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2 

 

Abstract 16 

Introduction: We propose the Explainable AI (XAI) model for Clinical Decision Support Systems (CDSSs). 17 

It supports physician’s Differential Diagnosis (DDx) with Evidence-based Medicine (EBM). It identifies 18 

instances of the case data contributing to predicted diseases. Each case data is linked to the sourced 19 

medical literature. Therefore, this model can provide medical professionals with evidence of predicted 20 

diseases. 21 

Methods: The source of the case data (training data) is medical literature. The prediction model (the 22 

main model) uses Neural Network (NN) + Learning To Rank (LTR). Physicians' DDx and machines' LTR are 23 

remarkably similar. The XAI model (the surrogate model) uses k-Nearest Neighbors Surrogate model (k-24 

NN Surrogate model). The k-NN Surrogate model is a symphony of Example-based explanations, Local 25 

surrogate model, and k-Nearest Neighbors (k-NN). Requirements of the XAI for CDSS and features of the 26 

XAI model are remarkably adaptable. To improve the surrogate model's performance, it performs 27 

"Selecting its data closest to the main model." We evaluated the prediction and XAI performance of the 28 

models. 29 

Results: With the effect of "Selecting," the surrogate model's prediction and XAI performances are 30 

higher than those of the "standalone" surrogate model. 31 

Conclusions: The k-NN Surrogate model is a useful XAI model for CDSS. 32 

For CDSSs with similar aims and features, the k-NN Surrogate model is helpful and easy to implement. 33 

The k-NN Surrogate model is an Evidence-based XAI for CDSSs. 34 

Unlike current commercial Large Language Models (LLMs), Our CDSS shows evidence of predicted 35 

diseases to medical professionals. 36 

 37 
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Introduction 45 

Clinical Decision Support System 46 

Clinical Decision Support Systems (CDSSs) aim to improve medical care quality. CDSSs support medical 47 

decisions with clinical knowledge, patient information, and other medical information. (1) 48 

The summaries of this article’s CDSS are as follows: 49 

- Objectives 50 

- To support Differential Diagnosis (DDx) by physicians and general practitioners. 51 

- To prevent diagnostic errors for medical professionals. 52 

- To reduce diagnostic uncertainty 53 

- Medical literature, metadata, and case data 54 

Medical literature (textbooks, original articles, case reports, etc.) is a source of metadata and case 55 

data. 56 

Metadata (bibliographic and disease-related information) is obtained from medical literature by 57 

text-mining. 58 

Case data (symptoms and diseases) is obtained from the metadata by coding. It is used for training 59 

and test of the models. 60 

Symptoms include signs and symptoms, laboratory and imaging test results, etc. (defined as 61 

“symptoms” from now on). 62 

Diseases include confirmed diseases, differential diseases, and their scores. 63 

- Prediction model  64 

A medical professional inputs the patient's symptoms. 65 

The CDSS outputs predicted diseases by Artificial Intelligence (AI). 66 

Predicted diseases are a ranking list of diseases. (2) 67 

- XAI model 68 

The CDSS outputs evidence of predicted diseases by Explainable AI (XAI). 69 

Evidence is the metadata of the case data contributing to predicted diseases. (3), (4) 70 

 71 

Our CDSS is open to medical professionals on the Internet. (5) (See: Fig 1, S Table 1) 72 
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 73 

Fig 1 Screen image of our Clinical Decision Support System 74 

Case citation: (6) 75 

 76 

CDSSs with similar aims and features are available worldwide. (7), (8), (9), (10) 77 

 78 

Clinical Decision Support System and Learning To Rank 79 

The prediction model of our CDSS uses Neural Network (NN) + Learning To Rank (LTR). 80 

Physicians’ DDx and machines’ LTR are remarkably similar. (2) 81 

 82 

Explainable AI 83 

Explainable AI (XAI) aims to help humans accept the AI's behaviors. 84 

The key points are interpretability and explainability. (11) 85 

XAI has a variety of methods. (12), (13), (See: S Table 2 ) 86 

 87 
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Clinical Decision Support System and Explainable AI 88 

