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ABSTRACT 

Background: Cannabis and tobacco use are consistently associated with major 

depressive disorder (MDD) in conventional observational studies. However, these substances 

are often co-used, and the independent causal role of cannabis use in risk of MDD remains 

unclear.  

Methods: Univariable and multivariable MR (MVMR) were used to explore the total and 

independent causal effects of genetic liability to tobacco use and cannabis use on MDD. Our 

primary estimator was the inverse-variance weighted (IVW) method, with other methods as 

sensitivity analyses. For the exposures, we used genome-wide association study (GWAS) 

summary statistics among European ancestry individuals for several tobacco use (i.e., smoking 

initiation, smoking continuation, smoking heaviness) and cannabis use (i.e., cannabis initiation, 

cannabis use disorder [CUD]) phenotypes. For the outcome, a GWAS of MDD was conducted 

using individual-level data from UK Biobank. 

Results: Univariable MR indicated a causal effect of smoking initiation on MDD (odds 

ratio [OR]IVW = 1.34, 95% confidence interval [CI] = 1.27 – 1.42), with consistent but weaker 

evidence for smoking continuation (ORIVW = 1.13, 95% CI = 0.93 – 1.37) and smoking heaviness 

(ORIVW = 1.15, 95% CI = 0.99 – 1.33). There was no clear evidence for a causal effect of 

cannabis initiation on MDD (ORIVW = 1.00, 95% CI = 0.91– 1.11). Univariable MR indicated some 

evidence for a causal effect of CUD on MDD (ORIVW = 1.14, 95% CI = 1.04 – 1.25), which 

attenuated to the null when adjusting for liability to smoking initiation (ORMVMR-IVW = 1.03, 95% CI 

= 0.97 – 1.08).  

Conclusions: This study provides limited evidence for an independent causal effect of 

cannabis use on MDD, and stronger evidence for an independent causal effect of tobacco use on 

MDD. Analyses were limited by low power, and future research should triangulate these findings 

with results from high-quality observational studies.  

Keywords: tobacco; smoking; cannabis; depression; Mendelian randomization; UK Biobank 
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BACKGROUND 

 Major Depressive Disorder (MDD) is a highly prevalent psychiatric disorder (e.g., lifetime 

prevalence ~11%) [1]. In terms of global disease burden, MDD was estimated as a leading cause 

of years lived with disability (YLDs) [2]. However, knowledge of actionable preventative strategies 

that could mitigate depression risk remains limited [3].  

Tobacco smoking and cannabis use are both prospectively associated with increased risk of 

depression in conventional observational studies [4–10]. These substances are commonly co-

used, a behaviour comprising ‘concurrent use’ (i.e., use of both products in a pre-defined time 

period, including ‘sequential’ use) and co-administration (i.e., used simultaneously via the same 

delivery method) [11], the latter of which is more common in European countries [12]. Despite 

their consistent association with depression, there are multiple limitations to inferring causality 

from conventional observational studies (e.g., reverse causation, confounding bias) [13,14]. 

Particularly confounding from other substance use, making it crucially important to disentangle 

the independent causal effect of cannabis use from tobacco use, and vice versa.  

Mendelian randomisation (MR) is an epidemiological approach which employs genetic 

variants as proxies for levels of an exposure in an instrumental variable analysis [15]. Genetic 

variants which alter the average lifetime levels of an exposure are randomised at conception and 

inherited independently of conventional confounding factors [16]. As such, MR should be more 

robust to key sources of bias than conventional observational studies [16,17].  MR requires three 

key assumptions to be met of the genetic instruments to yield a valid causal estimate; (i) it is 

robustly associated with the exposure (i.e., ‘relevance’), (ii) it does not share a common cause 

with the outcome (i.e., ‘exchangeability’), and (iii) it affects the outcome only through the 

exposure (i.e., ‘exclusion restriction’) [16].  

Previous MR studies have yielded mixed evidence regarding the effect of these substances 

on depression [18]. More recent studies, using improved genetic instruments (e.g., lifetime 

smoking index) and larger samples, suggest a causal role of tobacco smoking on depression 

[18,19]. In contrast, there is limited evidence for causal effects of cannabis use on depression 

[20]. This could suggest that prospective observational associations are biased by unmeasured 
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confounding, including tobacco use [21]. However, this may also relate to the lack of availability 

of cannabis use instruments beyond initiation of use [18,22]. A review of MR studies examining 

substance use and mental health suggested several key improvements for future MR studies in 

this area, including: (i) additional sensitivity analyses; (ii) use of phenotypes which characterise 

heaviness of use; and (iii) use of multivariable MR [18].  

Multivariable MR (MVMR) is an extension to MR that includes multiple exposures to estimate 

the effect of one exposure independent of other, genetically correlated, exposures [23,24]. 

