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Abstract

Accurate, real-time forecasts of influenza hospitalizations would facilitate prospective
resource allocation and public health preparedness. State-of-the-art machine learning
methods are a promising approach to produce such forecasts, but they require extensive
historical data to be properly trained. Unfortunately, historically observed data of
influenza hospitalizations, for the 50 states in the United States, are only available since
the beginning of 2020, as their collection was motivated and enabled by the COVID-19
pandemic. In addition, the data are far from perfect as they were under-reported for
several months before health systems began consistently and reliably submitting their
data. To address these issues, we propose a transfer learning approach to perform data
augmentation. We extend the currently available two-season dataset for state-level
influenza hospitalizations in the US by an additional ten seasons. Our method leverages
influenza-like illness (ILI) surveillance data to infer historical estimates of influenza
hospitalizations. This cross-domain data augmentation enables the implementation of
advanced machine learning techniques, multi-horizon training, and an ensemble of
models for forecasting using the ILI training data set, improving hospitalization
forecasts. We evaluated the performance of our machine learning approaches by
prospectively producing forecasts for future weeks and submitting them in real time to
the Centers for Disease Control and Prevention FluSight challenges during two seasons:
2022-2023 and 2023-2024. Our methodology demonstrated good accuracy and reliability,
achieving a fourth place finish (among 20 participating teams) in the 2022-23 and a
second place finish (among 20 participating teams) in the 2023-24 CDC FluSight
challenges. Our findings highlight the utility of data augmentation and knowledge
transfer in the application of machine learning models to public health surveillance
where only limited historical data is available.

Author summary

Influenza is a major public health concern in the United States, causing thousands of
hospitalizations annually. Accurate and timely forecasts of hospitalization rates are
essential for effective public health preparedness. However, limited historical data makes
forecasting with state-of-the-art models challenging. To address this issue, we developed
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a cross-domain data augmentation method that allowed us to train advanced machine
learning models using symptom-based (syndromic) surveillance data. We then created a
set of models, focusing on gradient-boosted machines, and combined them into an
ensemble framework. This approach successfully overcame data limitations,
outperforming the majority of teams participating in the CDC FluSight project for
2022-23 and 2023-24. Additionally, our forecasts demonstrated superior accuracy to the
CDC’s composite model in the 2022-23 season and matched its performance in 2023-24.
Our study demonstrates a robust and data-efficient strategy for training machine
learning models for use in public health forecasting.

Introduction 1

Influenza is a viral respiratory infection that can cause severe illness in humans. While it 2

has circulated in humans for several centuries, it continues to pose a significant challenge 3

to global public health, leading to substantial annual morbidity and mortality [1]. In 4

the United States, for example, annual influenza-related hospitalizations range from 5

100,000 to 700,000, resulting in 5,000-50,000 deaths [2, 3]. The availability of accurate, 6

real-time forecasts of influenza activity across geographies would enhance preparedness 7

and response strategies for public health agencies, medical institutions, businesses, and 8

the general public. Yet, the unpredictable nature of influenza epidemics and the limited 9

historical surveillance data make effective forecasting a challenge [4, 5]. 10

The field of influenza forecasting has evolved significantly in recent years, with a 11

marked increase in research efforts combining multiple data sources with a blend of 12

methodologies to forecast influenza at the state level [6–8]. A wide variety of statistical 13

methods are effective at this task, including regularized and Bayesian 14

regression [7, 9–11], autoregressive methods [12], and non-parametric approaches [13, 14]. 15

Mechanistic and compartmental approaches are also widely used for influenza 16

forecasting [8, 15–17]. In addition, the increase in data availability has led to a rise of 17

newer machine learning methods [18,19]. 18

The US Centers for Disease Control and Prevention (CDC) FluSight challenges have 19

played a pivotal role in the advancement of this field since 2013 by inviting the scientific 20

community to develop and evaluate forecasting models prospectively and in 21

real-time [20–22]. Recently, FluSight moved away from requesting forecasts of influenza 22

activity as captured by syndromic surveillance—i.e. systems that capture the number of 23

patients seeking medical attention for influenza-like illnesses (ILI)—instead pivoting to 24

forecasts of hospitalizations attributable to influenza. Given the connection to health 25

system utilization, this metric is more relevant for public health officials, and its 26

availability was made possible by the enhanced data collection following the start of the 27

COVID-19 pandemic and the limitations in forecasting case counts inferred from 28

symptoms-based disease surveillance [23]. Unfortunately, prior to 2020, influenza 29

hospitalization data was only consistently available in about seven states through the 30

CDC’s Emerging Infections Program (EIP). 31

Unfortunately, the recent shift to focusing on monitoring and forecasting 32

hospitalizations means that there are only two influenza seasons (2020-21 and 2021-22) 33

with ground-truth hospitalization data available from all 50 states. Furthermore, in 34

these two years the hospitalization curves were highly atypical due to the COVID-19 35

pandemic, meaning that there is almost no useful data for modeling hospitalizations. 36

This data sparsity presents a significant limitation to training forecasting models. While 37

traditional statistical models like ARIMA and exponential smoothing can be trained 38

with limited data, their forecasting accuracy suffers as the calibration of 39

hyper-parameters, such as the selection of lag orders for the model components, are 40

unstable with the limited training data. Similarly, robust multivariate statistical models 41
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like vector autoregression (VAR) struggle to converge with a large number of unknowns 42

relative to a limited set of observations in the training set. In this context, 43

data-intensive machine learning models like gradient-boosted machines and neural 44

networks simply cannot be trained at all with under two seasons of training data. 45

Beyond the data sparsity issue, creating real-time prospective forecasts for influenza 46

hospitalizations at a cadence useful to public health officials, presents significant 47

challenges. For example, at the start of the 2022-23 season, we were given less than two 48

weeks to begin forecast submission; thus, we had just two weeks to develop a solution to 49

the data sparsity issue. Moreover, the real-time nature of the prediction occasionally 50

requires last-minute adjustments to the scope of the challenge—for instance, this 51

occurred during the 2023-24 season due to changes in the availability of hospitalization 52

data. In addition, there are issues with data reporting, potential data coverage gaps, 53

and variability in data quality across different regions that collectively make it 54

challenging to create accurate and reliable real-time forecasts, particularly when 55

historical data is limited. 56

In addressing the challenges presented by limited data availability and the need for 57

accurate forecasts, our study introduces an innovative solution. Leveraging the transfer 58

learning approach of applying knowledge from one domain to another, we first designed 59

a cross-domain data augmentation strategy to utilize prior symptom-based surveillance 60

data across all US states. Specifically, we model historical influenza hospitalizations 61

using ILI surveillance data, creating an enriched dataset that adds a decade’s worth of 62

estimated hospitalizations for every state or territory where ILI data are available (all 63

except Florida and Puerto Rico). Next, we used this large transformed dataset to 64

perform knowledge transfer at the start of the 2022-23 season, enabling us to develop 65

and tune state-of-the-art machine learning methodologies to forecast flu hospitalization 66

at a time when usable hospitalization data was scarce. This approach enabled us to 67

develop accurate state-specific and national forecasting models, including ARIMA, VAR, 68

and gradient-boosted machine learning techniques (e.g., LightGBM) [24]. These models 69

were integrated into an ensemble framework that was rigorously, verifiably, and 70

prospectively validated in the CDC’s FluSight challenge over two seasons (2022-23 and 71

