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Abstract
Background: Machine learning (ML) prediction of clinically
isolated syndrome (CIS) conversion to multiple sclerosis (MS)
could be used as a remote, preliminary tool by clinicians
to identify high-risk patients that would benefit from early
treatment.

Objective: This study evaluates ML models to predict CIS to
MS conversion and identifies key predictors.

Methods: Five supervised learning techniques (Naïve Bayes,
Logistic Regression, Decision Trees, Random Forests and
Support Vector Machines) were applied to clinical data from
138 Lithuanian and 273 Mexican CIS patients. Seven different
feature combinations were evaluated to determine the most
effective models and predictors.

Results: Key predictors common to both datasets included
sex, presence of oligoclonal bands in CSF, MRI spinal lesions,
abnormal visual evoked potentials and brainstem auditory
evoked potentials. The Lithuanian dataset confirmed predictors
identified by previous clinical research, while the Mexican
dataset partially validated them. The highest F1 score of
1.0 was achieved using Random Forests on all features for
the Mexican dataset and Logistic Regression with SMOTE
Upsampling on all features for the Lithuanian dataset.

Conclusion: Applying the identified high-performing ML
models to the CIS patient datasets shows potential in assisting
clinicians to identify high-risk patients.
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Introduction
Multiple Sclerosis (MS) is an autoinflammatory, demyelinat-
ing disorder of the central nervous system (CNS), affecting
165 people per 100,000 in North America (1) and 2.8 million
worldwide (2). A precursory stage called Clinically Isolated
Syndrome (CIS) often precedes Clinically Definite Multiple
Sclerosis (CDMS). In CIS, patients experience an episode of
neurological symptoms, with features of MS affecting the op-
tic nerves, brain or spinal cord, for at least 24 hours (3, 4).

Not all MS patients have a CIS stage, although the vast ma-
jority (85%) do, whereas 37% of CIS patients do not convert
to MS even after 20 years (5, 6).
Diagnosis is disseminated in time and space, referring to ev-
idence of damage to different CNS loci and the disease’s
relapsing nature over a patient’s life course. MS aetiology
is complex involving gene-environment interactions and risk
factors including: female gender, Epstein-Barr virus expo-
sure, smoking, low vitamin D level and childhood obesity (7).
Protective factors include: breastfeeding for more than four
months, longer schooling years and socioeconomic status (8).
Risk factors are not routinely accounted for in diagnostic
workflows.
Currently, diagnosis is made manually using Macdonald
2017 criteria (9) taking into account clinical features (from
examination and investigation), biomarkers (such as oligo-
clonal bands in cerebrospinal fluid indicating CNS damage)
and magnetic resonance imaging (MRI) lesions typical of
MS (9, 10). This is a subjective, user-dependent process that
can introduce inconsistencies (11). CIS to MS conversion,
which may take months to years (12), is a critical entry-point
for disease-modifying treatments in high-risk individuals to
delay onset and reduce disability (13, 14). Predicting high-
risk vs low-risk individuals allows for individualised treat-
ment and has high clinical utility (15).
Machine Learning (ML) represents a rapid and inexpensive
alternative to manual diagnosis in a number of medical set-
tings (16). Presently, while ML techniques have the po-
tential to disentangle the complex relationship between CIS
and MS they require proofs of reliability and interpretability
prior to clinical implementation (17, 18). Studies predicting
conversion using ML have primarily relied on MRI scans.
Zhang et al. (19) used random forests (RF) classifiers on le-
sion shape features achieving 84.5% accuracy, exceeding the
75% baseline for the original McDonald (2010) criteria. The
study was limited by database size and lack of multimodal
data. Yoo et al. (20) combined CNN-extracted lesion fea-
tures with clinical data for 75% accuracy but faced challenges
with small sample size and incomplete follow-up. Probert et
al. (6) employed a multi-omics algorithm on CSF biomarkers
achieving 83% accuracy but did not account for MRI lesions
and other non-CSF features. Wottschel et al. (21) combined
lesion features, demographics, and clinical information us-
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ing Support Vector Machines (SVM) model which achieved
71.4% accuracy.
Recently, Rasouli and colleagues (22) sought to apply an ex-
plainable artificial intelligence/ML (XAI) (23) approach to a
publically-available Mexican CIS dataset and achieved accu-
racy between 78.3% and 83.6% (24). An additional, retro-
spective, Lithuanian CIS dataset (25) is also publically avail-
able and we make use of this. These Mexican and Lithuanian
studies appraised predictors manually and demonstrated CIS
to MS conversion rates of 46% within 10 years and 35.5%
within 5 years respectively.
In the following study, we will build on this work by mak-
ing use of routinely collected data (clinical, demographic and
MRI), presenting five machine learning classification algo-
rithms for prediction of CIS to MS conversion. The mod-
els, chosen for their simplicity to hone in on appraising fea-
ture combinations, are: Naïve Bayes (NB, serving as a lower
benchmark), logistic regression (LR), decision trees (DT),
Random Forest (RF) and Support Vector Machine (SVM).
They are ordered in their observed performance on arbitrary,
small data problems.
By exploring multiple algorithms we aim to reduce the in-
ductive bias arising from use of a single algorithm. The ML
algorithms will be applied to the two indicated datasets and
also to their concatenation in order to establish generalizabil-
ity.