MVMR is therefore a valuable tool to explore highly correlated phenotypes, such as tobacco 

smoking and cannabis use which could result in horizonal pleiotropy (i.e., genetic variants 

influencing the outcome independently of the target exposure) [25], if not accounted for in the 

same model [24]. This method has been previously applied to disentangle the role of cannabis 

and tobacco use in schizophrenia [26] and suicide attempt [27], but is yet to be applied to 

examine the independent effects of these substances on depression.  

In this study, we applied univariable and multivariable MR to estimate the independent effect 

of cannabis use (versus tobacco smoking) on major depressive disorder (MDD). 
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METHODS 

Study overview 

 This study employed univariable and multivariable MR with summary-level data to 

examine the total and independent causal effects of tobacco smoking and cannabis use on MDD. 

A statistical analysis plan was pre-registered (https://osf.io/bg9vk/), and deviations have been 

reported in Supplementary Note S1. 

Ethics statement 

 UK Biobank received ethics approval from the North West Multi-Centre Research Ethics 

Committee as a Research Tissue Bank approval (REC; 11/NW/0382). Approval to use these data 

was sought and approved by UK Biobank (Project ID: 9142). 

Data Sources 

Summary-level genetic data obtained from genome-wide association studies (GWAS) 

were used to identify relevant instrumental variables (IVs). For the exposures, we used SNPs 

associated with smoking initiation [28], smoking continuation [28], smoking heaviness (measured 

via cigarettes per day) [28], cannabis initiation [29] and cannabis use disorder (CUD) [30]. 

Information regarding the genotyping, imputation and quality control of each sample is reported 

in the original studies [28–30]. The GWAS of smoking continuation and heaviness were 

performed amongst ever smokers [28]. Therefore, we required the summary-level statistics for 

the outcome to be stratified by smoking status in order to be comparable with the underlying 

population of the exposure GWAS data [15,31]. We were not aware of any existing available 

GWAS summary-level data for MDD appropriately stratified by smoking status. As such, we used 

UK Biobank data to conduct a GWAS of major depressive disorder (MDD) stratified by smoking 

status and restricted to individuals of European ancestry. GWAS were stratified by whether 

people had ever smoked, with never smoked as the comparator. GWAS were conducted using 

the MRC Integrative Epidemiology Unit UK Biobank GWAS Pipeline (Version 2) [32]. 

Tobacco use 
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When tobacco use was the exposure, summary-level statistics from the GSCAN GWAS 

of individuals of European descent were obtained [28]. We have adapted the names of the 

instruments from the published GWAS (i.e., smoking continuation vs smoking cessation, smoking 

heaviness vs cigarettes per day) to aid interpretability. We used betas from these summary 

statistics with UK Biobank excluded to minimise sample overlap and 23&Me removed due to data 

sharing restrictions.  

Smoking initiation [SI]: (N = 249,171) refers to a binary phenotype indicating whether an 

individual has ever smoked regularly, measured by standard deviation change in probability of 

lifetime regular smoking (~10-12% increase in the probably of being a regular smoker). The 

question was assessed in a variety of ways across included cohorts (e.g., “Have you ever 

smoked regularly?”, “Have you ever smoked >100 cigarettes over the course of your life?”). The 

378 genome-wide significant conditionally independent SNPs associated with smoking initiation 

explained ~4% of variance in the trait [28] when tested in an independent sample. 

Smoking continuation [SC]: (N =143,851) refers to a binary phenotype contrasting current 

versus former smokers, measured by standard deviation change in probability of continuing to 

smoke compared with quitting (~3-5% increase in the probability of being a current smoker 

compared with former) and was typically assessed through combinations of questions (e.g., “Do 

you currently smoke?” and “Have you ever smoked regularly?”). The 24 genome-wide significant 

conditionally independent SNPs associated with smoking continuation explained ~1% of variance 

in the trait [28] when tested in an independent sample. 

Smoking heaviness [CPD]: (N = 143,210) refers to a quasi-continuous phenotype, 

representing average number of cigarettes smoked per day (CPD) either as a current or former 

smoker measured by standard deviation change in CPD categories (~2-3 additional cigarettes 

daily) [24]. Self-reported quantities in cohorts with free-text responses were binned (i.e., 1-5 

CPD, 6-15 CPD, 16-25 CPD, 26-35 CPD, 36+ CPD) or pre-defined bins were used when cohorts 

employed these. The 55 genome-wide significant conditionally independent SNPs associated 

with smoking heaviness explained ~4% of variance in the trait when tested in an independent 

sample [28]. 
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Cannabis use 

Summary-level statistics from the International Cannabis Consortium (ICC) GWAS of 

individuals of European descent [29] were used to source data on cannabis initiation. We 

requested 23andMe summary statistics separately and received these summary statistics from 

the authors meta-analysed with the remaining cohorts, excluding UK Biobank. Cannabis initiation 

(CI; N = 57,980) refers to a binary phenotype representing whether an individual has ever tried 

cannabis, asked in a variety of ways across included cohorts (e.g., “Have you ever in your life 

used marijuana?”, “Have you ever used marijuana (grass, pot) or hashish (hash, hash oil)?”) but 

ultimately reflecting ‘lifetime’ use (i.e., ever use). The 8 genome-wide significant independent 

SNPs associated with cannabis initiation explained 0.15% of variance in the trait [29]. 

