missingness patterns in 
MOTHDEM that depend on the progressive stage of AD 
indicated by CDR, thereby creating a more realistic 
representation of MAR scenarios [6]. For missing CDR, we 
tagged missingness levels with AD diagnosis.  

 Imputation using Denoising Autoencoder 
Unlike traditional imputation techniques that depend solely 

on statistical methods or simple interpolations, denoising 
autoencoders harness the capabilities of deep learning 
architectures to learn the intricate patterns and relationships 
present in the data [27]. The architecture of a denoising 
autoencoder comprises three main components: an encoder, a 
decoder, and a corruption process. The encoder reduces the 
dimensionality of the input data, mapping it to a latent space 
representation. The corruption process introduces noise or 
distortions to the input data to make the autoencoder to learn 
robust features. The decoder then reconstructs the original input 
from the compressed representation [28].  

During training, denoising autoencoders strive to minimise 
the reconstruction error between the input and its corresponding 
reconstruction, typically employing mean squared error as the 
optimisation metric. This iterative process enables the model to 
adeptly learn meaningful representations of the data by 
denoising and reconstructing inputs, rendering them invaluable 
for data denoising tasks. By training the autoencoder on the 
observed data while deliberately introducing noise or 
corruption, the model becomes proficient at reconstructing the 
original, noise-free data. Consequently, denoising autoencoders 
excel in effectively filling in missing values through the learned 
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representations [29].  

In this study, after synthetically generating varying 
proportion of missingness intentionally in the columns of the 
selected key features of the dataset, a denoising autoencoder 
was employed for all imputations. The architecture of the 
denoising autoencoder comprised an input layer with 
dimensions equivalent to the number of input features in the 
dataset, followed by two hidden layers with 126 and 63 
neurons, respectively. Dropout layers with a dropout rate of 0.2 
were strategically incorporated after each hidden layer to 
mitigate overfitting and enhance the model's robustness. 
Rectified linear unit (ReLU) activation functions [30] were 
utilised in the hidden layers to capture nonlinear relationships 
within the data effectively. Gaussian noise [31] with a standard 
deviation of 0.1 was introduced to the input layer to augment 
the denoising capability of the autoencoder, facilitating the 
accurate reconstruction of missing values while mitigating 
noise. The output layer employed linear activation to ensure 
continuous output values.  

The autoencoder was trained using the mean squared error 
(MSE) loss function [32] and the Adam optimiser [33] over 50 
epochs [34], with a batch size of 50 and a validation split of 
20%. Then the autoencoder was able to predict and impute 
missing values in the respective columns, thus contributing to 
the restoration of data integrity and enhancing the reliability of 
subsequent analyses.  

Following the imputation process using the denoising 
autoencoder, the performance of the imputation was evaluated 
using two key metrics: root mean squared error (RMSE) [35] 
and imputation accuracy [36]. RMSE was computed to quantify 
the discrepancy between the actual values of the missing 
column and the imputed values generated by the autoencoder. 
This metric provides a measure of the average difference 
between the observed and predicted values, thereby assessing 
the imputation accuracy on a continuous scale. Additionally, 
imputation accuracy was calculated to assess the correctness of 
the imputed values produced by the autoencoder. The 
imputation accuracy was computed as the ratio of the number 
of correctly imputed values to the total number of imputed 
values, providing a percentage value indicative of the accuracy 
of the imputation process. 

Following the imputation process, a visual comparison 
between the actual and imputed values of the selected columns 
were conducted using a scatter plot. Additionally, the feature 
importance of the denoising autoencoder was examined by 
analysing the weights of the first dense layer. This analysis 
allowed the identification of the most influential features for 
accurate imputation, contributing to a better understanding of 
the model's performance. 

 Classification and Model Performance Evaluation 
In the classification phase of the work, random forest 

classifier [37] was employed due to its capability to handle 
complex data and mitigate overfitting. It also performs 
especially well in heterogeneous AD data [38]. This ensemble 
learning technique combines multiple decision trees, providing 
robustness to noisy data and reducing the risk of overfitting.  

We employed 3-class classification for classifying the 3 
classes of the target variable AD-LABEL, namely, the CN, 
MCI and AD groups. Additionally, imbalance observed in the 
classes was handled by utilising the synthetic minority over-
sampling technique (SMOTE) [39] and ensured that the 
classifier could effectively learn from all classes.  

Evaluation of the random forest classifier was performed 
using 10-fold cross-validation [40], a robust method for 
estimating the model's performance on unseen data. The 
classifier was trained on resampled training datasets to mitigate 
the impact of biased sampling, and its performance was 
assessed using the following metrics: accuracy, precision, recall 
and F1-score [41]. Additionally, the confusion matrix [42] and 
classification report were generated to provide detailed insights 
into the classifier's predictive performance for each class label.  

