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ABSTRACT 

Each piece of cell-free DNA (cfDNA) has a length determined by the exact metabolic conditions in the 

cell it belonged to at the time of cell death. The changes in cellular regulation leading to a variety of 

patterns, which are based on the different number of fragments with lengths up to several hundred base 

pairs (bp) at each of the almost three billion genomic positions, allow for the detection of disease and 

also the precise identification of the tissue of their origin.  

 

A Kullback-Leibler (KL) divergence computation identifies different fragment lengths and areas of the 

human genome, depending on the stage, for which disease samples, starting from pre-clinical disease 

stages, diverge from healthy donor samples. We provide examples of genes related to colorectal cancer 

(CRC), which our algorithm detected to belong to divergent genomic bins. The staging of CRC can be 

viewed as a Markov chain and that provides a framework for studying disease progression and the types 

of epigenetic changes occurring longitudinally at each stage, which might aid the correct classification 

of a new hospital sample.  

 

In a new look to treat such data as grayscale value images, pattern recognition using artificial 

intelligence (AI) could be one approach to classification. In CRC, Stage I disease does not, for the most 

part, shed any tumor in circulation, making detection difficult for established machine learning (ML) 

methods. This leads to the deduction that early detection, where we can only rely on changes in the 

metabolic patterns, can be accomplished when the information is considered in its entirety, for example 

by applying computer vision methods. 

 

INTRODUCTION 

CRC is the second most common cancer-related cause of death worldwide (Siegel et al., 2020). 

Approximately two-thirds of newly-diagnosed patients present with a curable disease (Petrelli et al., 
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2017), but despite curatively intended treatment, up to 40% of them experience relapsed disease after an 

initial treatment (Jorgensen et al., 2015). In addition, about 86% of Stage I disease do not shed tumor in 

circulation, which leads to a decreased ability for early detection (Liu et al., 2020). A minimally-

invasive analysis based on circulating cfDNA has emerged as a promising nucleic acids biomarker 

(Cristiano et al., 2019), but this method assumes very homogenous characteristics of the healthy 

population, which makes it hard to gain regulatory approval. Here, we attempt to consider the processes 

underlying the evolution of CRC as an electronics communication system and propose to visualize the 

cfDNA samples as images (Matov, 2024b).  

 

COLORECTAL CANCER AS AN IMAGE 

In CRC, patients go through a complex diagnostic paradigm. While healthy, the donors could be 

characterized as having different stages of co-morbidities. Next, pre-cancerous polyps might lead to 

adenomas of the colon or the rectum, which also have different stages. About 45% of the patients with 

advanced adenoma, and oftentimes people with low-grade adenoma or no adenoma at all, develop 

colorectal neoplasm, which has four stages. The extensive length of the colon makes tissue biopsies and 

surgical interventions uncertain procedures because of the sheer length of the organ. The physiology of 

the colon is particular and it is conceivable that changes, reported by the changes in the fragmentation 

patterns, in the local cellular regulation could offer information on the exact location of early disease. In 

disease, the variety of cell death fragmentation patterns reflects differential nucleosome packaging, 

chromatin remodeling and accessibility (van der Pol and Mouliere, 2019). DNA hypomethylation or the 

loss of a histone in a nucleosome, for instance, lead to a skewed fragment length distribution (Fig. 1A 

and Fig. 1B). In contrast, in healthy donor samples (Fig. 1C) the distribution is symmetric, centered 

around 168 bp. One can observe the consistent number of fragments across the genome for the healthy 

donor sample (Fig. 1C), which is in stark contrast to the copy-number variation seen as bright horizontal 

streaks in the two Stage IV samples (Fig. 1A and Fig. 1B). The difference image between a healthy 
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donor sample and a Stage I sample highlights the differences (Fig. 1D) present in cellular regulation and 

cell death in CRC Stage I (Fig. 1E). This holds true for low- and high-grade adenoma too. 