Summary-level statistics from a GWAS by Levey and colleagues [30] of individuals of 

European descent were used to source data on CUD, which combined data from the Million 

Veteran Program, the Psychiatric Genetics Consortium, the Lundbeck Foundation Initiative for 

Integrative Psychiatric Research and deCODE Genetics. CUD (N = 886,025) refers to a binary 

phenotype representing whether an individual has CUD, measured in a variety of ways across 

contributing cohorts (e.g., ICD codes, semi-structured interviews). One contributing cohort, 

iPSYCH2, adjusted analysis for psychiatric diagnoses (i.e., ADHD, autism spectrum disorder, 

schizophrenia, bipolar disorder and MDD). Adjustment for MDD presents a potential issue for 

interpretation of the MR analysis examining CUD as an exposure, as this can introduce bias [33]. 

As such, summary-statistics with iPSYCH2 excluded (N = 785,635) were requested and provided 

by the lead author. The analysis identified 22 independent genome-wide significant SNPs [30]; 

an R2
XZ for the genome-wide significant SNPs was not reported. 

Major Depressive Disorder 

We included two data sources to assess the outcome of MDD. For the main analysis we 

conducted a GWAS of MDD using data from UK Biobank, a population-based cohort consisting 

of ~500,000 people aged between 37 and 73 years recruited between 2006 and 2010 from 

across the UK [34]. Participants attended a baseline assessment, and subsets of participants 

completed repeat assessments including an online mental health questionnaire (MHQ) in 2017 
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[35]. A detailed description of the study design, participants and quality control (QC) methods 

have been reported previously [34–36]. MDD cases were identified following a validated 

approach to defining lifetime major depression in UK Biobank which draws on multiple indicators 

of depression, including help-seeking, hospital admissions, self-reported diagnosis or anti-

depressant use and interview-based measures [37]. Full details are provided in Supplementary 

Notes S2 – S5.  

The full data release contains the cohort of successfully genotyped samples (n = 

488,377). Analyses were restricted to individuals of ‘European’ ancestry as defined by an in-

house k-means cluster analysis [32]. Standard exclusions including withdrawn consent, 

mismatch between genetic and reported sex, and putative sex chromosome aneuploidy were 

applied. Additional information about genotyping and imputation can be found in Supplementary 

Note S6. The GWAS were conducted using the linear mixed model (LMM) association method as 

implemented in BOLT-LMM (v2.3) [32,38] which accounts for relatedness and population 

stratification. Models were adjusted for age, sex and genotype array. BOLT-LMM association 

statistics are on the linear scale, so betas and their corresponding standard errors were 

transformed to log odds ratios and their corresponding 95% confidence intervals by (μ * (1 - μ)), 

where μ is the prevalence of depression in the subsample of interest (i.e., total sample, ever 

smokers, never smokers). Smoking status was categorised using self-reported information on 

smoking status (Variable ID: 20116). Using this variable an ‘ever smokers’ category was derived, 

defined as currently or previously smoking occasionally, most days or daily (i.e., more than once 

or twice). Individuals who reported trying smoking once or twice, or reported never smoking, 

were categorised as never smokers. Flowcharts of samples contributing to each GWAS are 

provided in Supplementary Figures S1 – 3. To explore population stratification, SNP-based 

heritabilities were calculated using linkage-disequilibrium score regression (LDSC v1.0.1) [39,40] 

and QQ plots were generated (Supplementary Figure 4). Overall, low LD score intercepts and 

ratios (Supplementary Table S1) suggested that the genomic inflation observed in the QQ plots 

was not driven by population stratification.  
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As a supplementary analysis a second set of summary data was drawn from a GWAS 

meta-analysis reported by Howard and colleagues [41]. Due to data sharing restrictions, 23&Me 

participants (n = 307,354) were removed. The remaining sample consisted of data from 500,199 

participants of European ancestry, comprising 170,756 cases and 329,443 controls. Full 

information on diagnostic assessment of MDD case status is available in the original report, and 

includes a broad definition of depression (i.e., “Have you ever seen a GP/psychiatrist for nerves, 

anxiety, tension or depression?”) in UK Biobank [41] and varied assessments of MDD cases in 

the Psychiatric Genetics Consortium (PGC) meta-analysis [42] which relied on international 

consensus criteria with cross-checks from expert reviewers [42]. 

Statistical analysis  

All MR analyses were conducted using R version 4.3.1 and completed using the 

TwoSampleMR, MR-PRESSO, MVMR and MendelianRandomization packages [43–46]. 