Objectives. The objectives of this study are as follows:

• CIS to MS conversion prediction using ML with var-
ious feature combinations on two different datasets and
on their concatenation.

• Understanding interpretability by determining the
model-feature combination with the highest F1 score.

• Comparing ML-identified predictors with original
study predictors as well as prior research.

• Validating clinical usefulness by assessing generaliz-
ability.

Scope and Limitations. Publicly-available datasets are
chosen, over hospital data collection, for their diversity of
features, suitability for the objectives, and capacity for repli-
cability. Deep learning (DL) is not used due to the small
dataset size and its tendency to obscure feature relevance.
The study is inherently constrained by its sample size (total
patients = 411) and the many missing values in the Lithua-
nian dataset.
As the datasets are from two different populations, common
conversion predictors independent of demographic influence
can be identified to enhance the generalizability and clinical
usefulness of the identified ML models and features. How-
ever, the population-specific nature of each dataset may in-
troduce selection bias.
To mitigate small sample size issues, imputation, SMOTE
(synthetic minority oversampling technique) Upsampling,
dataset concatenation are employed. A larger dataset with
at least 1000 observations would improve model training.

Materials and Methods
Datasets. Two publicly available datasets were utilized,
both downloadable on Mendeley Data via the CC BY 4.0 li-
cense. The ethical approval for using the datasets is available
in the Supplementary Material: Fig. S11.
The first dataset1 was taken from a prospective study (24)
comprising 273 Mexican CIS patients with 20 features who
presented to the National Institute of Neurology and Neu-
roscience, Mexico, between 2006 and 2010. The second
dataset2 was sourced from a retrospective study (25) com-
prising 138 Lithuanian CIS patients with 44 features who
presented to the Hospital of Lithuanian University of Health
Sciences, Lithuania, between 2015 and 2020.

Fig. 1. Venn diagram showing the features in both datasets and common features.

Analysis of datasets. The datasets contain demographic,
clinical, and MRI features in binary format. Features com-
mon to both datasets are: age, gender, visual evoked po-
tentials positive (VEP+), brainstem auditory evoked poten-
tials positive (BAEP+), oligoclonal bands positive (OCB+)
in CSF, MRI spinal, infratentorial and periventricular lesions
and MS outcome (refer to Fig. 1). Exclusive features in the
Mexican dataset include: initial and final expanded disabil-
ity status scale EDSS, breastfeeding status, schooling years,
upper limb and lower limb somatosensory evoked poten-
tials (ULSSEP and LLSSEP, respectively), varicella zoster
infection and cortical lesions on MRI. Exclusive features in
the Lithuanian dataset include: proprioception, coordination,
muscle strength, Rossolimo and Babinski’s signs, vertigo,
urinary retention, immunoglobulin levels in CSF and juxta-
cortical lesions on MRI. Further detail comparing features
between the datasets can be found in the Supplementary Ma-
terial section (Data Analysis).

Data preprocessing. Data cleaning involved replacing empty
cells with ’not-a-number’ values to ensure data integrity.
All columns with categorical values were transformed to a
numerical format for consistency. Data was structured for
model use, focusing on the target variable representing the

1https://data.mendeley.com/datasets/8wk5hjx7x2/1
2https://data.mendeley.com/datasets/yjfydt34rs/1
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presence or absence of multiple sclerosis. When SMOTE up-
sampling and principle component analysis (PCA) were ap-
plied, they generated resampled and PCA transformed data.
The data was then divided into 80% training and 20% test
sets, allowing the model to learn from a substantial portion
(training set) and evaluate performance on unseen data (test
set).