We conducted classification using random forest classifier 
for all imputed datasets as well as the original complete dataset. 
Additionally, we evaluated the performance of classification 
models using features selected from three different feature 
selection methods: Boruta, logistic regression, and 
autoencoder. Furthermore, we included features extracted from 
the denoising autoencoder as part of our analysis. The overall 
process of the current study is schematically shown in Fig 1.  

 
Fig 1. Schematic of workflow of current study. 

 

 Software 
Google Colab (https://colab.google/), a cloud-based Jupyter 

notebook environment provided by Google, was utilised for 
conducting the study, which included data preprocessing, 
feature selection, missing data generation, imputation, 
classification and validation tasks. Codes are available upon 
reasonable request.  

III. RESULTS 

  MAR of consistently extracted features  
Feature extractions were performed using Boruta, logistic 

regression with L1 regularization and autoencoder with respect 
to AD severity and the common top-ranked features were 
extracted. Amongst the data comprising demographic, CFAs, 
genetic, and neuroimaging markers, we identified maternal 
dementia history (MOTHDEM) and gender as influential 
factors, with maternal dementia history serving as a potential 
genetic predisposition and gender reflecting sex-related 
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differences in AD risk. Further, the key neuroimaging (region-
of-interest, ROI) data features identified were the left 
hemispheric amygdala, white matter left hemispheric entorhinal 
and inferiortemporal cortices, consistent with known 
neurodegenerative changes associated with AD progression 
[43]. Additionally, the genetic biomarker APoE4 were 
identified, highlighting its significant role as an AD risk factor, 
and the clinical dementia rating (CDR), which has been shown 
to be closely correlated with AD severity [44].  

Amongst these extracted features, MOTHDEM, APoE4 and 
CDR are more likely to be affected by AD severity. For 
instance, with more severe AD, the patients may not remember 
their mother had AD. Patients with more severe AD may also 
be less likely to undergo genetic screening, which require 
specialised technical facility. As CDR takes about 90 minutes 
to administer [45], relatively long amongst the considered 
CFAs, it is more probable that patients with severe AD will not 
have the patience or ability to undergo such long assessment. 
Although it is plausible that patients with overt AD may also be 
less likely to undergo PET scans, the processed dataset was 
dominated by PET-MRI’s active ROIs and it is in practice 
unlikely that individual imaging ROI features would be 
missing. Hence, we did not remove any PET-MRI features in 
this study. Nevertheless, even without this, our proposed 
columnar missingness could incur substantial reduction in 
classification accuracy (see below).  

For the MOTHDEM and APoE4 variables, missing data of 
MAR type were generated based on the clinical dementia rating 
(CDR) values, on the samples (rows) with CDR values of 0.5 
or 1 (the higher the value, the more severe the condition) at the 
probability of missingness (0.4, 0.5, 0.60, 0.7) Similarly, for the 
CDR variable, missing data of MAR type was introduced, but 
this time it was based on the clinical diagnosis (AD_LABEL), 
where samples (rows) labelled as MCI or AD were more likely 
to have missing CDR values at the probability of missingness 
(0.4, 0.50, 0.6, 0.7). See Section II.D for further details. 
Although we focused on only the missingness of these three 
variables, which had strong influence on detecting AD severity 
(via feature selection), we generated large proportions of 
missingness within these variables (from 40% to 70% missing 
data per variable) and classification was substantially poorer 
(see below).  

 Imputation with denoising autoencoder 
Next, denoising autoencoder was employed separately to 

perform the imputation of missingness introduced 40%, 50%, 
60% and 70% for the pivotal columns MOTHDEM, APoE4 and 
CDR. Further to visualise the accuracy and reliability of our 
imputation, we plotted scatter plots comparing the actual and 
imputed values and showed their similarities (Supplementary 
Fig. 1). To gain deeper insights, we extracted important features 
from the dense layer of the autoencoders by calculating the 
feature importance from each imputed dataset. Table I shows 
the full list of the commonly selected features using the 
employed traditional feature selection methods and denoising 
autoencoders.  

