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Abstract 
The facial gestalt (overall facial morphology) is a characteristic clinical feature in many genetic 
disorders that is often essential for suspecting and establishing a specific diagnosis. For that 
reason, publishing images of individuals affected by pathogenic variants in disease-associated 
genes has been an important part of scientific communication. Furthermore, medical imaging 
data is also crucial for teaching and training artificial intelligence methods such as 
GestaltMatcher. However, medical data is often sparsely available and sharing patient images 
involves risks related to privacy and re-identification. Therefore, we explored whether 
generative neural networks can be used to synthesize accurate portraits for rare disorders.  
We modified a StyleGAN architecture and trained it to produce random condition-specific 
portraits for multiple disorders. We present a technique that generates a sharp and detailed 
average patient portrait for a given disorder. We trained our GestaltGAN on the 20 most 
frequent disorders from the GestaltMatcher database. We used REAL-ESRGAN to increase 
the resolution of portraits from the training data with low quality and colorized black-and-white 
images. The training data was aligned and cropped to achieve a uniform format.  To augment 
the model's understanding of human facial features, an unaffected class was introduced to the 
training data.  
We tested the validity of our generated portraits with 63 human experts. Our findings 
demonstrate the model's proficiency in generating photorealistic portraits that capture the 
characteristic features of a disorder but preserve the patient's privacy. Overall, the output from 
our approach holds promise for various applications, including visualizations for publications, 
educational materials, as well as augmenting training data for deep learning. 
 
 

Introduction 
Many genetic conditions involve features that are evident on physical examination, including 
those that affect the face. At the time of writing (May 28, 2024), searching with the HPO term 
“facial dysmorphism” yields 2,997 entries in the Online Mendelian Inheritance of Men (OMIM) 
compendium (https://www.omim.org/), indicating the importance of the facial gestalt for 
characterizing disease entities. The importance of phenotype matching extends to diagnostic 
procedures in genetics, where physical examination features can serve  as supporting 
evidence when assessing sequence variants for pathogenicity (Richards et al., 2015). 
Recent advancements in computer vision have achieved expert-level accuracy in discerning 
distinct facial patterns. Next-generation phenotyping (NGP) tools such as GestaltMatcher 
have become instrumental in the analysis of clinical patterns in human faces and their usage 
for the interpretation of sequencing data (Hsieh, Bar-Haim et al., 2022; Hsieh, Mensah et al., 
2019; Schmidt et al., 2023). The underlying technology, which is a deep convolutional neural 
network, can be used for pattern recognition as well as  the delineation of informative features 
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(explainable AI, XAI) or the synthesis of images with similar characteristics via generative 
methods such as Generative Neural Networks (GNN) (Saranya et al. 2023). GNNs may be 
particularly useful in medical settings since data are often sparsely available and may involve 
sensitive, private information. The generated images can be used for teaching or data 
augmentation when training machine learning models, including to address privacy concerns 
(Bowles et al. 2018, Shorten et al. 2019). In medical genetics, Duong, et al. showed that a 
StyleGAN can be used to generate artificial longitudinal data of patients, and could improve 
NGP classification accuracy by a better control of age as a confounder.1  
StyleGAN is now a well-established architecture for image generation (Karras, Laine, et al., 
2019), that allows the synthesis of photorealistic images across diverse contexts. StyleGAN 
is based on the concept of Generative Adversarial Networks originally proposed by Goodfellow 
et al. (2014), which consists of two parts, the generator and the discriminator. The generator 
crafts images—such as human portraits—while the discriminator evaluates their quality, 
providing feedback to reduce artifacts and enhance realism. The generator’s goal is to produce 
images so realistic that the discriminator cannot tell whether they are real or synthetic. Through 
this adversarial process, the generator learns characteristic object properties that are required 
to produce realistic synthetic images (in our case, human faces). A more comprehensive 
introduction to the technology can be found in the supplemental material (Related work). 
With further refinement of GANs, it is also possible to condition the output depending on an 
input label (Mirza et al., 2014). This label is an additional piece of information that enables one 
to conditionally generate a certain type of image, in case of human faces the label might 
encode age, race or ethnicity, hair color, or even a certain genetic condition, as is the focus of 
our work. 
Artificial content creation is particularly compelling in medicine given the sparse availability 
and stringent privacy constraints on data. However, facial images are also a particularly 
sensitive type of medical data, as the effort required for re-identification is relatively low and 
may require no additional technology. Nevertheless, for this study,  the characteristics that are 
most suitable for de-identification can only be those that are not disease-related. There are 
therefore limits to anonymization in so far as recognition of the disease is our aim (k-anonymity 
is bound by the prevalence of the disorder). However, sparse training data poses challenges, 
potentially leading to overfitting, a phenomenon where the network memorizes samples and 
recreates training images (Shorten et al, 2019). Balancing de-identification with feature 
retention poses a nuanced challenge; the model must learn and reproduce disorder-specific 
features without replicating exact facial combinations from training images.  
In our work, we used “disorder” as an additional class label and trained a conditional StyleGAN 
with images of the GestaltMatcher database (GMDB), which contains images of over 10,000 
individuals with molecularly confirmed diagnoses (Lesmann et al. 2024).2 We hypothesized 
that working with several syndromic disorders facilitates learning certain clinical features that 
are often shared by more than one disorder.2 We therefore, focused on  the 20 most frequent 
syndromes represented in the GMDB, comprising a total number of 3209 images. In order to 
enrich the characteristic features, we added a custom loss to the training and penalized the 
model if GestaltMatcher-Arc’s (Hustinx, et al., 2023) feedback would not match with the 
syndrome requested of our GAN.  
For the evaluation of the generated images, we tested whether humans are still able to 
differentiate between synthetic and original images, and whether the characteristic features of 
a genetic condition are conserved, while data of real patients is protected. 
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Fig. 1: Images generated by GestaltGAN. Images in the top row are the latent representation 
for the disorder. in the bottom row are selected images generated for the respective disorder. 