Poor interpretability and explainability of CDSS are significant problems in medical ethics. This problem 89 

has severe and far-reaching consequences for personal and public health. (14) 90 

The XAI for CDSS has a variety of requirements. (15), (See: S Table 3) 91 

XAI research in medicine is focused on image diagnosis and less on differential diagnosis. (16) 92 

Research on XAI with CDSS for a single disease was reported about "Type 1 diabetes + SHAPE." (17) 93 

A little research on XAI with CDSS for multiple diseases was reported. 94 

No research on XAI to support Evidence-Based Medicine (EBM) was reported. 95 

This manuscript proposes the Evidence-based XAI model for CDSSs. 96 

This model supports the physicians' DDx with evidence. 97 

 98 
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Design 100 

Objective 101 

The aims of this article’s XAI model are as follows: 102 

- Requests from medical professionals: 103 

Show evidence of predicted diseases by CDSS. 104 

- Response from the XAI:  105 

Evidence is the case data of this medical literature. 106 

 107 

Technical background for XAI 108 

The AI techniques used for implementation are as follows: 109 

1) Example-based explanations 110 

2) Surrogate model 111 

3) K-Nearest Neighbors 112 

Based on the XAI requirements for CDSS, we selected these techniques. 113 

 114 

Example-based explanations 115 

Example-based explanations explain each predicted data. 116 

The explanation is the identified instances of the training data contributing to the predicted data. (12) 117 

The features of the Example-based explanations are as follows: (12) 118 

1) The simplest XAI method, with interpretability and explainability 119 

2) Explain predicted data by identifying instances of the training data contributing to it 120 

3) A mostly model-agnostic 121 

4) Available only if a human can understand the instance's contents 122 

The case data of CDSS is obtained from medical literature. 123 

If it can identify instances of the training data (= case data), it can show evidence of the predicted data 124 

(= predicted diseases). 125 
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However, the Neural Network (NN) using the CDSS's prediction model is not adapted to Example-based 126 

explanations. 127 

 128 

Surrogate model 129 

The (local) surrogate model explains each predicted data of the main model. (12) 130 

The differences between the main and surrogate models are as follows: (12) 131 

1) The main model is often uninterpretable (black box). 132 

2) The surrogate model is an interpretable and explicable (white box) model. 133 

3) The prediction performance of the surrogate model is lower than that of the main model. 134 

4) The surrogate model’s predicted data is not equal to the main model. 135 

 136 

K-Nearest Neighbors 137 

The features of the k-Nearest Neighbors (k-NN) are as follows: 138 

1) The simplest AI method, with interpretability and explainability 139 

2) Support Example-based Explanations by instances of the training data 140 

3) Wide adaptability 141 

a) Non-parametric supervised learning method 142 

b) Pattern matching 143 

c) Various distance and evaluation functions 144 

d) High-dimensional data (ex: varieties of symptoms and diseases)  145 

e) Scarce training data (ex: rare diseases and cases) 146 

4) Prediction performance is lower than that of the NN 147 

 148 

k-Nearest Neighbors Surrogate model for Clinical Decision Support System 149 

We propose the k-Nearest Neighbors Surrogate model (k-NN Surrogate model) as the XAI model for 150 

CDSS. 151 
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Requirements of CDSS and features of k-NN are remarkably adaptable, except for the k-NN’s prediction 152 

performance. 153 

Requirements of XAI for CDSS and features of Example-based explanations are remarkably adaptable. 154 

The k-NN Surrogate model is a symphony of Example-based explanations, Local surrogate model, and k-155 

NN. 156 

It improves prediction and XAI performance by “Selecting its data closest to the main model.” 157 

In a typical k-NN use case, the number of neighbors (𝑘) is selected by hyperparameter optimization 158 

during the design phase. The value of k is fixed during the prediction phase. 159 

In the k-NN Surrogate model, the value of k is changed for each prediction. It predicts multiple data with 160 

multiple numbers of neighbors (ex: 𝑘 = 1 − 10). The value of closest k (𝑘_𝑐𝑙𝑜𝑠𝑒𝑠𝑡) is selected by the 161 

evaluation function's value between the main model's predicted data and the surrogate model's 162 

multiple predicted data. This process can closest the surrogate model’s predicted data to the main 163 

model. (defined as “Selecting” from now on) 164 

By "Selecting," the surrogate model's data (the predicted data and instances of them) are good 165 

surrogates for the main model. 166 

k-NN Surrogate model can show evidence of predicted diseases to medical professionals. 167 