 

 

 

 

 

 

COMMON FEATURES SELECTED FROM FEATURE SELECTION METHODS AND 
DENOISING AUTOENCODER 

  

 

By quantifying the RMSE of the actual versus imputed value 
differences, Fig. 2 indicating the RMSE scores and imputation 
accuracy (ratio of number of correctly imputed values to the 
total number of imputed values), at different missingness levels 
of the 3 features. This indicated that our methods of 
implementing missing values and autoencoder-based 

TABLE I 

Feature category Commonly selected features 

Sociodemographic MOTHDEM (History of Mother with AD) 
FATHDEM (History of Father with AD) 
PTGENDER (Gender) 

Genetic APoE4 

Cognitive and 
functional 
assessment 

ADAS_Q10SCORE (Sub-assessment score within 
ADAS assessment) 
CDR (Clinical Dementia Rating) 

Brain Imaging 
(active tau-PET ROI) 

lh.Amygdala (left amygdala) 
wm.lh.entorhinal (white matter left entorhinal) 
wm.lh.inferiortemporal (white matter left 
inferiortemporal) 
ctx.rh.middletemporal (right middle temporal 
cortex) 
CC_Central (corpus callosum central) 
CC_Mid_Anterior (corpus callosum mid-anterior) 
CC_Mid_Posterior (corpus callosum mid-
posterior) 

 wm.rh.corpuscallosum (white matter right 
corpus callosum) 
wm.rh.precentral (white matter right precentral) 
wm.rh.medialorbitofrontal (right medial 
orbitofrontal) 
ctx.rh.posteriorcingulate (right posterior 
cingulate cortex) 
wm.rh.corpuscallosum (white matter right 
corpus callosum) 
Brain.Stem (brain stem) 
rh.VentralDC (right ventral) 
ctx.rh.supramarginal (right supramarginal cortex) 
wm.rh.transversetemporal (white matter right) 
rh.Cerebellum.Cortex (right cerebellum cortex) 
wm.lh.precentral (white matter precentral) 

 wm.rh.lingual (white matter right lingual) 

 wm.lh.inferiortemporal (white matter left 
inferiortemporal) 
rh.Amygdala (right amygdala) 
lh.Thalamus.Proper (left thalamus proper) 
ctx.rh.lateralorbitofrontal (right lateral 
orbitofrontal cortex) 
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imputation were conforming to expectation. 

 

 Robust AD classification of CN, MCI and AD of imputed 
data 

After the imputation process, random forest classification 
with 10-fold cross validation was performed on the original 
dataset, imputed datasets of 40%, 50%, 60% and 70% 
missingness in MOTHDEM, CDR and APoE4. We also 
performed the same classification for dataset with only the 
common features selected using the three feature selection 
methods and included the important features that performed 
during each imputation process from the denoising autoencoder 
in it (see Supplementary Table 1 for details). 

These results revealed the accuracy, precision, recall, and F1 
score as 0.85, 0.85, 0.85, and 0.84, respectively, for the original 
dataset, which indicating a robust classification performance. 
These metrics underscore the efficacy of the random forest 
classifier in accurately predicting AD classes using the original 
dataset.  

Subsequently the imputed datasets showed consistent 
classification accuracies, ranging from 0.71 to 0.83 across 
different missingness levels (Supplementary Table 1), 
indicating that the denoising autoencoder effectively imputed 
missing values without compromising classification 
performance. Additionally, classifiers trained on feature-
selected datasets exhibited higher classification performance 
(0.89), suggesting that feature selection techniques retained 
relevant information for AD prediction, contributing to the 
classifier's robustness.  

We further evaluated the random forest classification’s 
precision, recall and F1 score of each of the 3 classes of the 
target variable AD_LABEL (with classes CN, MCI and AD). 
Fig. 3 summarises the results for each dataset highlighting the 
F1 scores of the three classes (see Supplementary Table 2 for 
detailed results, including precision and recall).  

Focusing on the F1 scores of each class (CN, MCI, and AD), 
we examined the classifier's ability to accurately classify 
individuals with different disease progressive stages. In the 
original dataset, the random forest classifier demonstrated 

strong performance, with F1 scores of 0.91 for CN, 0.69 for 
MCI, and 0.85 for AD. This indicates robust classification 
across all progressive stages, which defining the effectiveness 
of the classifier on the complete dataset (see Supplementary 

Table 2 for further details). Noticeably, there was higher 
detriment to the F1 scores with missing CDR than MOTHDEM 
and APoE4.  

 

IV. DISCUSSION 

Missing data is a common issue in healthcare datasets, and 
its presence can significantly impact the performance of 

 
Fig. 2.  RMSE scores and imputation accuracy of the key features MOTHDEM, 
APoE4 and CDR after imputation.  