2023-24). Overall, our data augmentation, machine learning, and ensembling placed us 72

fourth in 2022-23 and second in 2023-24 among more than 30 models in a national 73

challenge and also allowed us to be among the four teams to exceed the CDC’s 74

combined weighted ensemble in any season. 75

Materials and methods 76

Data availability 77

Influenza hospitalization data 78

Influenza hospitalization data, the prediction target for the CDC’s FluSight challenge, 79

are sourced from HealthData.gov’s COVID-19 Reported Patient Impact and Hospital 80

Capacity by State Time Series. This data set includes influenza hospitalizations for 81

every state in the US, starting 01-11-2020. 82

FluSurv-Net 83

The Influenza Hospitalization Surveillance Network (FluSurv-Net), part of the 84

Respiratory Virus Hospitalization Surveillance Network (RESP-Net), conducts 85

population-based surveillance of laboratory-confirmed influenza hospitalizations. 86

RESP-Net includes COVID-19 (COVID-Net) and RSV (RSV-Net) surveillance networks. 87
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FluSurv-Net gathers data on laboratory-confirmed influenza-associated hospitalizations 88

among children and adults through a network of acute care hospitals in 14 states. 89

We collected influenza hospitalization rates from the EIP subset of FluSurv-Net for 90

the available states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, 91

New Mexico, Oregon, and Tennessee. We also collected hospitalization rates for the 92

combined network, which we use as a proxy for the United States as a whole [25]. 93

ILINet 94

The US Outpatient Influenza-like Illness Surveillance Network (ILINet) collects data on 95

influenza-like illness (ILI) from healthcare providers. This program is a collaboration 96

between the CDC and various partners, including state and local health departments, 97

hospitals, and clinics. ILINet providers submit data weekly to a central CDC repository 98

via the internet or fax. 99

From ILINet, we collected unweighted ILI percentages from September 2009 to 100

September 2020 for all states and territories of the United States, except Florida and 101

Puerto Rico, which did not have available ILI data [26]. 102

Data augmentation approach 103

To solve the problem of limited hospitalization data, we developed a data augmentation 104

approach which transfers information from the ILINet domain into hospitalizations. 105

Using a standard statistical approach, we identified the best linear model to map 106

historical ILINet data to EIP Influenza hospitalizations for California, Colorado, 107

Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, and Tennessee. 108

With this linear model, we used ILI data for all US states and regions (except Florida 109

and Puerto Rico) to produce an extended time series of influenza hospitalizations. 110

More specifically, we transformed the unweighted ILI percentage to normalize it for 111

each state using the R function bestNormalize [27]. Next, we applied a log 112

transformation to the EIP hospitalization data to improve normality. We then produced 113

a simple linear regression model to predict the normalized EIP values from the 114

normalized ILI values. We tested several options, including producing a model for each 115

of the available states. This allowed us to cluster the states without EIP data with the 116

states that had EIP data and use the relevant state’s model to make further predictions. 117

However, it became clear that a single model, incorporating all states with EIP data 118

into a single linear regression model, was generally more effective than more complex 119

approaches. After producing this single linear regression model with all available 120

observations, we used the ILI data to produce a hospitalization time series for each state. 121

Finally, we fused the historical time series with the observed and recent 122

hospitalization data–our ground-truth and prediction target data. Due to the impact of 123

COVID-19 and the atypical appearance of the influenza time series for the 2019-20 and 124

2020-21 seasons, we chose to fully eliminate those seasons from our training set and 125

analyses. Consequently, we truncated the augmented historical time series at 6/30/2019. 126

Additionally, we retained only ground truth data starting from 07/01/2021. To 127

maintain an uninterrupted weekly hospitalization timeseries, we added 728 days to the 128

date index of the augmented historical time series. For most states, the final time series 129

starts in 2012 and runs continuously to the present. 130

As the 2023-2024 season ended, we were able to compare our augmentation method 131

with the ground-truth time series over the last two seasons. We generated all plots 132

using ggplot [28]. 133
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Forecasting approach 134

Constructing baseline forecasting models 135

Each horizon denotes the number of weeks ahead that we are forecasting. Thus, horizon 136

1 forecasts 1 week ahead, horizon 2 forecasts 2 weeks ahead, and so forth. It is 137

important to note that we used different base models for the two seasons reported in 138

this manuscript. 139

For the 2022-23 season, we primarily utilized ARIMA and regularized VAR. To 140

construct our ARIMA model, we used the AutoARIMA method in the sktime package in 141

Python [29,30]. We used the fused time series and all data prior to 10/01/2022 to train 142

the models. The model was constructed with the pipeline functionality to allow 143

automatic power series normalization of the input data. We also constructed a separate 144

horizon 4 model for each state, Puerto Rico, and the United States as a whole. 145

The second model used during the 2022-23 season is VAR. To construct this model, 146

we used the BigVAR package. Since VAR requires the same amount of data for every 147

covariate in the model, the limited ability to extend the time series for Florida and 148

Puerto Rico forced us to produce two separate VAR models. One model includes all 149

jurisdictions (including Florida and Puerto Rico) with historical data from 07/03/2021. 150

The second VAR model excludes Florida and Puerto Rico to utilize the entire extended 151

time series. For the model itself, we used four lags. For regularization, we selected the 152

hierarchical lag own/other method to balance training efficiency and allow the model to 153

prioritize its own lags over the time series of other states. 154

For the 2023-24 season, we constructed two base models. The first was ARIMA, 155

produced in exactly the same manner as for the 2022-23 season. The second model was 156

LightGBM (LGBM), implemented in the Darts Python package [31]. We constructed 157

three separate LGBM models, each involving fully independent hyperparameter 158

optimization. In all cases, Optuna was used to optimize model hyperparameters using a 159

Bayesian approach. Among the LGBM models, one was optimized using 50 steps with 160

all historical data until 06/01/2022. The second model included all data until 161

06/01/2022 for training along with 100 Bayesian steps. The third model included all 162

data until 06/01/2023 along with 50 Bayesian steps for optimization. The remainder of 163

the model specifications were identical. We used 5 as the maximum horizon number in 164

the model because it was unclear before the season started if the CDC would require 4 165

or 5 horizons, and hyperparameter tuning takes approximately a week for each model. 166

We used the following hyperparameter space for the Bayesian search. 167

params = { 168

‘metric’: trial.suggest_categorical(‘metric’, [‘rmse’]), 169

‘n_estimators’: trial.suggest_int(‘n_estimators’, 100, 1000, step=100), 170

‘num_leaves’: trial.suggest_int(‘num_leaves’, 8, 32, step=1), 171

‘max_depth’: trial.suggest_int(‘max_depth’, 2, 5), 172

‘learning_rate’: trial.suggest_categorical(‘learning_rate’, [0.1]), 173

‘min_child_samples’: trial.suggest_int(‘min_child_samples’, 2, 16), 174

} 175

176

In addition, we use relative RMSE (rRMSE) as the loss function. rRMSE is specified 177

as: 178
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ModelMSE =
1

n

n∑
t=1

(ytrue,t − ypred,t)
2 (1)