 168 
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Implementation 170 

Definitions of data 171 

(See: Table 1) 172 

 173 

Table 1 Definitions of data 174 

Variables, Functions, etc. Definitions 

Case data 
 𝑋_𝑡𝑟𝑎𝑖𝑛 Training data for features  

𝑦_𝑡𝑟𝑎𝑖𝑛 Training data for targets  
𝑋_𝑡𝑒𝑠𝑡 Test data for features  
𝑦_𝑡𝑒𝑠𝑡 (𝑦_𝑡𝑟𝑢𝑒) Test data for targets (True data for targets) 

User’s input 
 𝑋_𝑖𝑛 User's Inputted data  

Main model  
 𝑦_𝑝𝑟𝑒𝑑 = 𝑚𝑎𝑖𝑛_𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑑𝑖𝑐𝑡(𝑋) The main model's predicted data  

𝑛𝑑𝑐𝑔_𝑛𝑛 = 𝑛𝑑𝑐𝑔(𝒚_𝒕𝒓𝒖𝒆, 𝒚_𝒑𝒓𝒆𝒅) The main model's prediction performance 
Surrogate model 
 𝑘 = 1 − 10 The number of neighbors  

𝑦_𝑝𝑟𝑒𝑑_𝑘[] = 𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒_𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋, 𝑘) The surrogate model's predicted data  
𝑛𝑑𝑐𝑔_𝑘1[] = 𝑛𝑑𝑐𝑔(𝒚_𝒕𝒓𝒖𝒆, 𝒚_𝒑𝒓𝒆𝒅_𝒌[]) The surrogate model's prediction performance  
𝑛𝑑𝑐𝑔_𝑘2[] = 𝑛𝑑𝑐𝑔(𝒚_𝒑𝒓𝒆𝒅, 𝒚_𝒑𝒓𝒆𝒅_𝒌[]) The surrogate model's XAI performance  
𝑘_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑛𝑑𝑐𝑔_𝑘2[]) + 1 Selecting the surrogate model's predicted data 

closest to the main model  
𝑛𝑑𝑐𝑔_𝑘1_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑛𝑑𝑐𝑔_𝑘1[𝑘_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 − 1] The surrogate model's prediction performance 

with "Selecting"  
𝑛𝑑𝑐𝑔_𝑘2_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑛𝑑𝑐𝑔_𝑘2[𝑘_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 − 1] The surrogate model's XAI performance 

with "Selecting" 

[]: Array starting from 0 175 

 176 

Medical literature, metadata, and case data 177 

Medical literature 178 

Medical literature is a source of metadata and case data. It includes medical textbooks, original articles, 179 

case reports, etc. It will be selected carefully for the CDSS’s purpose and targets. It is limited to clear 180 

sources and peer-reviewed content. 181 

 182 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.07.18.24310609doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.18.24310609
http://creativecommons.org/licenses/by-nc/4.0/


10 

 

Metadata 183 

Metadata is obtained from medical literature by text-mining. It includes bibliographic, disease-related, 184 

and other information. 185 

 186 

Case data 187 

Case data is obtained from the metadata by coding. It is used as training and test data for models. It 188 

includes symptoms and diseases. 189 

Symptoms include signs and symptoms, laboratory and imaging test results, etc.  190 

Diseases include confirmed diseases, differential diseases, and their scores. 191 

Case ID can identify and cross-reference between the metadata and the case data. (See: Table 2, Fig 2) 192 

 193 

Table 2 Example of metadata and case data 194 

Case ID C##### 
   

Metadata 
 

Case data 

Bibliographic 
 Authors Stern S, Cifu A, Altkorn D 

   