ML classifiers. Classification in machine learning can be bi-
nary or multiclass (23). The classifiers chosen for this study
are simple and interpretable. Naive Bayes (NB) is a prob-
abilistic algorithm exploiting Bayes’ theorem under an as-
sumption of feature independence. It is valued for its simplic-
ity and efficiency, and generally deployed as a lower bound
on performance (26). Logistic Regression (LR) uses logistic
functions to predict class probabilities, offering interpretabil-
ity and stochastic robustness but is limited by its linear as-
sumption (27). Decision Trees (DTs) provide high inter-
pretability and resilience to outliers but may overfit and strug-
gle with complex data (28). Random Forests (RFs) improve
upon DTs by aggregating multiple trees through attribute
bootstrap aggregation, handling high-dimensional data well
but requiring additional hyperparameteric tuning (29). Sup-
port Vector Machines (SVMs) obtain maximum-margin deci-
sion boundaries, excelling in high-dimensional spaces but are
computationally intensive and less interpretable. This makes
them a presumed a priori upper benchmark (16, 30). They
are also readily extended in functionality via kernelization
(though beyond the scope of this work).

Structural Risk Management. These methods reduce over-
fitting, model complexity, and improve generalization to un-
seen data.
Class imbalances were handled using stratification during the
80:20 data split to maintain proportional class distribution
in both sets. SMOTE Upsampling was applied to the best
model-feature combination, creating synthetic samples for
the minority class by interpolating between existing samples.
This balanced the class distribution, preventing bias towards
the majority class and improving performance on the under-
represented class. In the Lithuanian dataset, the majority to
minority ratio was 64.5% No MS to 35.5% MS. In the Mex-
ican dataset, it was 54.4% No MS to 45.6% MS. Applying
SMOTE Upsampling balanced the classes to a 50:50 distri-
bution.
To handle missing values, three imputation techniques were
applied: Simple Imputation (SI), Expectation-Maximisation
(EM), and Multiple Imputation by Chained Equations
(MICE). These ensure data integrity and minimize bias with-
out reducing dataset size.
Stratified K-fold Cross-validation (K=5) evaluated model
performance and generalization, balancing class distribution
in each fold. Hyperparameter tuning was conducted using
GridSearchCV optimizing parameters for all models to en-
hance performance. The best estimator was then trained on
the training set and used to make predictions.
Evaluation utilizes F1 score, a standard classification metric,
to assess model performance. The best value of F1 score is

Imputation Automatic
Feature
Selection

PCA Model Data F1
Score

Simple Yes

Yes
DT Train 0.97

Test 0.51

RF Train 0.97
Test 0.66

No
DT Train 0.81

Test 0.79

RF Train 0.81
Test 0.79

EM Yes

Yes
DT Train 1.00

Test 0.61

RF Train 0.94
Test 0.66

No
DT Train 0.96

Test 0.64

RF Train 1.00
Test 0.71

MICE Yes

Yes
DT Train 0.91

Test 0.63

RF Train 1.00
Test 0.56

No
DT Train 0.83

Test 0.82

RF Train 0.88
Test 0.82

Table 1. Effect of automatic feature selection on model F1 Scores across various
imputations, with and without PCA

1 and the worst is 0. Features Importance Scores identified
influential predictors in the models.

Experiments and Results
The overall pipeline involved data loading, preprocessing,
structural risk management, model training, prediction, eval-
uation and identification of conversion predictors. The mod-
els used included NB as a lower benchmark, LR and DT
for simplicity and interpretability, RF to enhance DT perfor-
mance, and SVM as an upper benchmark. The experiments
tested various imputation methods, PCA and feature selec-
tion to determine the optimal model-feature combination. Fi-
nally, SMOTE Upsampling and cross-dataset validation were
performed to assess model performance and generalizability
(hence indicating clinical usefulness).