 

Methods and Materials 
Data Preparation 
The GestaltMatcher DataBase (GMDB) contains a collection of 581 distinct disorders known 
to involve facial dysmorphisms, with over 10,980 accompanying images of 8346 affected 
individuals. In addition to the use of previously published images, all individuals newly 
represented in GMDB provided consent for using their imaging data for machine learning. For 
our GestaltGAN model training, we focused on the 20 most common disorders from the GMDB 
(Supplemental Figure 1). The reason for choosing 20 is a trade-off, balancing the benefit of 
using more disorders for training data against the challenge of distinguishing between them. 
Images in the GMDB come in various formats, with differences in size, lighting, and facial 
alignment. To enhance the quality of low-resolution images, we used REAL-ESRGAN (Wang 
et al., 2021), a deep learning model that predicts high-quality image details and computes 
high-resolution versions for the input images. Additionally, many older images in the GMDB 
come in black-and-white, which would lead to undesired outputs if directly used for training. 
To address this, we utilized DDColor (Kang, Yang et al., 2023) to add color to these 
monochromatic images, ensuring a consistent dataset for our GAN training. All images were 
aligned and cropped using GestaltEngine-FaceCropper, which relies on RetinaFace (Deng, 
Guo, Yuxiang, et al., 2019) that accurately pinpoints five landmark points in each portrait: the 
eyes, nose, and corners of the mouth. Using those landmarks, horizontal alignment of the 
faces could be ensured.  
Given the scarcity of images of individuals with the genetic conditions of interest, we expanded 
our dataset by including images of individuals without known genetic conditions. These 
unaffected faces share similar features, like hair or skin, with the images of individuals with 
genetic conditions, aiding the model in generating more realistic faces of individuals with 
genetic conditions. We opted for the FFHQ-Aging dataset (Or-El et al., 2020), known for its 
size and high-quality images across different ages and races and ethnicities. Since many 
patients in the GMDB are children (with 42.8% under five years old), we balanced the age 
distribution by limiting the number of unaffected adults in FFHQ-Aging to 3000 individuals for 
all age groups over 20 years old. This adjustment resulted in a training set with 31,130 
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unaffected people. Subsequently, all images in FFHQ-Aging underwent alignment and 
cropping using GestaltEngine-FaceCropper. 
 

 
Fig. 2: Visualization for the GestaltGAN architecture. StyleGAN has been extended by a 
customized loss function, GestaltLoss, based on the GestaltMatcher ensemble. The 
conditional generator synthesizes images for 20 different disorders and receives feedback 
from the discriminator about the origin, which is either artificial or real. For training of human 
faces and disorders, data of FFHQ Aging and the GMDB were used.  