Selection of genetic instruments 

 SNPs that were identified as conditionally independent at the genome-wide significant 

level of significance (p < 5 x 10-8) in the published GWAS were further clumped using an LD 

distance threshold of 500kb and r2 < 0.001 to ensure complete independence. All identified SNPs 

were available in the outcome GWAS of MDD performed in UK Biobank. Where SNPs 

associated with either exposure used in the MVMR were not available in the other exposure 

dataset, proxy SNPs were identified with a minimum linkage disequilibrium (LD) R2 of 0.8. The 

data sources were harmonized using the TwoSampleMR package, in which we excluded 

palindromic SNPs which could not be aligned based on their minor allele frequency. For the 

MVMR, combined exposure datasets (i.e., SNPs for SI and CI, SNPs for SI and CUD) were 

further clumped (LD R2 <0.001, >500kb) to remove overlapping loci and ensure overall 

independence. Supplementary Note S7 provides additional detail on the harmonisation, clumping 

and proxy-searching methods.  

Statistical power calculation 
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 To calculate post-hoc statistical power of our MR analyses we used an online tool 

(https://shiny.cnsgenomics.com/mRnd/), based on several parameters including the GWAS 

sample size, ratio of cases to controls and the proportion of variance in the exposure explained 

by the genetic instruments (R2
XZ). R2

XZ was estimated as the pseudo-R2 value from a regression 

of each target exposure on its respective PRS, with and without covariates (e.g., ever smoking in 

UK Biobank regressed on smoking initiation PRS). See Supplementary Note S8.  

Univariable MR 

 To estimate the total causal effects of tobacco smoking and cannabis use, our primary 

estimator was the inverse variance weighted (IVW) method. The IVW statistic is a weighted 

mean of the ratio estimates (i.e., effect of a SNP on the outcome divided by the effect of a SNP 

on the exposure), where the weights are the inverse-variances of the ratio estimates [47,48]. The 

IVW approach assumes that all genetic variants are valid instrumental variables (IVs) [48]. The 

MR approach relies on three core assumptions regarding the exposure-outcome association; 

(IV1) the genetic instrument is associated with the exposure (i.e., relevance assumption), (IV2) 

there are no causes of the genetic instrument which also influence the outcome through 

mechanisms other than the exposure of interest (i.e., independence assumption), and (IV3) the 

genetic instrument does not affect the outcome other than through the exposure (i.e., exclusion 

restriction assumption) [16,17]. Horizontal pleiotropy (i.e., a variant associating with multiple 

traits) can violate IV3 if the variant associates directly with the outcome or via a confounding 

factor.  

To assess the reliability of the IVW estimates under various assumptions, we conducted 

sensitivity analyses using MR-Egger [49], weighted median [50], weighted mode [51] and MR-

PRESSO methods [46]. MR-Egger assumes a non-zero intercept to account for pleiotropy 

[48,49]. MR-Egger relies on two assumptions: (i) INstrument Strength Independent of Direct 

Effect (InSIDE; i.e., pleiotropic effects should not be correlated with instrument strength), and (ii) 

NO measurement error (NOME) [48,49]. The intercept can be used as a test for the presence of 

directional horizontal pleiotropy and explore whether the InSIDE assumption is violated. 

Violations of the NOME assumption were assessed using the I2GX statistic, in which values 
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between 0.6-0.9 were corrected with simulation extrapolation (SIMEX) and estimates with values 

less than 0.6 were not reported [52]. Importantly, MR-Egger has substantially lower statistical 

power than the IVW method. Weighed median- and mode-based methods fit regressions with 

greater weight assigned to SNPs with more precise ratio estimates [48]. The weighted-median 

method can provide reliable causal estimates when <50% of the instrument weight does not 

satisfy MR assumptions [50], and the weighted-mode method can provide reliable causal 

estimates provided the largest number of genetic variants (i.e., modal ratio estimand) are 

contributed by valid SNPs also known as the Zero Modal Pleiotropy Assumption (ZEMPA) 

[48,51]. As these methods use the median and mode of the distribution, they are still influenced 

by outliers [48]. MR-PRESSO is an extension of the IVW method, in which SNPs that contribute 

to heterogeneity above simulated expectations (i.e., outliers) are removed following a “leave-one-

out” approach, and significant differences in the causal estimate before and after outlier removal 

are assessed through a distortion test [46,48].  

To assess instrument strength (IV1) we computed the F-statistic, whereby F>10 indicates 

sufficient instrument strength [53]. Cochran’s Q was computed to assess heterogeneity between 

SNP-estimates in each instrument, whereby the Q-statistic should be less than the number of 

SNPs [53]. We additionally performed leave-one-out analyses, repeating IVW after removing 

each SNP, and generated scatterplots of SNP effect sizes to further assess explore 

heterogeneity and potential pleiotropic effects [54].  

Sensitivity analysis 

 For the univariable MR, Steiger filtering was used to explore reverse causality. Steiger 

filtering computes the amount of variance each SNP explains in the exposure and outcome 

variables, which can be used to exclude SNPs which explain more variance in the outcome [55]. 