1. Effect of Imputation: Missing values in datasets have
the potential to cause integrity issues and hamper over-
all model accuracy. To address this, we employ industry-
standard imputation methods to fill in missing values prior
to model fitting: SI, EM and MICE (as presented in Sup-
plementary Material: Table S1.) These were tested on the
Lithuanian dataset for NB, DT, and RF models. Using
SI, DT achieved the highest test F1 score compared to the
rest. The EM Imputer yielded similar test F1 scores across
all models. MICE exhibited overfitting with respect to RF
but retained consistent F1 scores for NB and DT. Over-
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all, EM was the superior imputation method and DT was
the best-performing model across all imputations by being
most consistent.

2. Effect of Multicollinearity: Multicollinearity among fea-
tures can negatively impact model performance by inflat-
ing variances and causing models to be unstable. To ad-
dress this, we aim to determine whether the application
of PCA, which mitigates multicollinearity by determin-
ing principal components of variation, can improve model
performance. Models were evaluated with and without
PCA to assess its impact. The results are presented in Sup-
plementary Material: Table S2. PCA produced overfitting
in all models across all imputations, with MICE giving
slightly better results. We conclude that the application of
PCA deteriorates model performance in this data context,
with little evidence of multicolinearity or stochastic noise
in the features.

3. Effect of Automatic Feature Selection: Automatic fea-
ture selection can streamline the modeling process by
identifying and using only the most relevant features. To
test this, we evaluate whether automatic feature selec-
tion during model training improves model performance
as compared to the use of all features without automatic
selection. As shown in Table 1, SI automatic feature se-
lection improved F1 scores but did not alleviate overfitting
(other than for RF without PCA). For EM, it improved
F1 test scores, both with and without PCA, but overfit-
ted in all cases. For MICE, it produced no change in DT
F1 scores but reduced test overfitting with respect to RF.
Overall, automatic feature selection did not mitigate over-
fitting. Automatic feature selection on MICE and EM im-
putations gave similar model performances.

4. Manual Feature Selection: Identifying the most relevant
features manually can improve interpretability. To achieve
this, we aimed to determine which feature combinations
maximize model performance. Various combinations as
presented including original study features, all features
and features except multicollinear ones were tested. In
the Lithuanian dataset (see Table 2), the best test model-
feature combination was LR using all features, with an
F1 score reaching 0.89. For the Mexican dataset, the best
model was RF using all features with a test score of 1.00
(see Table. 3).

5. Effect of Upsampling: Class imbalance can bias mod-
els towards the majority class, reducing performance on
the minority class. To address this, we aimed to im-
prove training accuracy by enhancing minority class rep-
resentation. SMOTE Upsampling was applied to the best-
performing models to balance the class distribution and
improve model performance. In the Lithuanian dataset,
SMOTE applied to the best model (LR using all features)
gave perfect F1 scores of 1.00 for both train and test sets
(Table 4). In the Mexican dataset, SMOTE on the best
model (RF using all features) increased train scores to
0.99 but decreased test scores to 0.95 (Table 4).

6. Cross-Dataset Validation: Evaluating model generaliz-
ability to new populations helps detect biases and improve
robustness. This is integral for clinical application. Mod-
els were trained on the Lithuanian dataset and tested on
the Mexican dataset, and vice versa. There was also fur-
ther validation on their concatenated dataset (i.e. combin-
ing observations from both).

Training on the Lithuanian dataset and cross-validating on
the Mexican caused severe overfitting with a test F1 score
of 0.56, indicating poor generalizability. Training on the
Mexican and cross-validating on the Lithuanian gave bet-
ter results with a test F1 score of 0.82 and good gener-
alization to unseen data. The best model for training on
Lithuanian and testing on Mexican, as well as for train-
ing on Mexican and testing on Lithuanian was LR (Ta-
ble 5).The best model on the concatenated dataset was LR
with a test F1 score of 0.72 (Table 6).