PersistenceMSE =
1

n

n∑
t=1

(ytrue,t − ypers,t)
2 (2)

rRMSE =

√
ModelMSE

PersistenceMSE
(3)

Where ytrue,t is the actual value of the time series at time t, ypred,t is the predicted 179

value at time series at time t, and ypers,t is the value of the appropriate persistence 180

model at time i. Importantly, at time t all horizons are computed and all of the 181

predictions are included in the loss function simultaneously. As a result, each state and 182

the United States has a single set of hyperparameters for each of the three models that 183

were used throughout the forecasting competition. This was a critical insight to 184

stabilize forecasts and protect against overfitting. Notably, we use Google Cloud for 185

hyperparameter optimization. 186

Producing final forecasts 187

To improve the robustness and accuracy of our forecasts, we combined each of the 188

individual models ŷ(i) into a weighted average ensemble ỹ. That is, at any time t, we 189

assume {ŷ(i)t }mi=1 to be the set of m available base models. Then the ensemble 190

prediction is as follows. 191

ỹt =
m∑
i=1

αiŷ
(i)
t + β(ytrue,t−1 − ỹt−1) (4)

with
∑m

i=1 αi = 1 and β ∈ [0, 1]. The weights αi were determined and adjusted weekly 192

based on each model’s most recent historical performance, i.e., by approximately 193

minimizing Eq. 1 over the previous 6 weeks. The ensemble also contains a bias 194

correction term β based on the last observed residual of the ensemble with the target, 195

which can adjust for systematic under- or over-prediction across the models. Because 196

the residual can fluctuate randomly, in practice we set β to be the small value of 0.1 for 197

the 2022-23 season. In the 2023-24 season, we set β = 0 due to the the small number of 198

base models and the high accuracy of the LGBM models. This procedure was 199

performed independently for each location and horizon. 200

Error analysis of FluSight models 201

We include error calculations for each of the top 5 models along with each of our 202

component models for each season. Forecasts for all models included in the FluSight 203

project are available on GitHub. The forecasts are reported probabilistically; therefore, 204

we used the 0.5 quantile estimate for each model, prediction date, and horizon to 205

compute RMSE and rRMSE. According to the CDC, the top 5 models for the 2022-23 206

season were MOBS Gleam, CMU Timeseries, PSI-DICE, MIGHTE Ensemble (our 207

model), and CDC Ensemble. Similarly, the top 5 models for the 2023-24 season were 208

UMass-flusion, CDC Ensemble, MIGHTE Ensemble (our model), UGA 209

flucast-INFLAenza, and MOBS Gleam. For final display, models are arranged by the 210

rank of their rRMSE for each horizon. It is important to note that the interpretation of 211

horizon 1 during the 2023-24 season is challenging because the ground-truth value was 212

available at the time of submission. Consequently, some teams reported this value 213
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directly (we chose to actually forecast it rather than include the ground-truth value). 214

As a result, the CDC did not include that horizon in their ranking. 215

Results 216

Data augmentation analysis 217

For most locations, except Florida and Puerto Rico, we successfully extended the 218

available historical data on influenza hospitalizations back to 2012. This extension is 219

crucial to enable machine learning models to be trained with our proposed transfer 220

learning approach, and helps us overcome the limitation imposed by the available sparse 221

historical data. To produce models for extending historical hospitalizations from ILI, we 222

first ensured that the timing and magnitude of hospitalizations and ILI were visually 223

similar to the untransformed values (Figure 1). We subsequently tested several 224

normalization methods and found that log-transforming EIP hospitalizations and using 225

the bestNormalize package to perform ordered quantile normalization on the ILI data 226

produced a very clear linear relationship in all states (Figure 2). The models for each 227

location showed a strong connection between the two quantities after transformation 228

(Table 1). To increase robustness, we elected to make a single combined model for all 229

states. This final model was able to explain more than 50% of the variation in EIP 230

hospitalizations from ILI. 231

To assess the out-of-sample accuracy of our extended time series, we compared the 232

augmented hospitalization data with actual data from the two most recent seasons 233

(these seasons were not included in the model training). As shown in Figure 3, the 234

augmented values are closely aligned with the actual data to capture the onset and 235

progression of the influenza seasons. However, augmented series tend to underestimate 236

the magnitudes of hospitalizations. This underestimation is further highlighted in the 237

scatter plot in Figure 4, indicating a slight systematic bias in peak estimations that may 238

lead to suboptimal peak predictions when producing forecasts on the hospitalization 239

time series. 240

Despite these discrepancies, a quantitative analysis using a combined linear fit 241

between augmented and actual hospitalizations results in an adjusted R2 value of 0.8, 242

with an intercept of zero and a slope of 1.1. This indicates a strong correlation and 243

good accuracy for the extended time series, particularly in terms of temporal trends and 244

overall magnitude, although peak values remain an exception. 245

Given the close timing alignment and reasonable accuracy in overall magnitude 246

(excluding peak values), we utilized these augmented data sets to develop our 247

forecasting models. 248

Forecasting analysis 249

We generate strictly out-of-sample influenza hospitalization forecasts for each state in 250

the United States using our proposed ensemble methodologies. The evaluation periods 251

aligned with the official influenza seasons (as defined by the CDC) between October 17, 252

2022, through May 17, 2023 (22-23 season) and October 11, 2023, through May 1, 2024 253

(23-24 season). Specifically, for every week and in every state, we generated a forecast 254

up to 4 weeks in advance for 2022-23 and up to 5 weeks in advance for 2023-24. 255

Comparing models with and without augmented data 256

To validate the impact of our extension method, we retrospectively compared the 257

performance of ARIMA models trained with and without augmented data for both the 258

2022-2023 and 2023-2024 seasons. These results are shown in Tables 2 and 3. 259

July 18, 2024 7/36

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.17.24310565doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.17.24310565
http://creativecommons.org/licenses/by/4.0/


For both seasons, ARIMA models with augmented data consistently reduced the 260

baseline error (compared to persistence) across all forecast horizons. Specifically, our 261

models achieved error reductions ranging from 11% (e.g., 2023-2024 season, horizon 3) 262

to 22% (e.g. 2022-2023 season, horizon 4). In contrast, models trained on the original 263

dataset without augmentation did not manage to achieve an RMSE below the 264

persistence baseline. The lowest error achieved by ARIMA without augmented data was 265

approximately 21% above the baseline error. 266

Utilizing augmented data to make prospective forecasts 267

It is important to note that, given the prospective nature of this forecasting challenge, 268

not all models consistently submitted forecasts for each location and each week during 269

both seasons, making performance comparison more difficult. To address this, we 270

include a relative RMSE metric (rRMSE), which involves normalizing a model’s RMSE 271

score by the RMSE score of the persistence baseline (a naive model where the 272

hospitalization forecasts for each horizon are the most recent observed activity at time t, 273

or yt + k = yt). In other words, we compare the performance of our models by 274

evaluating their ability to reduce the RMSE compared to the persistence model on the 275

dates the models were submitted during the challenge. 276

The forecasting analysis was conducted in two main phases: constructing baseline 277

models and integrating them into an ensemble. We evaluated various types of model, 278

including exponential smoothing, ARIMA, VAR, regularized VAR, custom linear models 279

with external covariates like ARGO, and gradient-boosted machines. For the 2022-23 280

season, we were asked to provide forecasts within a week of notification (ultimately, we 281

were only able to provide a forecast starting in the second week that season), limiting 282

the time for hyperparameter tuning. In contrast, the 2023-24 season allowed significant 283

lead time for training, although the operational timeline from data release to submission 284

was within 12 hours, necessitating a strategic selection of base models. 285

For the 2022-23 season, we used simpler models such as ARIMA and VAR that 286

required minimal tuning. For the 2023-24 season, we prioritized LGBM models due to 287

their strong out-of-sample performance in the prior season across all forecasting 288

horizons. Each LGBM model was initialized with unique random seeds for ensemble 289

integration. Due to the lack of long-term ILI data for Florida and Puerto Rico, 290

preventing the creation of augmented datasets for these areas, ARIMA models were 291

incorporated to ensure a forecast for every site. 292

During the 2022-23 season, the ARIMA base model had the lowest error in terms of 293

our models (consistently reducing the error compared to the persistence baseline by up 294

to 23% at horizon 4, and similarly across the rest of the horizons), particularly for the 295