We also conducted analyses of the smoking continuation and smoking heaviness instruments 

among never smokers as a negative control analysis to explore potential bias from horizonal 

pleiotropy (i.e., effects observed among never smokers could indicate SNPs influencing the 

outcome directly or via another phenotype, but not via the target exposure) [56].  

Multivariable MR 
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 The independent effects of smoking initiation, cannabis initiation and CUD were explored 

using two complementary MVMR methods: MVMR-IVW and MVMR-Egger [24,57]. For MVMR-

Egger, results are reported for analyses with SNPs oriented with respect to each exposure of 

interest [58]. We were not able to include the phenotypes of smoking heaviness or smoking 

continuation as these were analysed in samples of ever smokers only, whereas the cannabis 

initiation and CUD phenotypes were not analysed stratified by smoking status. For the MVMR we 

used the Sanderson-Windmeijer conditional F-statistic (FTS) to test whether SNPs were strongly 

associated with each exposure given the other exposures included in the model, or ‘conditional 

relevance’ [24], where FTS>10 is indicative of sufficient instrument strength [44]. An adaptation of 

the Cochran’s Q statistic was used to detect heterogeneity among the included SNPs for the 

analysis, where Q estimates should be less than the number of SNPs included in the model to 

indicate no excessive heterogeneity [44].  
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RESULTS 

Instrument strength and heterogeneity 

The mean F-statistics for the univariable MR were all ≥10 (Supplementary Table S2). The 

conditional F-statistics for the MVMR models were between 2.85 and 9.14 (Supplementary Table 

S3), indicating that the MVMR estimates may be affected by weak instrument bias. The reduction 

in F-statistic between the univariable and MVMR is likely due to the high level of correlation 

between the effect of the SNPs on each exposure in the model, which will lower the power and 

instrument strength. The direction of weak instrument bias in MVMR can be towards or away 

from the null [29], limiting conclusions about the impact of this bias on observed estimates. 

There was evidence of heterogeneity in the SNP effects across all univariable 

(Supplementary Table S4) and multivariable analyses (Supplementary Table S5), with Q greater 

than the number of SNPs included in the model and evidence of heterogenous effects present in 

the scatterplots (Supplementary Figures S5 – S9). However, MR-Egger intercepts were all null (p 

>0.05), suggesting no clear evidence of bias from directional horizontal pleiotropy 

(Supplementary Tables S4 - 5), and leave-one-out analyses did not indicate effects were driven 

by any one particular SNP (Supplementary Figures S10 – S14).  

Univariable MR 

Tobacco  

Using 302 SNPs (Supplementary Data S1) associated with smoking initiation, there was 

evidence for a total causal effect of smoking initiation on MDD (ORIVW = 1.34, 95% CI = 1.27-

1.42; Figure 1). The direction of effect was consistent across the MR methods tested 

(Supplementary Table S2), with MR-Egger results not presented due to low I2GX values (<0.6; 

Supplementary Table S4). MR-PRESSO detected 11 outliers amongst the included SNPs. There 

was no substantial difference in the estimate before and after outlier correction (p of distortion 

test = 0.977; Supplementary Table S4).  

Using 17 SNPs (Supplementary Data S2) associated with smoking continuation and 40 

SNPs (Supplementary Data S3) associated with smoking heaviness, univariable MR suggested 
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weaker evidence for total causal effects on MDD (SC: ORIVW = 1.13, 95% CI = 0.93-1.37; CPD: 

ORIVW = 1.15, 95% CI = 0.99-1.33), with consistent direction of effect across methods 

(Supplementary Table S2; Figure 1). MR-Egger results for smoking continuation are less reliable 

due to low I2GX (Supplementary Table S4). MR-PRESSO detected one outlier (1/17) amongst the 

included SNPs for smoking continuation. There was no substantial difference in the estimate 

before and after outlier correction (p of distortion test = 0.777; Supplementary Table S4).  

Cannabis 

Using 6 SNPs (Supplementary Data S4) associated with cannabis initiation, there was no 

clear evidence for a total causal effect of cannabis initiation on MDD (ORIVW = 1.00, 95% CI = 

0.91-1.11; Figure 1), with consistent direction of effect across methods (Supplementary Table S2. 

Using 16 SNPs (Supplementary Data S5) associated with CUD, there was evidence for a causal 

effect of CUD on MDD (ORIVW = 1.14, 95% CI = 1.04-1.25; Figure 1) with consistent direction of 

effect across methods (Supplementary Table S2). For cannabis initiation MR Egger results are 

less reliable due to low I2GX  and not presented for CUD due to I2GX < 0.6 (Supplementary Table 

S4). MR-PRESSO detected two outliers (2/16) amongst the included SNPs for CUD. There was 

no substantial difference between the estimate before and after outlier correction (p of distortion 

test = 0.947; Supplementary Table S4).   
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Figure 1. Forest plot depicting univariable MR of the effect of smoking exposures (i.e., initiation, 

continuation, heaviness), cannabis initiation and CUD on MDD. 