Discussion
This study automated CIS to MS conversion prediction. We
used five supervised machine learning algorithms on clinical,
demographic, and MRI data derived from two CIS databases.
The results are appraised for their accuracy (by way of F1
scores), as well as overfitting and generalisability (when there
is sound accuracy on training data that reduces when applied
to unseen, test data). We comment on the clinical implica-
tions of the experiments.
Several experiments were conducted to assess the impact of
imputation methods on results. Simple averaging of missing
values in SI led to overfitting in NB and RF, while EM im-
proved performance for all models by capturing inter-feature
relationships. The iterative approach of MICE maintained
prediction consistency for NB and DT but caused RF to over-
fit. DT showed consistent performance across imputations.
EM performed best without PCA or feature selection.
PCA was evaluated for its handling of dimensionality and
multicollinearity among the 44 features in the Lithuanian
dataset. However, it caused LR, DT, and RF models to over-
fit and perform poorly across all imputation methods. This
was likely due to data loss, increased noise and the applica-
tion of linear assumptions to non-linear data. Interestingly,
PCA using MICE for imputation led to better F1 scores and
reduced overfitting. Overall, however, PCA compromised in-
terpretability, which is important for clinical use, and was
thus not used in subsequent experiments.
Automatic feature selection aimed to reduce overfitting by
identifying relevant features for predictive accuracy but did
not consistently succeed across different imputations. It
struggled with complex feature interactions, high data vari-
ability and noisy features. Although it enhanced F1 scores,
it did not effectively combat overfitting so could not be used
further.
Manual selection showed that all features worked best, as
opposed to selecting the features used in the original stud-
ies (24, 25) or selecting all features excluding multicollinear
ones. Regarding the best model-feature combination, for the
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Features Data NB LR DT RF SVM

All Train 0.59 ± 0.08 0.97 ± 0.03 0.73 ± 0.12 0.93 ± 0.05 0.94 ± 0.07
Test 0.59 0.89 0.51 0.82 0.79

All Except Multicollinear Train 0.67 ± 0.07 0.77 ± 0.06 0.73 ± 0.10 0.95 ± 0.06 0.80 ± 0.06
Test 0.59 0.78 0.82 0.71 0.68

Original Study Train 0.73 ± 0.04 0.75 ± 0.03 0.74 ± 0.03 0.78 ± 0.05 0.76 ± 0.04
Test 0.82 0.82 0.86 0.82 0.86

Table 2. F1 scores of all five models across various feature combinations for the Lithuanian dataset.

Features Data NB LR DT RF SVM

All Train 0.73 ± 0.02 0.84 ± 0.02 0.96 ± 0.01 0.98 ± 0.01 0.83 ± 0.03
Test 0.80 0.87 0.98 1.00 0.85

All Except Multicollinear Train 0.73 ± 0.02 0.85 ± 0.02 0.75 ± 0.04 0.94 ± 0.02 0.87 ± 0.07
Test 0.80 0.87 0.84 0.87 0.85

Original Study Train 0.60 ± 0.03 0.59 ± 0.03 0.44 ± 0.23 0.60 ± 0.02 0.60 ± 0.03
Test 0.64 0.64 0.39 0.64 0.71

Table 3. F1 scores of all five models across various feature combinations for the Mexican dataset.

Dataset Feature
Combina-
tion

Data Scores

Lithuanian LR (ALL) Train 1.00 ± 0.00
Test 1.00

Mexican RF (ALL) Train 0.99 ± 0.01
Test 0.95

Table 4. Effect of SMOTE Upsampling on best model F1 scores in both datasets.

Lithuanian dataset the best model was LR using all features.
Following this was RF using all features. Feature importance
scores (Fig. 2) revealed MRI spinal lesions, MRI lesions in-
dicative of other diseases, general weakness and periventric-
ular lesions as significant positive predictors for conversion
from CIS to MS. Conversely, increased protein, Rossolimo
sign and MRI lesions specific to MS were significant nega-
tive predictors. For the Mexican dataset, the best model was
RF using all features (F1 test score 1.0), followed by DT us-
ing all features. Feature Importance Scores (Fig. 3) revealed
periventricular lesions, initial symptoms and age as signifi-
cant predictors for conversion from CIS to MS. Other impor-
tant contributors included MRI infratentorial lesions, OCB+
in CSF and schooling. Using all features yielded the best
results for most models across both datasets, most likely by
capturing intricate feature interactions.
SMOTE upsampling, used to address small dataset size and
class imbalance, exhibited divergent effects on the best mod-
els in both datasets. On the Lithuanian dataset, SMOTE in-
creased the test F1 score of the best model (LR using all fea-
tures) to 1.0, confirming its effectiveness. This result outper-
forms previous studies that cite accuracies ranging from 75%
to 84.5% (6, 19, 20, 22). Conversely, on the Mexican dataset,
SMOTE reduced the test F1 score of the best model (RF using
all features) to 0.95 and overfitted. Overall, SMOTE achieved
high accuracies and showed it may be useful in combatting
bias towards majority classes.
When training on the Lithuanian dataset and cross-validating
on the Mexican dataset, LR performed best. However, there