United States as a whole (Table 4). VAR with augmented data outperformed the naive 296

persistence model in more locations than ARIMA. Both VAR with augmented data and 297

ARIMA exceeded the performance of the persistence model across all horizons. VAR 298

without augmented data performed similarly to persistence (rRMSE was 1.056, 0.993, 299

0.943, and 1.049 for horizons 1 through 4), but showed degraded performance with 300

increasing horizons. Furthermore, VAR with augmented data outperformed VAR 301

without augmented data at all horizons (rRMSE of 0.982, 0.936, 0.921, and 0.872 for 302

horizons 1 through 4 with augmented data versus 1.056, 0.993, 0.943, and 1.049 for 303

horizons 1 through 4 without augmented data). Comparing our MIGHTE Ensemble to 304

the top FluSight models, we performed well for near-term forecasts, but showed 305

declining performance at more distant horizons. Our ensemble methodology consistently 306

reduced the error across all horizons in comparison to the persistence model, with scores 307

of 0.837, 0.868, 0.911 and 0.876 rRMSE, respectively. 308

In the 2023-24 season, at least one LGBM model showed superior predictive 309

accuracy compared to the naive persistence model across all horizons. At horizon 1, as 310
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in 2022-23, the ARIMA model showed respectable accuracy. The performance metrics 311

of the individual models, outlined in Table 5, varied across horizons. A LGBM model 312

using data up to June 2023 provided the most accurate forecasts for horizons 1 through 313

3 (with values of 0.969 and 0.706 rRMSE, respectively), while a LGBM model using 314

data up to June 1, 2022, was most effective for the fourth horizon (0.699 rRMSE). 315

Comparing our MIGHTE Ensemble to other top FluSight models, our ensemble showed 316

improved relative accuracy as the horizon number increased (down to 0.719 rRMSE in 317

horizon 4). The small magnitude of error growth across horizons likely resulted from 318

implementing a loss function that included forecasts for all horizons simultaneously, 319

enhancing model robustness by balancing near- and intermediate-term costs. Notably, 320

the model that consistently outperformed our ensemble also used historical 321

augmentation and gradient-boosted models. 322

For detailed tracings of all models compared to ground truth, see supplementary 323

figures. 324

Discussion 325

In this study, we developed and evaluated an innovative approach to forecasting 326

influenza hospitalizations by combining data augmentation, statistical models, machine 327

learning models, and ensembling techniques. This approach overcomes the challenges of 328

implementing advanced machine learning models to forecast influenza hospitalizations 329

and provides additional data for training traditional statistical models. Using a simple 330

transfer learning method with similar epidemic curves, we first trained models to 331

predict the shape and timing of influenza-like illnesses (ILI), and then used these 332

(sometimes fine-tuned) models to produce flu hospitalization forecasts. 333

Our forecasts were rigorously validated over two seasons in the CDC FluSight 334

challenge, achieving fourth place in 2022-23 and second place in 2023-24 among 20 335

teams, outperforming the aggregated FluSight ensemble in one season and tying it in 336

the other. Our findings emphasize the crucial role of data quality and availability in 337

modeling infectious diseases. 338

The data augmentation strategy we used to extend the historical data set is vital to 339

overcome sparse data limitations and training machine learning models. Specifically, we 340

were only able to train a LightGBM due to the availability of augmented data. The 341

baseline models that were trained with the augmented data beat virtually all of the 342

other models in the FluSight consortium. Additional to our analysis about the impact 343

of imputation, which showed a clear distinction between the error of ARIMA being 344

trained using our extended dataset and the original dataset, there is clear evidence in 345

the 2022-23 season that the augmented data alone were able to improve forecasts. In 346

that season, we implemented regularized VAR models with and without augmented 347

data, and VAR with augmented data consistently outperformed VAR without 348

augmented data. Furthermore, according to the model metadata available on the public 349

repository, the single model that consistently beat our model during the 2023-24 season 350

also used augmented data along with a gradient-boosted machine. This finding would 351

suggest that augmented data coupled with advanced machine learning models may offer 352

a path forward in other cases where data sparsity presents a significant challenge. 353

It is important to note that our method for augmenting historical hospitalizations is 354

far from perfect, especially in estimating peak hospitalization volumes, where it seems 355

systematically biased to underpredict hospitalizations. This highlights the need for 356

ongoing refinement of cross-domain data augmentation techniques and the integration 357

of additional data sources to enhance model accuracy. Future research should focus on 358

several key areas. First, exploring advanced augmentation methods and incorporating 359

diverse data types could better approximate true hospitalization curves. Second, 360
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integrating real-time data streams, such as search query trends, social media analytics, 361

or viral testing data, can improve the timeliness and accuracy of forecasts. Third, while 362

our models are successful in influenza forecasting, their generalizability to other 363

infectious diseases requires further investigation. Fourth, implementing additional 364

models with loss functions that include multiple horizons, locations, and weighted 365

components could improve robustness in cases where data sparsity is an issue. 366

Additionally, recent advances in transformer models with transfer learning approaches 367

similar to ours suggest that fine-tuning existing time series foundation models for 368

respiratory virus specialization could significantly advance the field. Such research could 369

greatly expand the applicability of machine learning techniques in public health 370

forecasting. 371

In summary, our research has significant practical implications. Accurate forecasting 372

of influenza hospitalizations enhances public health preparedness, informs resource 373

allocation, and mitigates the impact of influenza epidemics on communities. Our work 374

adds to the growing body of literature on machine learning in epidemiology, showcasing 375

the potential of transfer learning to improve models for complex forecasting challenges. 376

While promising, our approach has limitations and serves as a foundation for further 377

research to refine and expand predictive models in public health. The ongoing 378

integration of epidemiology and machine learning offers great potential for advancing 379

our ability to predict and respond to infectious disease outbreaks. 380

July 18, 2024 10/36

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.17.24310565doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.17.24310565
http://creativecommons.org/licenses/by/4.0/


References

1. Centers for Disease Control and Prevention (CDC). Epidemiology and prevention
of vaccine-preventable diseases. Hall E, Wodi AP, Hamborsky J, Morelli V,
Schillie S, editors. Public Health Foundation; 2021.