 

DNA FRAGMENTATION 

A way to classify samples is to compute the relative entropy for each fragmentation length by building a 

probability density function based on the fragments from all genomic positions. Such distributions 

consist of about 40 million fragments for each whole genome sequencing sample, which can be binned 

in genomic regions of, for instance, five mega bases (MB). In this scenario, for each fragment length, we 

could compare histograms of about 45,000 values from each region of the 23 chromosomes (Fig. 2). A 

KL divergence computation based on an adaptive minimax rate-optimal estimator (Han et al., 2016) of 

the changes in disease from healthy state(s) to precancerous lesion(s) to malignant tumor(s) can be 

presented as a heterogeneous directed Markov chain with absorbing states (Bremaud, 1999). 

Considering this Markov chain as a degraded broadcast channel, considerations regarding the capacity 

region (Han) and its estimation for a cohort of CRC samples (Bergmans, 1973) could aid the 

classification of a new patient sample in the clinic. To build the boundary of the capacity region for each 

stage, we assumed that the two peaks in the DNA fragmentation length KL divergence histogram 

(similar to Fig. 2, but for all cohorts, including the adenoma cohorts) provide the (X, Y) coordinates for 

which the boundary intersects with the X-axis (divergence value for the first peak, 0) and the Y-axis (0, 

divergence value for second peak) (boundaries of the capacity regions not shown). As different 

boundaries of the capacity regions (Cover, 1998) are defined by the probability density function of the 

cohort of each disease stage, a new sample will be classified according to the boundary it falls within. A 

new sample for an already existing patient which has become an outlier for the disease stage it has been 

assigned, and falls outside the boundary (Bergmans, 1974), will be classified in the next (or more 

advanced) disease stage. Oppositely, after a surgical resection or drug treatment, when tumors are 

removed or recede, and a new sample is collected and classified after an intervention, if it falls within an 
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earlier disease stage boundary of the capacity region, it will be re-classified as a lower burden disease or 

an earlier disease stage, according to the boundary it falls within.  
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Figure 1. DNA fragmentation patterns in whole genome sequencing datasets. For advanced disease, the distributions are very 

asymmetric and the histograms are negatively skewed.  

 

(A) CRC Stage IV. (B) CRC Stage IV (another patient). (C) Healthy donor sample, no co-morbidities. (D) A difference 

image between the images shown on (C) and (E). (E) CRC Stage I. 

 

The genomic bins (of 5MB) are on the Y axis. Chromosome 1 is at the top of the image. The DNA fragment length is on the 

X axis, from left to right. Pixels with brighter intensity correspond to bins with a higher number of fragments. The peak in 

intensity is for each sample the vertical streak at 168 bp.  

 

 

 

 

Figure 2. DNA fragmentation length KL divergence (in bits) from a CRC patient cohort of a healthy donor cohort. 

 

The CRC cohorts consist of 42 patients in stages I-IV. The healthy donor cohort consists of 26 samples. The KL divergence 

(in bits) is on the Y axis. The maximal value is 2.8 bits divergence for DNA fragment length 364 bp. The second highest 

divergence value is 2.6 bits for fragment length 198 bp. The fragment length (in bp) is on the X axis, from left to right.  
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Observe that the two distributions are very similar, and consequently their divergence is low, for fragment length 168 bp. 

 

The KL divergences from different cancer cohorts of healthy donor samples exhibit distributions, which 

are multi-modal, with different peaks being present for different cancers, defining potentially unique 

signatures. The two highest peaks on Fig. 3, for 364 base bp and 198 bp, are the result of significant 

differences in the median number of fragments in the genomic bins for these fragment lengths. While for 

healthy samples we measured that most genomic bins consist of about 20 fragments with length 364 bp 

(see the peak in the green histogram on Fig. 3), the CRC samples exhibit a very different distribution in 

which most genomic bins consist of less than 10 fragments with length 364 bp (see the peak in the pink 

histogram on Fig. 3).  