Note. OR = Odds Ratio; CI = Confidence Interval. ORs are scaled to per standard deviation increase in genetic liability to the 

exposure. Effect estimates are reported on the log odds scale with 95% confidence intervals. For MR-PRESSO, results 

present are ‘raw estimates’ where no outliers were identified, and ‘outlier corrected’ (OC) where outliers were identified. 

For MR-Egger, when I
2

GX

 
was 0.6-0.9, an unweighted SIMEX correction was applied, while estimates are not reported at all 

when I
2 

was <0.6. 
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Multivariable MR 

When genetic variants for smoking initiation and cannabis initiation were simultaneously 

entered in the MVMR model (Model 1; Figure 2), the independent effects for both exposures (SI: 

ORMVMR-IVW = 1.36, 95%CI = 1.27 – 1.45; CI: ORMVMR-IVW = 0.98, 95%CI = 0.91 – 1.05, 

Supplementary Table S3), were similar to effect estimates from the univariable MR. When 

genetic variants for smoking initiation and CUD were simultaneously entered in the MVMR model 

(Model 2; Figure 2), the independent effects of smoking initiation (SI: ORMVMR-IVW = 1.29, 95%CI 

= 1.21 – 1.38) and CUD (CUD: ORMVMR-IVW = 1.06, 95%CI = 1.01 – 1.11; Supplementary Table 

S3) both attenuated when comparing to effect estimates from the univariable MR. Direction of 

effects were consistent across MVMR-IVW and MVMR-Egger, although with slightly wider 

confidence intervals for MVMR-Egger. 

The conditional F-test demonstrated potential weak instrument bias for all exposures 

(Model 1: FTS = 9.14 [SI], FTS = 2.85 [CI]; Model 2: FTS = 8.61 [SI], FTS = 4.17 [CUD]), and 

modified Cochran's Q statistic indicated evidence of substantial heterogeneity (Model 1: Q = 

710.88, Model 2: Q = 703.62; Supplementary Table S5). Results were consistent when 

heterogeneity tests were repeated with Q-statistic minimisation (Model 1: Q = 721.01, Model 2: Q 

= 676.80; Supplementary Table S5). Given evidence of weak instruments and heterogeneity, 

robust estimates were obtained through Q-statistic minimisation using the phenotypic correlation 

between the exposures (Model 1: r = 0.60, Model 2: r = 0.61) reported in the published GWAS 

[24,26]. Results were consistent for the MVMR model of smoking initiation and cannabis initiation 

on MDD, but the independent effect estimate for CUD on MDD attenuated further towards the 

null (ORMVMR-ROB: OR = 1.03, 95%CI = 0.97 –1.08; Supplementary Table S3, Supplementary 

Figure S15). 
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Figure 2. Forest plot comparing univariable and MVMR effects of smoking initiation, cannabis 

initiation and CUD on MDD. 

 

Note. OR = Odds Ratio; CI = Confidence Interval. ORs are scaled to per standard deviation increase in genetic liability to the 

exposure. Effect estimates are reported on the log odds scale with 95% confidence intervals. MVMR estimates (MVMR IVW) 

are depicted in colour, univariable estimates (MR IVW) are depicted in grey. Model 1 refers to MVMR with smoking 

initiation and cannabis initiation as exposures. Model 2 refers to MVMR with smoking initiation and CUD as exposures. 

 

 

 

Sensitivity analysis 
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Steiger filtering 

Steiger filtering identified no SNPs which explained more variance in the outcome for 

smoking heaviness, cannabis initiation or CUD (Supplementary Table S6), indicating limited 

evidence of reverse causality. Steiger filtering identified 40/302 (13.2%) smoking initiation SNPs 

which explained more variance in the outcome. Analyses were repeated across methods with 

these SNPs removed resulting in an attenuated effect (ORIVW = 1.25, 95% CI = 1.20-1.31; 

Supplementary Table S6). Steiger filtering identified 1/17 (5.8%) smoking continuation SNPs for 

exclusion, and similar effects were observed (ORIVW = 1.16, 95% CI = 0.99-1.35; Supplementary 

Table S6) except for MR-Egger which suggested no clear evidence for a causal effect (OREGGER 

= 1.00, 95% CI = 0.64 – 1.57).  

Negative control analysis 

Analyses of smoking continuation and heaviness instruments performed in never 

smokers indicated no clear evidence of an effect (i.e., supportive of no directional horizontal 

pleiotropy; Supplementary Table S7, Supplementary Figure S16). 