2. Centers for Disease Control and Prevention (CDC). Influenza (Flu) Burden:
Estimates of the Burden of Influenza from the Centers for Disease Control and
Prevention;. https://www.cdc.gov/flu/about/burden/index.html, Accessed
on 2024-04-10.

3. Gantenberg JR, McConeghy KW, Howe CJ, Steingrimsson J, Van Aalst R, Chit
A, et al. Predicting Seasonal Influenza Hospitalizations Using an Ensemble Super
Learner: A Simulation Study. American Journal of Epidemiology.
2023;192(10):1688–1700.

4. Yang S, Santillana M, Kou SC. Accurate estimation of influenza epidemics using
Google search data via ARGO. Proceedings of the National Academy of Sciences.
2015;112(47):14473–14478.

5. Baltrusaitis K, Vespignani A, Rosenfeld R, Gray J, Raymond D, Santillana M,
et al. Differences in regional patterns of influenza activity across surveillance
systems in the United States: comparative evaluation. JMIR public health and
surveillance. 2019;5(4):e13403.

6. Reich NG, Brooks LC, Fox SJ, Kandula S, McGowan CJ, Moore E, et al. A
collaborative multiyear, multimodel assessment of seasonal influenza forecasting
in the United States. Proceedings of the National Academy of Sciences.
2019;116(8):3146–3154.

7. Lu FS, Hattab MW, Clemente CL, Biggerstaff M, Santillana M. Improved
state-level influenza nowcasting in the United States leveraging Internet-based
data and network approaches. Nature communications. 2019;10(1):147.

8. Kandula S, Pei S, Shaman J. Improved forecasts of influenza-associated
hospitalization rates with Google Search Trends. Journal of the Royal Society
Interface. 2019;16(155):20190080.

9. Rangarajan P, Mody SK, Marathe M. Forecasting dengue and influenza
incidences using a sparse representation of Google trends, electronic health
records, and time series data. PLoS computational biology. 2019;15(11):e1007518.

10. Yang S, Ning S, Kou S. Use internet search data to accurately track state level
influenza epidemics. Scientific reports. 2021;11(1):4023.

11. Ertem Z, Raymond D, Meyers LA. Optimal multi-source forecasting of seasonal
influenza. PLoS computational biology. 2018;14(9):e1006236.

12. Ray EL, Reich NG. Prediction of infectious disease epidemics via weighted
density ensembles. PLoS computational biology. 2018;14(2):e1005910.

13. Brooks LC, Farrow DC, Hyun S, Tibshirani RJ, Rosenfeld R. Nonmechanistic
forecasts of seasonal influenza with iterative one-week-ahead distributions. PLoS
computational biology. 2018;14(6):e1006134.

14. Ray EL, Sakrejda K, Lauer SA, Johansson MA, Reich NG. Infectious disease
prediction with kernel conditional density estimation. Statistics in medicine.
2017;36(30):4908–4929.

July 18, 2024 11/36

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.17.24310565doi: medRxiv preprint 

https://www.cdc.gov/flu/about/burden/index.html
https://doi.org/10.1101/2024.07.17.24310565
http://creativecommons.org/licenses/by/4.0/


15. Venkatramanan S, Sadilek A, Fadikar A, Barrett CL, Biggerstaff M, Chen J, et al.
Forecasting influenza activity using machine-learned mobility map. Nature
communications. 2021;12(1):726.

16. Ben-Nun M, Riley P, Turtle J, Bacon DP, Riley S. Forecasting national and
regional influenza-like illness for the USA. PLoS computational biology.
2019;15(5):e1007013.

17. Osthus D, Gattiker J, Priedhorsky R, Del Valle SY. Dynamic Bayesian influenza
forecasting in the United States with hierarchical discrepancy (with discussion).
2019;.

18. Aiken EL, Nguyen AT, Viboud C, Santillana M. Toward the use of neural
networks for influenza prediction at multiple spatial resolutions. Science
Advances. 2021;7(25):eabb1237.

19. Wu N, Green B, Ben X, O’Banion S. Deep transformer models for time series
forecasting: The influenza prevalence case. arXiv preprint arXiv:200108317. 2020;.

20. Biggerstaff M, Alper D, Dredze M, Fox S, Fung ICH, Hickmann KS, et al.
Results from the centers for disease control and prevention’s predict the
2013–2014 Influenza Season Challenge. BMC infectious diseases. 2016;16:1–10.

21. Biggerstaff M, Johansson M, Alper D, Brooks LC, Chakraborty P, Farrow DC,
et al. Results from the second year of a collaborative effort to forecast influenza
seasons in the United States. Epidemics. 2018;24:26–33.

22. McGowan CJ, Biggerstaff M, Johansson M, Apfeldorf KM, Ben-Nun M, Brooks
L, et al. Collaborative efforts to forecast seasonal influenza in the United States,
2015–2016. Scientific reports. 2019;9(1):683.

23. Mathis SM, Webber AE, León TM, Murray EL, Sun M, White LA, et al.
Evaluation of FluSight influenza forecasting in the 2021–22 and 2022–23 seasons
with a new target laboratory-confirmed influenza hospitalizations. medRxiv.
2023;.

24. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. Lightgbm: A highly
efficient gradient boosting decision tree. Advances in neural information
processing systems. 2017;30.

25. Chaves SS, Lynfield R, Lindegren ML, Bresee J, Finelli L. The US influenza
hospitalization surveillance network. Emerging infectious diseases.
2015;21(9):1543.

26. Centers for Disease Control and Prevention (CDC). Weekly U.S. Influenza
Surveillance Report;. https://www.cdc.gov/flu/weekly/overview.htm,
Accessed on 2024-04-10.

27. Peterson RA. Finding Optimal Normalizing Transformations via bestNormalize.
The R Journal. 2021;13:294–313. doi:10.32614/RJ-2021-041.

28. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York; 2016. Available from: https://ggplot2.tidyverse.org.

29. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research.
2011;12:2825–2830.

July 18, 2024 12/36

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.17.24310565doi: medRxiv preprint 

https://www.cdc.gov/flu/weekly/overview.htm
https://ggplot2.tidyverse.org
https://doi.org/10.1101/2024.07.17.24310565
http://creativecommons.org/licenses/by/4.0/
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Tables

location intercept slope p-value R2

California 0.338 0.598 < 0.001 0.412
Colorado 0.660 0.619 < 0.001 0.528
Connecticut 0.716 0.718 < 0.001 0.586
Georgia 0.418 0.468 < 0.001 0.602
Maryland 0.646 0.539 < 0.001 0.432
Minnesota 0.341 0.659 < 0.001 0.611
New Mexico 0.484 0.629 < 0.001 0.538
Oregon 0.416 0.572 < 0.001 0.574
Tennessee 0.482 0.629 < 0.001 0.634
US 0.140 0.808 < 0.001 0.748
Combined 0.483 0.590 < 0.001 0.517

Table 1. Models to Extend Historical Hospitalizations Timeseries from ILI
Data. The table shows the model parameters creating by fitting log transformed EIP
hospitalizations with normalized ILI unweighted percentage for all locations with EIP
data. We also include the combined final model that we used to extend historical
hospitalizations from ILI. Every model was highly statistically significant with the
combined model explaining greater than 50% of the variation in EIP hospitalizations.