 
Training of GestaltGAN 
We utilized the conditional StyleGAN3-R architecture as proposed by Karras, Aittala, Laine, 
et al. (2021), representing the fourth iteration of the StyleGAN framework. This version 
incorporates enhancements such as translation and rotation invariance towards training 
images, which helps with imperfect alignment that may have persisted in some training 
images. Notably, StyleGAN3-R integrates adaptive discriminator augmentation (ADA), a 
mechanism crucial for preventing overfitting, especially in datasets with limited samples like 
the GMDB.  
Our approach is to use a conditional setup, where each syndrome is treated as a distinct class 
for training. This way, we can make the most of the shared facial features among different 
disorders, making use of the size of our own dataset. We also include unaffected images as 
a separate class, providing the model with continuous exposure to common features like hair 
or skin from those images. However, to handle the variable number of training images for each 
genetic condition, and to avoid producing images that inappropriately incorporate features of 
unaffected faces we added an over-sampling function to the StyleGAN3 implementation. This 
ensures that each genetic condition is represented equally during training. We gave  the model 
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twenty times more exposure to the unaffected class to allow the model to better understand 
and utilize its features.  
In addition to over-sampling, we modified the loss function of StyleGAN3. Since the 
GestaltMatcher model is specialized at identifying rare disorders from images, we want to 
leverage this skill by penalizing our model if its predictions deviate from what GestaltMatcher 
would expect for a given class. The adjusted loss function combines this GestaltMatcher loss 
with the regular discriminator loss	𝐿!: 
 

𝐿"#"$% =	𝐿!(𝐼) 	+ 	𝛼	 ⋅ 𝘢𝘳𝘨𝘮𝘪𝘯	𝘎𝘦𝘴𝘵𝘢𝘭𝘵𝘔𝘢𝘵𝘤𝘩𝘦𝘳(𝐼)  
 
Here, 𝐼 represents the image generated by the generator, and the GestaltMatcher function 
calculates the sequence of most likely diagnoses in ascending order. Argmin returns the index 
of the correct diagnosis. The weight 𝛼 adjusts the balance between the GestaltLoss and the 
discriminator loss. 
The chosen image resolution for our model was 256x256 pixels, which is slightly below the 
median image resolution in the GMDB of 265x328pixels. We were also able to train the model 
for a 512x512 resolution, but did not continue this approach due to the  three-fold higher 
required computation effort. A visualization for our training setup is shown in Figure 2. Images 
generated by our GestaltGAN model can be seen in Figure 1. 
 
Image averages and latent averages 
 
To illustrate the characteristics of a disorder, the average face of several patients is often 
computed by registering and overlaying their portraits. While this method has been used in 
various studies, the resulting images are often blurry and indistinct3. In fact, increasing the 
number of individuals often leads to a deterioration of the results (personal communications). 
In this subsection, we introduce a technique to generate sharp and high-quality portraits that 
accurately represent the features of specific disorders. 
The image generation process of an image with StyleGAN begins with sampling a random 
latent vector 𝑧	 ∈ 𝑍. This vector is then combined with the class label in the mapping network, 
which maps to the second latent space 𝑊. An image is then deterministically generated based 
on this latent vector in 𝑤	 ∈ 𝑊. Since the latent space is continuous, small variations in the 
latent vector result in slight variations in the synthesized image (Xia et al., 2022). This means 
that similar images and especially images of the same disorder lie in the same region in the 
latent space. This property allows us to generate an average image for all disorders on which 
our model was trained. To achieve this, we sample 10,000 latent vectors 𝑤	 ∈ 𝑊 for the 
selected disorder, such as Cornelia de Lange syndrome, and average these latent vectors to 
generate the average image. Instead of computing the average in the image space, we 
perform the averaging in the latent or feature space. Latent averages for different disorders 
are shown in Figure 1 and Figure 3. In Figure 3, the latent averages are presented alongside 
the corresponding averages from image space, which are currently often used for teaching 
purposes, such as to help clinical trainees recognize different genetic conditions. 
An important note is that this method only works for disorders on which the GAN has been. 
To extend the capability and generate latent averages for other disorders, we perform GAN-
inversion on all patient portraits in the cohort to obtain the corresponding feature vectors in 
the latent space that represents the patients. We use the GestaltMatcher ensemble as a loss 
function for GAN inversion, as it has been trained to recognize dysmorphic features. After 
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averaging the feature vectors, we generate an image from the resulting vector to obtain the 
latent average. 
 