 

 

 

Figure 3. Probability density functions of all genomic bins of a CRC patient cohort (in pink color) and a healthy donor cohort 

(in green color) for fragment length 364 bp. 
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The CRC cohorts consist of 42 patients in Stages I-IV. The healthy cohort consists of 26 donor samples. The frequency, or 

the number of bins, is on the Y axis. The number of fragments in each bin, or per bin, is on the X axis.  

Observe that the healthy samples have roughly 2.2-fold more fragments per bin for DNA fragment length 364 bp. These two 

histograms, and the corresponding differences in disease, for fragment length 198 bp are very similar. 

 

 

The distinct per-disease peaks in the divergence from healthy samples (Tab. 1, col. 2) and the 

divergence of between-cancers signatures (Tab. 1, col. 3) are the result of differential epigenetic 

regulation of the different cancer types and can be used as diagnostic biomarkers for the detection of 

disease and identification of the tissue of origin. We measured the divergence in fragment lengths also 

between the different stages of CRC (Stage I – IV), including between cohorts of samples of pre-

cancerous polyps (data not shown). Our approach to the identification of discriminative biomarkers in 

disease does not require any user-defined input metrics and it is data-driven. Further divergence analysis 

of the genomic bins only (for the most divergent fragment lengths - the peaks in the histogram on Fig. 2) 

demonstrated the ability of the method to pinpoint the areas of the human genome involved in 

pathogenesis and drug resistance/susceptibility.  

 

HIERARCHICAL CLUSTERING 

Hierarchical clustering of patient and healthy samples based on fragments with length 364 bp resulted in 

a few false positive (21.7% FP), but, importantly for the detection of sub-clinical disease, no false 

negative (Fig. 4) (0% FN). It suggested that the depletion of fragments from di-nucleosome-protected 

DNA in genomic regions associated with disabled antioxidant program (Barrett et al., 2013) in 

samples from healthy donors might be indicating pathogenesis and early CRC (Fig. 4). This poses the 

question whether the three healthy donors from the DELFI (Cristiano et al., 2019) study associated in 

our analysis with CRC have since the time of blood draw been diagnosed with CRC.  
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One of the CRC-related genes, AXIN2, mutations in which have been associated with mismatch repair 

errors (Liu et al., 2000), falls within one of the most divergent genomic bins (Fig. 4). It has also been 

shown to interact with Glycogen synthase kinase-3β (Lejeune et al., 2006), which regulates microtubules 

in migrating cells (Kumar et al., 2009). Two other genomic bins that are the most divergent (Fig. 4) from 

the healthy cohort in CRC are those containing RAP2B (Yi et al., 2019) and GPX3 (Zhang et al., 2020). 

The second gene is involved in the detoxification (reduction by GPX3, produced mainly in the kidneys 

(Avissar et al., 1994)) of soluble reactive oxygen species (Dixon and Stockwell, 2014). Interestingly, 

this new result indicates the presence of a divergence in the metabolic/redox patterns in CRC.  

 

Cancer cohort Healthy cohort Colorectal cancer cohort 

Colorectal cancer 364, 205 - 

Ovarian cancer 359, 208 248, 175 

Pancreatic cancer  203, 359 111, 269 

Gastric cancer 122, 347 193, 138 

Breast cancer  177, 333 176, 280 

Bile duct cancer  200, 351 111, 164 

Lung cancer  193, 343 121, 198 

 

Table 1. DNA fragment lengths (in bp) for the two highest peaks (the primary peak is listed first and the secondary is listed 

second) of the KL divergence from seven cancers (see the list in the left column) of healthy donor samples (see the peak 

fragment lengths in the middle column) and of CRC (see the peak fragment lengths in the right column).  

 

We measured the divergence in fragment lengths also between the different stages of CRC (Stage I – IV), including between 

cohorts of samples of pre-cancerous polyps (data not shown). 