Alternative outcome GWAS 

Across the univariable and multivariable MR the effects for smoking initiation, cannabis 

initiation and CUD were consistent when the summary statistics for MDD were obtained from a 

GWAS meta-analysis of the Psychiatric Genetics Consortium and UK Biobank (Supplementary 

Tables S8-9), with slightly larger effect estimates.  
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DISCUSSION 

To our knowledge, this is the first study to examine the independent effects of tobacco 

smoking and cannabis use on MDD using a multivariable MR design. Overall, our results are 

suggestive of weak evidence that genetic liability to cannabis initiation or CUD has a causal 

effect on MDD when accounting for the genetic contributions of smoking initiation.  

Our findings regarding a causal effect of tobacco smoking for MDD are consistent with 

previous observational studies demonstrating increased risk of depression amongst individuals 

who smoke cigarettes [4–6], reduced depressive symptoms following smoking cessation [59] and 

MR studies suggesting evidence for a causal effect of smoking initiation [18,19,60], lifetime 

smoking and smoking heaviness [19] on depression. Notably, evidence for a causal effect was 

weaker when we examined instruments proxying more nuanced phenotypes of smoking 

behaviour (i.e., smoking continuation, smoking heaviness), where analyses exhibited wider 

confidence intervals although still consistent evidence regarding direction of effect. It’s possible 

this relates to the smaller sample sizes contributing to these GWAS, both for the exposure and 

outcome, which are further restricted to ever smokers where low power will result in imprecise 

effect estimates [61].  

Limited evidence for a causal effect of cannabis initiation on risk of MDD is somewhat 

inconsistent with previous observational studies, which provide evidence for a slight increase in 

risk of depression among individuals who have ever used cannabis [9]. However, evidence 

suggests the frequency and severity of cannabis use is an important moderating factor in the 

association between cannabis use and depression outcomes with evidence of dose-response 

effects [62]. Studies employing other genetically informative designs such as twin studies, 

suggest that robust associations are only observed for higher frequency use rather than 

dichotomous measures such as ever- or past-year use [63]. Previous research using MR to 

explore the causal relationship between cannabis initiation and depression has also yielded no 

clear evidence of causality [20].  

When examining the independent causal effects of smoking initiation, cannabis initiation 

and CUD on MDD using MVMR, our initial results suggested evidence for a causal effect of CUD 
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and smoking initiation independent of one another. However, the conditional F-statistics were all 

<10, which indicates genetic overlap between these exposures and potential weak instrument 

bias. This is not unexpected, smoking initiation (i.e., ever regularly smoking) is highly correlated 

with both cannabis initiation and CUD [28]. Importantly, unlike in univariable MR, weak 

instrument bias in MVMR can bias the estimated effect of each exposure either towards or away 

from the null, making it particularly important to test for [44]. Ideally, we would have employed 

smoking heaviness for this analysis, rather than smoking initiation. However, this would require 

stratification by smoking status which was not possible using the existing summary statistics for 

cannabis initiation or CUD.  

Due to low instrument strength and high heterogeneity, we re-estimated the MVMR 

models using weak instrument robust estimators [44]. These results still supported evidence of a 

causal effect of smoking initiation, but suggested results for CUD were biased away from the null 

in the primary analysis (ORMV-ROB = 1.03, 95%CI = 0.96 – 1.10; i.e., no clear evidence of a causal 

effect). These results suggest that tobacco use could, at least in part, underly the associations of 

CUD with MDD. However, smoking initiation has been found to be horizontally pleiotropic (i.e., 

associated with numerous other traits) and the attenuation in effect may be capturing other 

underlying phenotypes (e.g., deprivation, risk-taking) [64], rather than tobacco use specifically. 

Furthermore, although simulation analyses have demonstrated that weak instrument robust 

estimators produce reliable estimates for moderately weak instruments (e.g., FTS =4.23) [44], it is 

unclear how far this extends and whether this approach generates reliable point estimates for 

weaker instruments which were employed in our MVMR analysis of cannabis initiation and 

smoking initiation. As such, our exploration of the independent role of cannabis use, versus 

tobacco use, on MDD using MVMR should be interpreted with caution.  

Another consideration relevant to interpretation of the MVMR is that the lead signal 

reported in the GWAS of CUD was near CHRNA2 (rs56372821), which encodes cholinergic 

receptor nicotinic alpha 2 subunit [30]. This could suggest potential convergence in the 

cholinergic system and nicotinic receptors in the underlying aetiology of CUD [30]. Results from a 

multi-trait conditional and joint analysis of CUD and smoking traits (i.e., smoking initiation, 
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smoking heaviness) suggest that 20/22 original lead SNPs remain genome-wide significant after 

conditioning, and does not substantially alter the magnitude of the lead CHRNA2 association 

[30]; a finding replicated in other analyses [65,66]. However, the control for concurrent tobacco 

use in these analyses is based on estimated rates of tobacco use in which the co-administration 

of cannabis and tobacco (e.g., in the form of spliffs or blunts) is not captured [67]. 