Score

Fe
at

ur
e

MRI spinal lesions
MRI lesions indicative 

General weakness
Periventricular

BAEP +
Cranial Nerve 

Pathological reflexes
Proprioception

Juxtacortical
Sex

Pathological CSF
Muscle tone 
Pleocytosis

IgG levels in CSF
OCB + in CSF

Age
CN3
CN4
CN5
CN6
CN8

Babinski's
Reflex asymmetry

Superficial sensation
Urinary incontinence

Urine retention
Vertigo

Balance
Pain

Focal symptoms
Muscle strength
Unspecified MRI 

VEP +
Fatigue

MRI infratentorial 
Coordination

MRI lesions specific to 
Rossolimo

Increased protein
-10 -5 0 5 10

Fig. 2. Feature Importance Scores for the best model, LR using all features on the
Lithuanian dataset

was overfitting and hence poor generalisability (F1 score
0.56). LR also performed best when training on the Mex-
ican dataset and cross-validating on the Lithuanian dataset
(F1 score 0.82). This was superior to cross-validating the
other way round. Even on the concatenated dataset, LR per-
formed the best overall (F1 score 0.72). Differences in patient
demographics, fewer observations in the Lithuanian dataset,
and varying disease characteristics contributed to these dis-
crepancies. The cross validation and concatenation experi-
ments show appropriateness of LR in clinical contexts to pre-
dict CIS to MS conversion due to its generalizability.

The results show significant difference in the predictive abili-
ties of all five models. For example, in the Lithuanian dataset
using all features, the best model LR achieved a 0.89 test

Eden C. Daniel et al. | Interpretable Machine Learning for Predicting Multiple Sclerosis Conversion from Clinically Isolated Syndrome bioRχiv | 5

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2024. ; https://doi.org/10.1101/2024.07.18.24310578doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.18.24310578
http://creativecommons.org/licenses/by-nc/4.0/


Dataset Data NB LR DT RF SVM

Train on Lithuanian, Test on Mexican Train 0.76 ±
0.03

0.80 ±
0.03

0.89 ±
0.06

0.93 ±
0.05

0.82 ±
0.05

Test 0.55 0.56 0.40 0.41 0.45

Train on Mexican, Test on Lithuanian Train 0.61 ±
0.02

0.64 ±
0.05

0.62 ±
0.04

0.66 ±
0.04

0.63 ±
0.02

Test 0.78 0.82 0.76 0.81 0.63

Table 5. F1 Scores for cross-dataset validation.

Dataset Data NB LR DT RF SVM

Concetenation Train 0.62 ± 0.01 0.64± 0.02 0.65 ± 0.04 0.67 ± 0.03 0.63 ± 0.02
Test 0.70 0.72 0.56 0.71 0.71

Table 6. F1 Scores for concatenated dataset validation.

Score

Fe
at

ur
e

Periventricular
Initial Symptoms

Age
MRI infratentorial 

OCB + in CSF
Schooling

Breastfeeding
LLSSEP
Varicella

Sex
MRI cortical lesions

VEP +
Monosymptomatic 
MRI spinal lesions

ULSSEP
BAEP +

0.00 0.05 0.10 0.15

Fig. 3. Feature Importance Scores for the best model, RF using all features on the
Mexican dataset.

score, while the worst model NB performed at near chance
levels. Similarly, in the Mexican dataset using original study
features, SVM (the upper benchmark) scored 0.71, whereas
DT performed the worst with a 0.39 test score. This em-
phasizes the significant impact of model choice on prediction
accuracy and why trialling different models is essential in un-
derstanding the applicability of ML to clinical data.
This study validated the use of clinical features. This is ev-
idenced by confirmation of predictors from previous studies
that include OCB+ in CSF, BAEP+, MRI spinal lesions and
proprioception (5, 31), as well as periventricular lesions, MRI
spinal lesions, MRI infratentorial lesions, MRI cortical le-
sions and LLSSEP (32).
Experiments on the Lithuanian dataset confirmed all predic-
tors manually identified in the original study (25). Addi-
tionally, MRI lesions indicative of other diseases, muscle
tone abnormalities, sex, and VEP+ were identified as pre-
dictors. Conversely, the original Mexican study manually
identified specific clinical parameters and MRI findings as
predictors (24). However, the experiments on the Mexican
dataset in this study validated different predictors, such as
periventricular lesions, MRI spinal lesions, MRI infratento-
rial lesions, MRI cortical lesions and LLSSEP. We discovered
predictors common to both datasets were sex, MRI spinal
lesions, OCB+ in CSF, VEP+, and BAEP+, indicating their
reliability as features. By confirming known predictors, for
example MRI lesions and OCBs, that are used routinely by
clinicians when applying the Macdonald criteria (9), we con-