 

At least 8% of the fragments in each cohort belong to diverging populations of bins (divergence histograms not shown). 
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The clustering algorithm separates the samples into healthy donors (upper half of Fig. 4) and patient 

samples (lower half of Fig. 4). Remarkably, there are no patient samples grouped with the healthy 

donors, which indicates no false positive selections. There are, however, three false negative selections 

(labeled with FN in red color on Fig. 4) within the patient cluster (PGDX labels on Fig. 4). This result is 

promising in the context of the detection of sub-clinical and early disease; it could be further verified 

whether these three donor have developed CRC since the time of the blood draw.  
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Figure 4. Hierarchical clustering of a cohort of 42 CRC patients, Stages I-IV (lower half of the image, labeled with PGDX 

followed by a number – some labeled are not displayed) and 26 healthy samples (upper half of the image, no label, with the 

exception of the three false negative, clustered with the patient samples, labeled with FN in red color) (Y axis).  

 

The clustering is accomplished based on considering the 12 (out of 595) top most divergent 5 MB genomic bins (divergence 

histogram not shown) for DNA fragment length 364 bp (X axis). 

 

Observe that the area of the genome containing AXIN2, a gene implicated in CRC, is among the most divergent. 

 

 

It is conceivable that predictions regarding disease progression can be achieved using generative 

methods. Generative methods that produce novel samples from high-dimensional data distributions are 

finding widespread use, for example in speech synthesis. Generative adversarial network (GAN) models  

(Karras et al., 2017) consist of two CNNs, style-based generator and discriminator, which converge 

upon reaching Nash equilibrium and can be used to generate synthetic samples. Such sampler posterior 

distributions can be then used to reduce the complexity and improve the numerical convergence of 

predicting disease progression for any new sample using the Bayes formula, given there is available 

longitudinal data and transitional states for several patients and healthy donors. This approach may 

allow attempting to induce changes in reversal (Mullis, 1968) to the physiological deterioration 

occurring in disease, if detected early in a pre-clinical stage.   

 

FERROPTOSIS AND ANGIOGENESIS 

A possible mechanism leading to the differential fragmentation is the increase of ferroptotic cell death in 

CRC. The decrease of DNA fragments with lengths 198 bp, 364 bp, and to a lesser extend 521 bp 

(resulting in the three divergence peaks on Fig. 2) could be due to a partial switch from apoptosis in 

normal physiology to ferroptosis in CRC – thus suppressing the three apoptotic peaks of fragments from 

mono- (147+2x26, histones plus linkers), di- (2x147+3x23, histones plus linkers), and tri- (3x147+3x27, 
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histones plus linkers) nucleosome-protected DNA (Fig. 2). The reason behind our new results is that 

during apoptosis the cleavage of nuclear DNA results into fragments with length proportional to 

nucleosome size and resulting in patterned fragmentation. In somatic tissues, the apoptotic cleavage of 

DNA results in fragments of about 195 bp in lengths and multiples thereof (Ivanov et al., 2015). 

Ferroptosis, however, is characterized by non-patterned DNA fragmentation and not characterized by 

caspase-dependent cleavage and, thus, our analysis results demonstrate that there is a generation of less 

fragments with lengths 198 bp, 364 bp, and 521 bp.  

 

Ferroptosis has a dual role in cancer. It plays a role in tumor initiation, tumorigenesis, which depends on 

inflammation-associated immunosuppression triggered by ferroptotic damage (Chen et al., 2021) and 

later, during treatment, in tumor suppression (Hangauer et al., 2017). Erastin, for instance, was 

discovered during a synthetic lethality screen with oncogenic RAS cells (Dolma et al., 2003). It lowers 

cysteine and, thus, the cells stop the synthesis of antioxidants/glutathione, and this activates voltage-

dependent anion channels (VDAC) by reversing tubulin's inhibition on VDAC2/3 (Yagoda et al., 2007). 