 Title Symptom to Diagnosis: An Evidence-Based Guide 
  

 ISBN-13  978-1260121117 
   

 Pages 1 - 8 
 

code value 
Disease-related 
 Confirmed diseases Soft tissue: Cellulitis → y d### 10.0 + α 
 Differential diseases Skin: Stasis dermatitis 

 
d### 10.0  

 
 

Calf veins: Distal DVT 
 

d### 10.0  
 Symptoms Painful left leg edema with erythema → X s### 1 

 
 

Hypertension 
 

s### 1 
 

 
Osteoarthritis of the knees 

 
s### 1 

 
 

Status post cholecystectomy 
 

s### 1 
 

 
Healing cut on the left foot 

 
s### 1 

 
 

Temperature 37.3℃ 
 

s### 1 

 Diseases to check Proximal and calf DVT 
   

 Diseases to exclude Venous insufficiency 
   

 
 

Underlying malignancy 
   

 Recommendations Normal duplex ultrasound scan 
   

 
 

D-dimer assay 
   

Case Citation: (18) 195 

 196 
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 197 

Fig 2 Activity diagram of text-mining and coding 198 

 199 

Environments for development and execution  200 

The evaluation function for the main (NN) and surrogate (k-NN) models is the Normalized Discounted 201 

Cumulative Gain (𝑛𝑑𝑐𝑔). 202 

The loss function for the main model (NN) is the approximate NDCG loss (𝐴𝑁𝐷𝐶𝐺). (19) (See: Table 3, 203 

Table 4) 204 

 205 

Table 3 Environments for development and execution 206 

Programming language Python 3.12.x 
 

Machine learning libraries 
  

  Main model TensorFlow 2.10.x Neural Network (NN)  
TensorFlow Ranking 0.5.x Learning To Rank (LTR) 

  Surrogate model scikit-learn 1.2.x k-Nearest Neighbors (k-NN) 
Web application framework Flask 2.3.x 

 

JavaScript library Vue.js 3.x 
 

Cloud computing services Google Cloud Platform 
 

 
  App Engine 

 
 

  Vertex AI 
 

 
  Firebase Authentication 

 

 207 

Table 4 Configurations of models 208 

Models Methods Items Values, etc. 

Main Neural Network (NN) Input layer 583    
Hidden layer 1 × 1024    
Output layer 1000    
Loss functions 𝐴𝑁𝐷𝐶𝐺   
Evaluation functions 𝑛𝑑𝑐𝑔, 𝑛𝑑𝑐𝑔@𝑘 

Surrogate k-Nearest Neighbors (k-NN) Number of neighbors 1 − 10    
Distance function 𝐾𝑒𝑛𝑑𝑎𝑙𝑙′𝑠 𝑊    
Weight function 1/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒    
Evaluation functions 𝑛𝑑𝑐𝑔, 𝑛𝑑𝑐𝑔@𝑘 

 209 
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Training of the models 210 

The main and surrogate models use same datasets. (See: Fig 3) 211 

 212 

 213 

Fig 3 Activity diagram of training 214 

(See: S Code 1) 215 

 216 

Prediction and XAI models 217 

(See: Fig 4, Fig 5) 218 

 219 

 220 

Fig 4 Activity diagram of prediction 221 

(See: S Code 1) 222 

 223 
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 224 

Fig 5 Activity diagram of explanation 225 

(See: S Code 1) 226 

 227 
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Evaluation 229 

Datasets for evaluation use k-fold cross-validation of case data. (See: Fig 6) 230 

 231 

 232 

Fig 6 Activity diagram of evaluation 233 

(See: S Code 1) 234 

 235 
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Results and Discussion 237 

Prediction performance 238 

The prediction performance of the main and surrogate models was evaluated. (See: Table 5) 239 

 240 

Table 5 Prediction performance of the main and surrogate models) 241 

Models Data 𝒌 𝒏𝒅𝒄𝒈 𝒏𝒅𝒄𝒈@1 𝒏𝒅𝒄𝒈@𝟑 𝒏𝒅𝒄𝒈@𝟓 𝒏𝒅𝒄𝒈@10 

Main 𝑛𝑑𝑐𝑔_𝑛𝑛 ---- 0.6684  0.4609  0.5393  0.5690  0.5988  
Surrogate 𝑛𝑑𝑐𝑔_𝑘1[] 1 0.5348 0.3417 0.3782 0.3986 0.4231   