 

Fig. 3 Comparison of ordinary image averages and latent averages. Since both averaging 
techniques operate in essence on the same underlying data, there is a high similarity of 
image averages (left) and latent averages (right) for each condition. However, averaging in 
image space blurs fine structures, while latent averages appear more photorealistic. 

 
 

Results 
With GestaltGAN, our goals were threefold: we aimed to create synthetic images that are 
photorealistic, de-identified, and which accurately represent clinical features. Achieving these 
objectives partially involved navigating an optimization problem, as enhancing privacy 
protection might sometimes compromise feature preservation. We therefore assessed the 
quality of all three objectives through computational methods and by conducting experimental 
evaluations with human test participants, who compared the generated images to the original 
images. Images generated by our model are shown in Figure 1. 
 
Computational evaluation of image quality 
To evaluate the quality of a large quantity of generated images, we employed two machine 
learning-based methods. First, we aimed to determine whether an image depicts a face or is 
considered a fail case, and second, we assessed whether characteristic features of the 
disorders are present in the images.  
We generated 1000 random images for each class, including the unaffected faces class. While 
most generated images are high-quality portraits, some fail to convey meaningful content. We 
defined a fail-case as an image without any visible face. To estimate the number of fail-cases, 
we utilized RetinaFace, which was already used for image alignment. Since RetinaFace 
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predicts facial features like eyes, nose, and mouth, its accuracy can be considered to 
represent a sensible criterion; we considered an image a fail-case if the confidence of 
RetinaFace was below 99.9% (Supplemental Figure 2). The percentage of fail-cases is below 
10% for most disorders, but the proportion of fail-cases varies between disorders, such as  
2.7% and 6.9% for Cornelia de Lange syndrome and Kabuki syndrome, respectively 
(Supplemental Figure 3). Possible reasons for this could include lower training image quality 
or more unique facial features in certain disorders. Unique features pose a challenge for the 
model, as they are encountered less frequently in the training data. 
To assess whether characteristic phenotypes of the disorders are represented in the 
generated images, we utilized GestaltMatcher. We tested whether the generated disorder was 
within its top-5 predictions. Overall, GestaltMatcher achieved a top-5 accuracy of 76.7% on 
the synthesized images. The top-5-accuracy rates for Cornelia de Lange syndrome and 
Williams-Beuren syndrome were above 90%, while the correct disorder was only listed in the 
top 5 differential diagnoses for synthetic images of Baraitser-Winter in 62.1% and for 
Nicolaides-Baraitser in 39.9%. These performances are in good agreement with the accuracy 
rates measured on real data, in which top accuracy rates also differ per disorder depending 
on their distinctiveness. Therefore, the results indicate that the characteristic features are 
indeed present in the generated images. 
 

 

Figure 4:   The survey presented to human participants to assess the ability to recognize 
generated images, specific training images, and specific genetic conditions. The lower 
section shows the result for each question that was expected due to random chance and 
what was actually observed. The closer the observed and expected values, the harder is 
the question. 1) Participants could identify original images slightly more often than randomly 
expected. 2) Participants could not identify which individuals were used for training. 3) 
Participants could recognize the characteristic features in original and synthetic images with 
comparable precision. Color code: original images are depicted in black, original images not 
part of the training set in yellow, and generated images in blue. 

 
 