horizon model rRMSE model RMSE persistence RMSE
1 ARIMA with augmented data 0.845 249.28 295.00
1 ARIMA without augmented data 1.210 357.03 295.00
2 ARIMA with augmented data 0.853 451.76 529.84
2 ARIMA without augmented data 1.439 762.66 529.84
3 ARIMA with augmented data 0.830 593.38 714.82
3 ARIMA without augmented data 1.728 1235.45 714.82
4 ARIMA with augmented data 0.778 943.99 1213.47
4 ARIMA without augmented data 1.781 2161.09 1213.47

Table 2. Comparative Performance of ARIMA with and without augmented
data for the 2022-23 season. This table shows the forecast error using an ARIMA
model with and without augmented data for each horizon during the 2022-23 season.
Each horizon is ordered by rRMSE which is defined as the ratio of model RMSE to
persistence RMSE. ARIMA with augmented data significantly outperforms ARIMA
without augmented data at all horizons.
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horizon model rRMSE model RMSE persistence RMSE
1 ARIMA with augmented data 0.857 233.72 272.58
1 ARIMA without augmented data 1.294 352.59 272.58
2 ARIMA with augmented data 0.887 439.89 495.70
2 ARIMA without augmented data 1.578 782.01 495.70
3 ARIMA with augmented data 0.882 589.34 668.37
3 ARIMA without augmented data 2.020 1350.42 668.37
4 ARIMA with augmented data 0.861 693.60 805.36
4 ARIMA without augmented data 2.396 1929.39 805.36

Table 3. Comparative Performance of ARIMA with and without augmented
data for the 2023-24 season. This table shows the forecast error using an ARIMA
model with and without augmented data for each horizon during the 2023-24 season.
Each horizon is ordered by rRMSE which is defined as the ratio of model RMSE to
persistence RMSE. ARIMA with augmented data significantly outperforms ARIMA
without augmented data at all horizons.

horizon model rRMSE model RMSE persistence RMSE
1 PSI-DICE 0.753 310.00 411.00
1 CDC Ensemble 0.808 332.00 411.00
1 MIGHTE Ensemble 0.837 350.00 418.00
1 ARIMA 0.863 359.68 416.59
1 VAR augmented data 0.982 408.01 415.54
1 CMU Timeseries 0.999 411.00 411.00
1 MOBS Gleam 1.040 427.00 418.00
1 VAR no augmented data 1.056 414.34 392.30
2 PSI-DICE 0.816 598.00 733.00
2 ARIMA 0.839 618.34 737.36
2 MOBS Gleam 0.853 625.00 746.00
2 MIGHTE Ensemble 0.868 648.00 746.00
2 CDC Ensemble 0.889 652.00 733.00
2 VAR augmented data 0.936 697.16 744.81
2 VAR no augmented data 0.993 583.88 588.16
2 CMU Timeseries 1.010 742.00 746.00
3 MOBS Gleam 0.665 658.00 989.00
3 PSI-DICE 0.753 745.00 989.00
3 CMU Timeseries 0.757 749.00 989.00
3 ARIMA 0.805 797.09 990.55
3 CDC Ensemble 0.857 847.00 989.00
3 MIGHTE Ensemble 0.911 916.00 1006.00
3 VAR augmented data 0.921 932.17 1012.27
3 VAR no augmented data 0.943 743.40 788.55
4 MOBS Gleam 0.490 595.00 1214.00
4 PSI-DICE 0.631 767.00 1214.00
4 CMU Timeseries 0.692 840.00 1214.00
4 ARIMA 0.777 944.45 1214.96
4 CDC Ensemble 0.839 1019.00 1214.00
4 VAR augmented data 0.872 1092.48 1252.97
4 MIGHTE Ensemble 0.876 1081.00 1235.00
4 VAR no augmented data 1.049 1045.43 996.13

Table 4. Comparative Performance of Forecasting Models Across Horizons
for the 2022-23 Season. This table presents the forecasting errors for each of our
base models along with the top 5 models in the FluSight collaborative and a naive
persistence model for reference. rRMSE is the ratio of the model RMSE to the
persistence RMSE. Models are arranged from best rRMSE to worst rRMSE within each
horizon category. Notably, the model that does not include augmented data performs
significantly worse than the models with augmented data, and often performs worse
than the persistence model. Note: as all forecasts were prospective, persistence models
vary slightly due to missing a small number of weekly forecasts as a result of time
constraints and/or differing locations included.
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horizon model rRMSE model RMSE persistence RMSE
1 UMass-flusion 0.609 169.00 277.00
1 ARIMA 0.863 232.18 268.90
1 CDC Ensemble 0.877 239.00 273.00
1 UGA flucast-INFLAenza 0.884 249.00 282.00
1 mod2023-h5-c50 0.969 268.93 277.61
1 mod2022-h5-c100 1.095 309.70 282.82
1 MOBS Gleam 1.12 304.00 273.00
1 mod2022-h5-c50 1.153 315.41 273.57
1 MIGHTE Ensemble 1.200 328.00 273.00
2 UMass-flusion 0.643 319.00 496.00
2 mod2023-h5-c50 0.838 383.04 457.22
2 ARIMA 0.885 434.43 491.00
2 mod2022-h5-c100 0.890 460.44 517.25
2 mod2022-h5-c50 0.902 450.64 499.75
2 UGA flucast-INFLAenza 0.909 458.00 504.00
2 CDC Ensemble 0.938 457.00 487.00
2 MIGHTE Ensemble 0.948 462.00 487.00
2 MOBS Gleam 0.959 468.00 487.00
3 UMass-flusion 0.663 436.00 657.00
3 mod2023-h5-c50 0.706 386.44 547.56
3 MIGHTE Ensemble 0.783 505.00 646.00
3 mod2022-h5-c50 0.803 542.17 675.13
3 mod2022-h5-c100 0.814 569.31 699.57
3 MOBS Gleam 0.836 540.00 646.00
3 ARIMA 0.878 582.44 663.26
3 UGA flucast-INFLAenza 0.910 608.00 668.00
3 CDC Ensemble 0.953 615.00 646.00
4 UMass-flusion 0.639 496.00 777.00
4 mod2022-h5-c50 0.699 568.61 812.94
4 MIGHTE Ensemble 0.719 549.00 764.00
4 mod2023-h5-c50 0.743 549.20 738.74
4 MOBS Gleam 0.751 574.00 764.00
4 mod2022-h5-c100 0.753 635.29 843.39
4 ARIMA 0.859 685.98 798.62
4 UGA flucast-INFLAenza 0.914 723.00 791.00
4 CDC Ensemble 0.934 714.00 764.00