2 0.5636 0.3444 0.4122 0.4366 0.4632   
3 0.5738 0.3554 0.4201 0.4467 0.4754   
4 0.5784 0.3597 0.4242 0.4517 0.4810   
5 0.5791 0.3587 0.4240 0.4514 0.4812   
6 0.5791 0.3581 0.4222 0.4510 0.4812   
7 0.5778 0.3526 0.4206 0.4484 0.4797   
8 0.5772 0.3510 0.4190 0.4480 0.4788   
9 0.5756 0.3487 0.4165 0.4451 0.4766   

10 0.5735 0.3440 0.4137 0.4421 0.4740  
𝑛𝑑𝑐𝑔_𝑘1_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 ---- 0.6264 0.4361 0.4930 0.5158 0.5385 

 242 

The “standalone” surrogate model’s prediction performance is lower than the main model. 243 

When using “Selecting,” the surrogate model's prediction performance is higher than the “standalone” 244 

surrogate model. 245 

However, it is lower than the main model. 246 

 247 

XAI performance 248 

The XAI performance of the surrogate model was evaluated. (See: Table 6) 249 

 250 
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Table 6 XAI performance of the surrogate model 252 

Model Data 𝒌 𝒏𝒅𝒄𝒈 𝒏𝒅𝒄𝒈@1 𝒏𝒅𝒄𝒈@𝟑 𝒏𝒅𝒄𝒈@𝟓 𝒏𝒅𝒄𝒈@10 

Surrogate 𝑛𝑑𝑐𝑔_𝑘2[] 1 0.8049 0.6526 0.5975 0.5900 0.5994   
2 0.8255 0.6775 0.6521 0.6415 0.6429   
3 0.8335 0.6912 0.6674 0.6601 0.6600   
4 0.8381 0.7016 0.6763 0.6690 0.6698   
5 0.8403 0.7040 0.6800 0.6731 0.6748   
6 0.8414 0.7033 0.6812 0.6755 0.6775   
7 0.8421 0.7038 0.6828 0.6770 0.6790   
8 0.8424 0.7019 0.6831 0.6775 0.6796   
9 0.8426 0.7012 0.6829 0.6776 0.6801   

10 0.8422 0.6979 0.6812 0.6768 0.6798  
𝑛𝑑𝑐𝑔_𝑘2_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 ---- 0.8800 0.8654 0.8101 0.7810 0.7566 

 253 

XAI performance is the similarity between the predicted data of the main and surrogate models. The 254 

similarity is evaluated by the evaluation function. 255 

The “standalone” surrogate model’s XAI performance is high. 256 

When using “Selecting,” the surrogate model's XAI performance is higher than the “standalone” 257 

surrogate model. 258 

“Selecting data closest to the main model” improves the surrogate model’s prediction and XAI 259 

performance.  260 

 261 
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Conclusions 263 

The k-NN Surrogate model is a useful XAI model for CDSS. 264 

It is a symphony of Example-based explanations, Local surrogate model, and k-NN. 265 

k-NN is adapted to high-dimensional data (ex: varieties of symptoms and diseases) and scarce case data 266 

(ex: rare diseases and cases). 267 

Our CDSS’s case data are the same as the evidence in medical literature. 268 

For CDSSs with similar aims and features, Example-based explanations are helpful and easy to 269 

implement. The k-NN Surrogate model is an Evidence-based XAI for CDSS 270 

Uncertainty Quantification (UQ) is an essential issue for AI and CDSS. (20), (21) 271 

k-NN is adapted to Conformal Prediction (CP), one of UQ’s. (22), (23) 272 

The k-NN Surrogate model will also contribute to these improvements in performance. 273 

Unlike current commercial Large Language Models (LLMs), Our CDSS shows evidence of the predicted 274 

diseases to medical professionals. 275 

This emphasis on evidence provides a sense of reassurance and confidence in the system's capabilities. 276 

It is important to remember that XAI and the k-NN Surrogate model are beneficial and can change the 277 

game for CDSSs. 278 

 279 
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