VDAC is a mitochondrial protein, which is a novel target for anti-cancer drugs. Our analysis shows that 

for the genomic bin where VDAC2 falls has an increase in the number of fragments with length 198 bp 

in CRC (data not shown), which offers a quantitative strategy for drug selection (Lemasters, 2017).  

 

Within the fragments with length 198 bp, we also measured a divergence in CRC in the genomic bin in 

which falls TCF7L2 (data not shown), which has been implicated in promoting migration and invasive 

behavior of human CRC cells (Wenzel et al., 2020). Interestingly, when we analyze the data for CRC 

Stage IV only (without Stages I-III), an additional peak appears on the divergence histogram from 

healthy donor samples at 129 bp (data not shown). Within the fragments with length 129 bp in Stage IV, 

for a few of the patients, there are about three-fold more fragments than the average in healthy samples 

in the genomic bin that covers the area of the human genome containing VEGFC. This gene has been 
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associated with disseminated epithelial tumor cells to regional lymph nodes (Van Trappen and Pepper, 

2002). Thus, it can serve as an endothelial marker likely correlating with angiogenesis due to metastasis 

or minimal residue disease after a curative-intent surgery and can also offer a strategy for the selection 

of combination therapy using zaltrap or eylea (Muro et al., 2020).  

 

DISCRETE BROADCAST CHANNEL 

Visible in the difference image on Fig. 1D is the appearance of periodic vertical streaks around 90 to 

150 bp. Visible are also horizontal streaks, likely resulting from errors in gene copy-number 

amplification in CRC. These examples demonstrate the patterns appearing in disease in comparison to 

normal physiology. Such grayscale images, in the thousands, can be utilized to train a generative 

transformer (Ren et al., 2024), or another large language model. This classification approach will ensure 

all epigenetic changes occurring in disease have been taken into account.  

 

One possible avenue for classification is to derive the maximum likelihood estimate of the parameters of 

Markov Chain Monte Carlo sampling for time series prediction and supervised Bayesian learning 

(Chandra et al., 2019). Further, let the appearance of co-morbidities in healthy donor samples be a 

stationary Markov chain and CRC Stages I-IV denote its noisy version as a Hidden Markov Process 

(HMP), when corrupted by a discrete memoryless channel (DMC) (Marton, 1979), with channel 

capacity equal to the maximum of the KL divergence. The DMC (Gamal and Meulem, 1981) is 

completely characterized by the channel transition matrix, also known as the confusion matrix (Lee et 

al., 2015). Consider the HMP given by a binary symmetric channel with corrupted symmetric binary 

Markov source. One can approximate the entropy rate of a HMP via approximations of the stationary 

distribution of a related Markov process with high precision-complexity trade-off (Ordentlich and 

Weissman, 2011). Therefore, KL divergence can serve as a prognostic biomarker (Zhong et al., 2020) 
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based on longitudinal data prior to diagnosis, i.e., samples collected periodically from the same healthy 

donor earlier in life. 

 

If we consider the transformations occurring in the DNA fragmentation patterns within a cohort of 

healthy samples so that all become alike to disease samples, we can view pathogenesis and disease 

progression of a population as a broadcast channel with memory and present it in terms of Gaussian 

multi-user parallel broadcast channels with identical code words (Matov, 1999). The achievable rate for 

the capacity of a degraded broadcast channel (in bits) is a function of the logarithm of the signal-to-noise 

ratio of the transmission signal and depends on the quality of the transmission medium. Next, the 

achievable rates for the capacity region of a family of parallel broadcast channels is given by the union 

of the overall capacity in each channel (Tse, 1999). Hence, any divergence in the fragmentation 

patterning within the healthy cohort (baseline dataset or parallel broadcast channels) would create an 

elevated noise floor and, thus, an overall unsolvable stochastic heterogeneity.  