Assessment of image quality by human experts 
In addition to the computational techniques, we used to assess image quality, we also 
developed an online survey with questions in three categories. We invited users of the 
GestaltMatcher databas  to participate in the survey. These users represent dysmorphologists 
and other medical professionals working on genetic and other rare disorders, The experiment 
enabled us to assess the performance of humans in distinguishing 1) synthetic images from 
non-synthetic images, 2) re-identifying original data (images) that were used for training, and 
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3) identifying (diagnosing) the correct disorder. Each survey question also included a time-
limit to prevent participants from scanning images for tiny artifacts, which can occur in 
synthetic images. In addition, there was a skip button that allowed participants to skip a 
question and continue with the next question. In total we recorded 63 sessions, in which 10 
questions in each of the three categories were asked. Out of the 1860 answers we excluded 
106 skipped questions and 151 timeouts resulting in 1603 answers for further evaluations. 
The full experiment setup is visualized in Figure 4. 
In the first category, participants were presented with four distinct portraits, of which three 
were generated by GestaltGAN, while one was an image of an individual from the training set. 
Participants  were asked to identify the original. In 33.3% of the cases, participants were able 
to find the original, exceeding the expected chance value of 25%. The null-hypothesis, that 
generated images are indistinguishable from real images, had to be discarded (1.9 10-5< 0.05, 
binomial test). However, this was expected since generated images often contain artifacts that 
expose them as artificial and still in most cases participants were not able to identify the 
original.  
In the second category, participants were presented with a portrait representing a specific 
condition, averaged from the latent space of GestaltGAN. The participants were shown three 
original portraits of individuals with the same condition, only one of which had been used 
during the training.  They were asked to identify the individual who was part of the training set. 
In 33.7% of cases, participants answered correctly, and the null hypothesis that GestaltGAN 
generates images that do not violate patient privacy (at least in the tested approach) did hold 
(0.889> 0.05, binomial test).  
In the third category, a synthetic portrait was shown to the participants, and they chose the 
correct disorder from four different options. If the synthetic images accurately represented the 
disorders, we hypothesized that experts should be able to identify the correct disorder at 
approximately the same rate as for real images. Remarkably, in 48% of the cases the experts 
were able to correctly diagnose the patient based on a real portrait, while their accuracy was 
48.5% based on a generated portrait. The null hypothesis, that generated images represent 
characteristic features comparably to training images, held (0.001 < 0.05, 𝜒& test). 
 

Discussion 
In this study, we explored the application of Generative Adversarial Networks in generating 
photorealistic portraits for rare disorders that preserve the characteristic clinical features but 
also the patient’s privacy. We presented GestaltGAN, a modified StyleGAN architecture and 
demonstrated in a series of experiments that synthesizing photorealistic faces of individuals 
with rare genetic conditions is possible despite limited amounts of training data. Through 
careful data preparation and augmentation, we were able to generate photorealistic portraits 
that accurately represent the facial features of a syndrome. Specifically, oversampling and our 
custom loss function enabled us to train the model to reproduce the characteristic features of 
disorders more accurately.  
Our evaluation encompassed both computational assessments of image quality and human 
evaluations through an online survey of medical professionals. First, the computational 
evaluation demonstrated that the majority of generated images were of high-quality, with only 
a small percentage categorized as fail-cases. The responses of medical professionals further 
supported this claim and indicated that synthesized portraits represent characteristic features 
of a given condition and were similar to the original images.  Additionally, participants had 
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difficulty in recognizing the original image used for training, suggesting that GestaltGAN can 
be used to preserve patient privacy. 
Using the latent space, we presented the novel latent representations for conditions that 
average features in the latent space and appear much sharper than simple averages of the 
faces. 
Our study has several important limitations. These include the fact that we assessed a limited 
number of conditions and focused on a single generative method.  While we do not necessarily 
anticipate that extending the study in these ways would yield very different results, it would be 
interesting to assess our approach more broadly. In the future, it could be interesting to use 
more detailed labels, such as  additional age labels or individual HPO terms instead of solely 
the condition in question. This could provide the user more specific control over the generated 
faces.  
In conclusion, we find the parallels of GANs to traditional medical education striking. In 
medicine, trainees learn medicine according to the mantra of “See one, Do one, Teach one”. 
Similarly, by training on a relatively small number of cases, GestaltGAN achieved proficiency 
in generating accurate images of individuals with genetic conditions. The quality of the 
internalized knowledge was shown as the GAN discriminator, and experts could no longer 
reliably distinguish artificial and real images. Overall, this work highlights the potential of GANs 
in the medical field to artificially synthesize data while protecting patient privacy. 
 
 
Data Availability Statement: 
All training data for GestaltGAN was extracted from GMDB. Photorealistic synthetic portraits 
of 20 disorders can be found at https://thispatientdoesnotexist.org 
 
Code Availability: 
We publish our code on github: https://github.com/kirchhoffaron/gestaltgan 
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