Table 5. Comparative Performance of Forecasting Models Across Horizons
for the 2023-24 Season. This table presents the forecasting errors for each of our
base models along with the top 5 models in the FluSight collaborative and a naive
persistence model for reference. rRMSE is the ratio of the model RMSE to the
persistence RMSE. Models are arranged from best rRMSE to worst rRMSE within each
horizon category. Notably, LGBM models demonstrate substantial accuracy beyond the
initial horizon, with minimal degradation in performance observed up to horizon 4.
Note: as all forecasts were prospective, persistence models vary slightly due to missing a
small number of weekly forecasts as a result of time constraints and/or differing
locations included.
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Fig 1. Comparison of EIP Hospitalizations and ILI across all locations with
available EIP data. This figure compares the untransformed values for EIP
hospitalizations and unweighted ILI percentage at all of the 8 sites with EIP values
available. Based on the visualization the timing of hospitalization is increase should be
well predicted from ILI while the peak may be less accurate.
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Fig 2. Scatter plot of log-transformed EIP Hospitalizations and normalized
ILI percentage across all locations with available EIP data. This figure
compares the log-transformed values for EIP hospitalizations and normalized
unweighted ILI percentage at all of the 8 sites with EIP values available. Based on the
visualization there should be a strong linear correlation between the two variables.
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Fig 3. Comparison of Augmented Hospitalizations and Actual
Hospitalizations Across All States and Nationwide. The figure shows the
augmented hospitalizations (not forecasts) against the actual (ground truth)
hospitalization time series for all states and the United States as a whole. The top
figure represents the United States as a whole. The comparison evaluates the model’s
ability to accurately recapitulate the timing of influenza season onset and peak
hospitalization periods. While the augmented values closely align with the actual data
in terms of timing, indicating the model’s effectiveness in capturing seasonal trends,
there is a notable discrepancy in peak magnitude estimation.
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Fig 4. Scatter Plot Analysis of Augmented Hospitalizations Versus Actual
Hospitalizations for the 2022-23 and 2023-24 Seasons. This figure provides a
scatter plot comparison between the augmented hospitalizations (not forecasts) and
actual (ground truth) hospitalizations for the influenza seasons of 2022-23 and 2023-24
for all states and the United States as a whole; the top figure is the United States as a
whole.The dashed red line, representing a perfect match (slope = 1, intercept = 0),
serves as a reference to evaluate the accuracy of our predictions. The general alignment
of augmented values with the actual data suggests that the forecasting models serve as
an effective proxy for real-time series analysis across the examined periods. However,
augmented values near peak hospitalization periods exhibit a consistent trend of slight
overestimation, highlighting a potential area for refinement in model accuracy. The
visual representation underscores the overall reliability of the predictive models to
augmented hospitalizations while also identifying specific intervals where further model
adjustments could enhance forecasting precision.

July 18, 2024 19/36

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.17.24310565doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.17.24310565
http://creativecommons.org/licenses/by/4.0/


Supplementary Figures

US

Jan Apr
0

10000

20000

time (months)

ho
sp

ita
liz

at
io

ns

arima real

West Virginia Wisconsin Wyoming

Utah Vermont Virgin Islands Virginia Washington

Rhode Island South Carolina South Dakota Tennessee Texas

Ohio Oklahoma Oregon Pennsylvania Puerto Rico

New Jersey New Mexico New York North Carolina North Dakota

Missouri Montana Nebraska Nevada New Hampshire

Maryland Massachusetts Michigan Minnesota Mississippi

Iowa Kansas Kentucky Louisiana Maine

Georgia Hawaii Idaho Illinois Indiana

Colorado Connecticut Delaware District of Columbia Florida

Alabama Alaska Arizona Arkansas California

Ja
n

A
pr

Ja
n

A
pr

Ja
n

A
pr

Ja
n

A
pr

Ja
n

A
pr

0
1000
2000
3000

250
500
750

1000
1250

0
250
500
750

1000

0
50

100
150
200

100

200

0

50

100

0
25
50
75

40
80

120

0
500

1000
1500
2000

0
200
400
600

0
100
200
300
400
500

0
20
40
60

0

500

1000

0

100

200

0
100
200
300
400

0
100
200
300
400

0
200
400
600

0

500

1000

0
200
400
600

0
100
200
300
400

0
250
500
750

0
20
40
60
80

0
100
200
300

0
250
500
750

1000

0
300
600
900

0
50

100
150

0
500

1000
1500
2000

0
200
400
600

0
30
60
90

0.0e+00
5.0e−11
1.0e−10
1.5e−10
2.0e−10

0
20
40
60

0
20
40
60
80

0
100
200
300
400
500

0

10

20

0

100

200

0
200
400
600
800

0

50

100

0
100
200
300
400

0
250
500
750

100

200

0
20
40
60
80

0
100
200
300
400
500

0
100
200
300
400

0
100
200
300

50
100
150
200

0
100
200
300

0
100
200
300
400

0
250
500
750

0
250
500
750

1000

0
250
500
750

1000

0
20
40
60

0
25
50
75

0
100
200
300

time (months)

ho
sp

ita
liz

at
io

ns

Fig S1. Comparison of ARIMA Model Forecasts with Ground Truth Data at
Horizon 1 for the 2022-23 season. This figure illustrates the forecasting
performance of the ARIMA model for the first prediction horizon (1 week ahead)
relative to the actual observed hospitalizations (ground truth).
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Fig S2. Comparison of ARIMA Model Forecasts with Ground Truth Data at
Horizon 2 for the 2022-23 season. This figure illustrates the forecasting
performance of the ARIMA model for the first prediction horizon (2 weeks ahead)
relative to the actual observed hospitalizations (ground truth).
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Fig S3. Comparison of ARIMA Model Forecasts with Ground Truth Data at
Horizon 3 for the 2022-23 season. This figure illustrates the forecasting
performance of the ARIMA model for the first prediction horizon (3 weeks ahead)
relative to the actual observed hospitalizations (ground truth).
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Fig S4. Comparison of ARIMA Model Forecasts with Ground Truth Data at
Horizon 4 for the 2022-23 season. This figure illustrates the forecasting
performance of the ARIMA model for the first prediction horizon (4 weeks ahead)
relative to the actual observed hospitalizations (ground truth).
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Fig S5. Comparison of ARIMA Model Forecasts with Ground Truth Data at
Horizon 1 for the 2022-23 season. This figure illustrates the forecasting
performance of the regularized VAR model for the first prediction horizon (1 week
ahead) relative to the actual observed hospitalizations (ground truth).
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Fig S6. Comparison of VAR Model Forecasts with Ground Truth Data at
Horizon 2 for the 2022-23 season. This figure illustrates the forecasting
performance of the regularized VAR model for the first prediction horizon (2 weeks
ahead) relative to the actual observed hospitalizations (ground truth).
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Fig S7. Comparison of VAR Model Forecasts with Ground Truth Data at
Horizon 3 for the 2022-23 season. This figure illustrates the forecasting
performance of of the regularized VAR model for the first prediction horizon (3 weeks
ahead) relative to the actual observed hospitalizations (ground truth).