 

Each time a new patient sample is presented for classification, it would not be compared to samples 

collected from the same person longitudinally, in which most of the fragmentation pattern would be very 

similar to the previously collected healthy samples. Instead, it would be compared to a variety of 

fragmentation patterns in a whole cohort of (different people) healthy donors. Such comparisons will 

always generate noisy baseline datasets, even in the case of a very large healthy donor population, 

because a very few outliers will affect the overall quality of the healthy baseline dataset. For this reason, 

such population approach, because of the intrinsic variability in human, inherently impedes the ability of 

all currently utilized methods to detect disease in its early stage. 
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CONCLUSIONS 

In the specific case of CRC, this conclusion means that any non-neoplastic gastrointestinal (GI) 

metabolic divergence in samples from the healthy donor cohort considered as baseline during 

classification would impair the ability of the traditional ML classifiers to reliably detect neoplastic 

transformation (Wan et al., 2019). Oppositely, an image-based classification, as we propose here, could 

be in a position and better equipped to successfully detect and delineate both the fragmentation patterns 

resulting from tumors and those resulting from non-lethal, transient conditions, such as inflammation 

(Horiuchi et al., 2024). If this holds true, it would impact, besides CRC diagnosis, our ability to correctly 

diagnose other cancers of the GI tract as well.  

 

We propose the utilization of the described here DNA fragmentation analytics to generate embeddings 

(Vaswani et al., 2017) for a generative transformer network in which the tokens are the KL divergence 

metrics of the samples. The embeddings can include DNA fragment length patterns before and after 

disease diagnosis. We will retrain a transformer network with a new set of tokens - with genetic 

mutations rather than words and with tumor burden values rather than sentences of human speech, i.e., 

we will retrain a large language model with disease progression datasets. This will allow training of the 

network to classify each new sample and further make predictions regarding disease prognosis. 

Additional tokens will be the texture metrics of patient-derived organoids (Matov, 2024a; Matov, 2024b; 

Matov et al., 2016) such as shape descriptors and other morphology data (Galletti et al., 2013; Galletti et 

al., 2014; Matov, 2024g), which could be obtained from circulating tumor cells (Matov and Modiri, 

2024; Sung et al., 2013; Sung et al., 2012; Tasaki et al., 2014). The embeddings can further include 

cytoskeletal dynamics (Matov, 2024c; Matov, 2024d; Matov, 2024e; Matov, 2024f; Matov, 2025a; 

Matov, 2025b) before and after treatment with different drugs. This will allow training of the network to 

classify as sensitive or resistant each organoid and further identify subclasses with different mechanisms 
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of resistance. Further, after training a generative transformer network with organoid texture and live-cell 

dynamics datasets, we will be able to model disease progression as well. 

 

In the long run, the most reliable way to perform early detection will be to personalize the process by 

aggregating longitudinal baseline datasets for each individual. We have attempted to do that in an effort 

of detecting lung cancer in urine samples (Matov, 2024h). Analysis of microRNA profiles extracted 

from the urine of healthy donors longitudinally indicates a relative consistency in their levels. This 

suggests that tracking the levels of nucleic acids in body fluids longitudinally may allow for the 

delineation of organ- and tissue-specific patterns of changes in dedicated panels of disease-associated 

biomarkers and, thus, anticipate early disease and inform therapy.  

 

MATERIALS AND METHODS 

Data Processing  

Whole genome sequencing DELFI raw data from (Cristiano et al., 2019) was processed to extract and 

bin all available DNA fragments using: https://github.com/Hogfeldt/ctDNAtool.  

 

Data Analysis 

All analysis programs for fragmentomics analysis and graphical/image representation of the results were 

developed in R and Python. The KL divergence method used is described and validated in (Han et al., 

2016). The computer code is available for download at: 

https://github.com/amatov/FragmentomicsSubclinicalDisease.  
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