firm holistic datasets that make use of multi-modal data im-
prove reliability of ML methods; this in turn provides inter-
pretability as clinicians would be able to understand the role
of various features in these ML models.
This study also identified sex as a predictor, aligning with
previous research (33, 34) but differing from Balnytė et
al. (25). It found males more susceptible to MS conversion,
contrary to previous research indicating higher female sus-
ceptibility. This may exemplify how small datasets can skew
results and cautions the requirement for further study. Initial
and final EDSS were identified as predictors, unlike as found
by Chavarria et al. (24), which shows utility of wider data
sources.

Conclusion
The study aimed to evaluate ML methods in the prediction
of CIS to MS conversion. Principal findings showed that EM
and MICE imputations gave similar results, PCA deteriorated
model performance and automatic feature selection did not
mitigate overfitting.
The best models were LR using all features with SMOTE up-
sampling on the Lithuanian dataset and RF using all features
on the Mexican dataset. Both achieved perfect F1 scores of
1.0. LR performed best during cross-validation and valida-
tion on concatenation. SMOTE Upsampling was useful for
the best model on Lithuanian dataset but decreased the test
score for the best model on Mexican dataset.
Common predictors for both datasets were OCB+ in CSF,
sex, MRI spinal lesions, VEP+ and BAEP+. Predictors exclu-
sive to the Mexican dataset were periventricular lesions, ini-
tial and final EDSS, MRI infratentorial lesions, MRI cortical
lesions and LLSSEP. Exclusive predictors for the Lithuanian
dataset were proprioception, MRI lesions indicative of other
diseases and muscle tone abnormalities. The experiments on
the Lithuanian dataset confirmed all predictors identified in
the study by Balnytė et al. (25). However, the experiments
on the Mexican dataset partially confirmed those identified
manually by Chavarria et al. (24).
The models demonstrated clinical usefulness, with reason-
able generalization when trained on the Mexican dataset.
Despite discrepancies in identifying lesser-known predictors
such as breastfeeding, schooling years and Varicella infec-

6 | bioRχiv Eden C. Daniel et al. | Interpretable Machine Learning for Predicting Multiple Sclerosis Conversion from Clinically Isolated Syndrome

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2024. ; https://doi.org/10.1101/2024.07.18.24310578doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.18.24310578
http://creativecommons.org/licenses/by-nc/4.0/


tion, this study validated widely-recognized predictors used
by clinicians in MS diagnosis.
Future studies should consider larger, racially diverse
datasets with at least 1000 observations. They should in-
clude risk factors such as Vitamin D levels, smoking, Epstein-
Barr virus infection and teenage obesity, as well as genetic
data (33). Deep learning models could be explored in larger
datasets. Integrating the best-performing models into clinical
practice may enhance CIS to MS conversion prediction. This
would aid clinical decision-making to individualise treatment
for CIS individuals who are at high-risk of converting to MS.

Availability and Implementation
Code availability. The code for the machine learning
algorithms and data analysis is available in the GitHub
repository: https://github.com/tsantosh7/
Multiple-Sclerosis-Conversion

Data availability. The datasets used in this study are avail-
able from Mendeley via the CC BY 4.0 License. The Mex-
ican dataset is available at https://data.mendeley.
com/datasets/8wk5hjx7x2/1 and the Lithuanian
dataset is available at https://data.mendeley.com/
datasets/yjfydt34rs/1. Additionally, we made the
data available at https://github.com/tsantosh7/
Multiple-Sclerosis-Conversion in the "Data"
folder, which includes both datasets as well as the concate-
nated dataset.
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