July 18, 2024 26/36

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.17.24310565doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.17.24310565
http://creativecommons.org/licenses/by/4.0/


US

Dec Jan Feb Mar Apr May
0

10000

20000

30000

time (months)

ho
sp

ita
liz

at
io

ns

real VAR

West Virginia Wisconsin Wyoming

Utah Vermont Virgin Islands Virginia Washington

Rhode Island South Carolina South Dakota Tennessee Texas

Ohio Oklahoma Oregon Pennsylvania Puerto Rico

New Jersey New Mexico New York North Carolina North Dakota

Missouri Montana Nebraska Nevada New Hampshire

Maryland Massachusetts Michigan Minnesota Mississippi

Iowa Kansas Kentucky Louisiana Maine

Georgia Hawaii Idaho Illinois Indiana

Colorado Connecticut Delaware District of Columbia Florida

Alabama Alaska Arizona Arkansas California

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay

0
1000
2000
3000
4000

200
300
400
500

0
250
500
750

0
50

100
150
200

100

200

0

50

100

0
25
50
75

40
60
80

0
500

1000
1500
2000

0
200
400
600

0
100
200
300
400

0
20
40
60

0
300
600
900

0

100

200

0
100
200
300
400

0
100
200
300
400

0
200
400
600

0

500

1000

0
200
400
600

0
100
200
300
400
500

0
200
400
600
800

0
20
40
60
80

0
100
200
300

0
200
400
600
800

0
300
600
900

0
50

100
150

0
500

1000
1500

0
200
400
600

0
30
60
90

0.00
0.25
0.50
0.75
1.00

0
20
40
60

0
20
40
60
80

0
100
200
300
400

0
10
20
30

0

100

200

0
200
400
600
800

0

50

100

0
100
200
300
400

0
250
500
750

50
100
150
200
250

0
20
40
60
80

0
100
200
300
400
500

0
100
200
300

0
100
200
300

50
100
150
200

0
100
200
300

0
100
200
300
400

0
250
500
750

0
250
500
750

1000

0
250
500
750

1000

0
20
40
60

0
25
50
75

0
100
200
300

time (months)

ho
sp

ita
liz

at
io

ns

Fig S8. Comparison of VAR Model Forecasts with Ground Truth Data at
Horizon 4 for the 2022-23 season. This figure illustrates the forecasting
performance of of the regularized VAR model for the first prediction horizon (4 weeks
ahead) relative to the actual observed hospitalizations (ground truth).
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Fig S9. Comparison of ARIMA Model Forecasts with Ground Truth Data at
Horizon 1 for the 2023-24 season. This figure illustrates the forecasting
performance of the ARIMA model for the first prediction horizon (1 week ahead)
relative to the actual observed hospitalizations (ground truth).
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Fig S10. Comparison of ARIMA Model Forecasts with Ground Truth Data
at Horizon 2 for the 2023-24 season. This figure illustrates the forecasting
performance of the ARIMA model for the first prediction horizon (2 weeks ahead)
relative to the actual observed hospitalizations (ground truth).
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Fig S11. Comparison of ARIMA Model Forecasts with Ground Truth Data
at Horizon 3 for the 2023-24 season. This figure illustrates the forecasting
performance of the ARIMA model for the first prediction horizon (3 weeks ahead)
relative to the actual observed hospitalizations (ground truth).
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Fig S12. Comparison of ARIMA Model Forecasts with Ground Truth Data
at Horizon 4 for the 2023-24 season. This figure illustrates the forecasting
performance of the ARIMA model for the first prediction horizon (4 weeks ahead)
relative to the actual observed hospitalizations (ground truth).
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Fig S13. Comparison of LightGBM Model Forecasts with Ground Truth
Data at Horizon 1 for the 2023-24 season. This figure illustrates the forecasting
performance of each LightGBM model for the first prediction horizon (1 week ahead)
relative to the actual observed hospitalizations (ground truth). The analysis includes
models initiated with different random seeds and trained on distinct datasets up to
June 2022 and June 2023, denoted as mod2022 h5 c100, mod2022 h5 c50, and
mod2023 h5 c50, respectively.
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Fig S14. Comparison of LightGBM Model Forecasts with Ground Truth
Data at Horizon 2 for the 2023-24 season. This figure illustrates the forecasting
performance of each LightGBM model for the second prediction horizon (2 weeks ahead)
relative to the actual observed hospitalizations (ground truth). The analysis includes
models initiated with different random seeds and trained on distinct datasets up to
June 2022 and June 2023, denoted as mod2022 h5 c100, mod2022 h5 c50, and
mod2023 h5 c50, respectively.
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Fig S15. Comparison of LightGBM Model Forecasts with Ground Truth
Data at Horizon 3 for the 2023-24 season. This figure illustrates the forecasting
performance of each LightGBM model for the third prediction horizon (3 weeks ahead)
relative to the actual observed hospitalizations (ground truth). The analysis includes
models initiated with different random seeds and trained on distinct datasets up to
June 2022 and June 2023, denoted as mod2022 h5 c100, mod2022 h5 c50, and
mod2023 h5 c50, respectively.
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Fig S16. Comparison of LightGBM Model Forecasts with Ground Truth
Data at Horizon 4 for the 2023-24 season. This figure illustrates the forecasting
performance of each LightGBM model for the forth prediction horizon (4 weeks ahead)
relative to the actual observed hospitalizations (ground truth). The analysis includes
models initiated with different random seeds and trained on distinct datasets up to
June 2022 and June 2023, denoted as mod2022 h5 c100, mod2022 h5 c50, and
mod2023 h5 c50, respectively.

July 18, 2024 35/36

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.17.24310565doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.17.24310565
http://creativecommons.org/licenses/by/4.0/


US

Nov Dec Jan Feb Mar Apr

5000

10000

15000

20000

time (months)

ho
sp

ita
liz

at
io

ns

mod2022_h5_c100 mod2022_h5_c50 mod2023_h5_c50 real

Virginia Washington West Virginia Wisconsin Wyoming

South Dakota Tennessee Texas Utah Vermont

Oklahoma Oregon Pennsylvania Rhode Island South Carolina

New Mexico New York North Carolina North Dakota Ohio

Montana Nebraska Nevada New Hampshire New Jersey

Massachusetts Michigan Minnesota Mississippi Missouri

Kansas Kentucky Louisiana Maine Maryland

Hawaii Idaho Illinois Indiana Iowa

Colorado Connecticut Delaware District of Columbia Georgia

Alabama Alaska Arizona Arkansas California

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

0
500

1000
1500
2000

0
200
400
600
800

0
50

100
150
200

0

100

200

300

0

200

400

600

0
200
400
600

0
200
400
600

0

200

400

600

0
10
20
30
40
50

0
25
50
75

0

100

200

0

20

40

100
200
300
400
500

0

50

100

150

0

100

200

300

0
20
40
60
80

0
20
40
60

0

20

40

0

50

100

150

0
100
200
300
400

0
300
600
900

0

20

40

60

0

200

400

600

0
100
200
300

0

100

200

0
50

100
150

0
300
600
900

0
300
600
900

1200

500
1000
1500
2000

0
50

100
150

0

20

40

60

0

100

200

0

50

100

150

0

100

200

300

0
250
500
750

1000

0
30
60
90

0

500

1000

0
100
200
300

100
200
300
400
500

0
100
200
300
400

0
100
200
300

0

100

200

300

0

20

40

0
50

100
150

0

200

400

600

0

40

80

120

0

100

200

0

200

400

600

0

20

40

60

200

400

600

time (months)

ho
sp

ita
liz

at
io

ns

Fig S17. Comparison of LightGBM Model Forecasts with Ground Truth
Data at Horizon 5 for the 2023-24 season. This figure illustrates the forecasting
performance of each LightGBM model for the fifth prediction horizon (5 weeks ahead)
relative to the actual observed hospitalizations (ground truth). The analysis includes
models initiated with different random seeds and trained on distinct datasets up to
June 2022 and June 2023, denoted as mod2022 h5 c100, mod2022 h5 c50, and
mod2023 h5 c50, respectively.
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