 
 
Fig. 3. F1 scores after 3-class classification of the imputed datasets. (A) 
MOTHDEM (B) APoE (C) CDR.  
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predictive models, particularly in the context of Alzheimer's 
disease diagnosis where accurate identification of relevant 
features is crucial. In our study, we addressed the challenge of 
missing data, specifically focusing on missing at random 
(MAR) patterns within the important features of the open 
ADNIMERGE-3 (ADNI) dataset. Previous studies did not 
consider such systematically selected features for data 
imputation evaluation. Specifically, we employed denoising 
autoencoder, a powerful nonlinear unsupervised learning 
technique, for imputing missing values in critical features such 
as demographics (MOTHDEM), genotype (APoE4), and CFA 
(CDR). By leveraging the underlying structure of the data, 
denoising autoencoder can effectively capture patterns and 
relationships, making it well-suited for imputing missing values 
in complex and comprehensive healthcare datasets like ADNI.  

For the imputed datasets, particularly those with 40% 
missingness, exhibited robust performance in terms of recall, 
precision, and F1 score, suggesting that denoising autoencoder 
effectively imputed missing values without significantly 
compromising classification performance. In a previous study 
[16], they have achieved an accuracy of 78.67% in AD 
classification of the imputed AD dataset, but they did not 
specify the missing percentage of the imputation performed. In 
comparison, we achieved an overall accuracy of 79-85% in AD 
classification for our MAR datasets. 

The random forest classifier used here for the three-class 
classification provided key insights into the performance of 
different datasets in identifying individuals with AD. The 
original dataset exhibited high F1 score (0.85) for the AD class, 
indicating its ability to effectively identify and accurately 
predict AD cases. Similarly, the feature-selected dataset 
demonstrated higher F1 score (0.89), suggesting that feature 
selection techniques retained crucial information for AD 
prediction. Interestingly, the performances were slightly higher 
than that for the original dataset, possibly due to reduction in 
model complexity with only the relevant features. 

The F1 scores on the imputed datasets for each class across 
different levels of missingness provided valuable insights into 
the impact of imputation on classification performance. 
Generally, we observed a trend of decreasing F1 scores with 
increasing levels of missingness in the imputed datasets. In the 
case of MOTHDEM, the F1 scores for CN and MCI exhibited 
gradual decrease as the percentage of missingness increased, 
while the F1 score for AD remained relatively stable. This 
suggests that the imputation process may have a more 
pronounced effect on the classification of CN and MCI 
individuals compared to those with AD. Similarly, for APoE 
and CDR, we observed fluctuations in F1 scores across 
different classes with increasing levels of missingness. These 
variations highlight the importance of carefully considering the 
imputation strategy when dealing with heterogeneity and types 
of missing data, particularly in the context of AD classification.  

The competitive performance by the selected feature dataset 
indicated that feature selection techniques retained relevant 
information essential for AD prediction. This highlights the 
importance of feature engineering and dimensionality reduction 
in enhancing predictive performance and reducing 
computational complexity. Furthermore, the inclusion of 

specific features identified in previous studies, such as APoE4, 
gender, (history of) mother with AD, active tau-PET in left 
amygdala, white matter in left entorhinal, white matter in left 
inferiortemporal ROIs, aligns with findings from a previous 
study using the same processed dataset [17], further validating 
the significance of these features in AD prediction.  

There are several studies dealing with missing data 
imputation, including those using the ADNI dataset [11, 12, 
13]. However, these studies did not apply deep learning 
methods and did not systematically investigate levels of 
missingness [6]. In comparison, our research utilised denoising 
autoencoder to impute missing data in diverse features of the 
ADNI dataset, accounted for various extreme levels of 
missingness and demonstrated robust performance in 
classification tasks. Hence, this study's uniqueness lies in its 
integration of deep learning techniques with comprehensive 
handling of missing data, paving the way for more accurate 
diagnosis and understanding of AD progression.  

While our study yielded valuable insights into the utilisation 
of denoising autoencoder for imputing missing values for AD 
diagnosis, there are notable limitations. Firstly, our analysis was 
confined to a single dataset, the comprehensive ADNIMERGE-
3 dataset, and the generalisability of our findings to other 
datasets may be limited. Future studies should consider 
replicating our analysis on diverse datasets to assess the 
robustness and applicability of our approach across different 
cohorts and settings. Additionally, future studies could explore 
the integration of multiple imputation methods to enhance 
imputation accuracy and mitigate potential biases during 
imputation.   

In conclusion, our study highlights the importance of using 
autoencoder for robust data imputation for high-performance 
machine classification across different disease progressive 
stages. Despite variations in missingness levels and feature 
selection strategies, the classifier consistently demonstrated 
strong performance metrics for predicting AD, underscoring its 
potential diagnostic utility in clinical decision-making and 
disease management.  
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