Using genetic variants for cannabis initiation is not an ideal measure as it includes those 

who may have only used cannabis a few times [22]. At the time of conducting the analyses there 

were not publicly available GWAS of cannabis frequency, although one has recently been 

published [68]. As such, we employed a genetic instrument for CUD which refers to a pattern of 

symptoms which cause clinically significant impairment or distress [69] and DSM-5 criteria 

include experiences of tolerance and unsuccessful reduction or quit attempts [70]. There are no 

previous MR studies examining the effect of CUD on MDD. Our univariable MR indicated some 

evidence that CUD has a causal effect on MDD. It is important to highlight that the cannabis 

instruments employed in the summary-level MR had the lowest power, with genetic instruments 

explaining only a small proportion of the variance in the target exposure in the UK Biobank 

sample and with less than 80% power to detect an OR below 1.38 (CI) - 1.55 (CUD). When we 

replicated analyses using an alternative GWAS, which includes other contributing cohorts 

besides UK Biobank, effect estimates were slightly larger. However, there is some sample 

overlap between the exposure and alternative outcome GWAS with a maximum of 0.7% and 

9.5% of individuals in cannabis initiation and CUD GWAS, respectively, present in the outcome 

GWAS; which may bias effect estimates towards the confounded observational estimate (i.e., 

away from the null) [71]. Notably, results regarding the independent effect of CUD on MDD from 

the MVMR were consistent when using the alternative outcome GWAS (i.e., no clear evidence of 

an effect). In summary, due to low power, the presence of small, potentially meaningful, causal 

effects of CUD on MDD cannot be ruled out and replication in other samples is warranted. 

Another consideration relevant to the UK Biobank sample, is the age at which most 

participants used cannabis. For example, the average age of last cannabis use reported by 

participants on the UK Biobank data showcase is ~32 years of age [ID 20455]. Cannabis potency 
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has been reported as an important moderating factor in the association between cannabis use 

and mental health [72]. A review of studies in this area suggests that the evidence is particularly 

strong for high potency cannabis and psychosis, whereas evidence for depression is more mixed 

[72], and highlights that longitudinal observational studies with adjustment for important 

confounding variables is lacking. Cannabis potency is typically defined by the concentration of 

Δ
9-Tetrahydrocannabinol (THC), the primary psychoactive component of cannabis. In Europe, 

the concentration of THC has more than doubled in the last decade in street cannabis [73,74]. 

Based on the age of the UK Biobank sample and average age of last use it is likely that, on 

average, this sample were using a lower potency cannabis than contemporary users. If cannabis 

potency represents an important moderating factor for the association between cannabis use and 

depression, replication in studies where participants have been exposed to cannabis that better 

reflects contemporary cannabis products will be important to understanding health risks.  

Strengths and limitations 

 This study has numerous strengths including: (i) employing instruments which 

characterise heaviness of use, (ii) the use of multivariable MR, and (ii) employing a range of 

sensitivity analyses to support conclusions. However, there are several important limitations to be 

acknowledged.  

 MR was employed in this study to minimise the limitations of conventional 

epidemiological studies. However, MR relies on various assumptions which if violated may 

generate biased estimates. F-statistics suggested that instruments in the univariable MR were 

sufficiently associated with the exposure of interest (i.e., IV1), but testing the instruments against 

the target exposures in UK Biobank suggested weak power to detect the causal effects of 

cannabis use phenotypes on MDD. Conditional F-statistics suggested the MVMR analyses were 

limited by weak instruments (FTS<10), which we attempted to correct for using robust estimates 

obtained through Q-minimisation. While the nature of genetic variants being randomly inherited 

from parents to offspring, means genotypes are typically associated with conventional 

confounders (e.g., SES) to a much lesser extent (i.e., IV2) [16], population stratification can 

reintroduce confounding of genotype-outcome associations [75]. All GWAS used to source 
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summary-level data adjusted for population structure in some way (e.g., via adjustment for 

genetic principal components) and were taken from similar underlying ancestry, However, given 

that substance use behaviours are socially patterned, residual population structure could 

reintroduce confounding into the MR analysis [76]. Previous research has reported unmeasured 

geographical confounding in GWAS of lifestyle-related traits in UK Biobank, even after adjusting 

for population structure via mixed modelling and principal component analysis [77]. We 

performed a series of sensitivity analyses to explore potential violation of IV2 (i.e., independence 

assumption) and IV3 (i.e., exclusion restriction). Several pleiotropy-robust (i.e., MR-Egger, 

weighted median, weighted mode) methods, outlier-exclusion tests and negative-control 

analyses, provided limited evidence for violation of these assumptions for the tobacco smoking 

phenotypes. However, multivariable MR suggested violation due to pleiotropy for the effect of 

CUD on MDD.  

In addition to limitations of the MR approach, there are limitations to the phenotypes and 

study samples we used in our analyses. First, whilst CUD will reflect heavier frequency of use it 

is not a direct proxy for cannabis heaviness. CUD affects approximately one in five individuals 

who use cannabis [69], with higher risk for those who use more frequently (e.g., daily). However, 

CUD is defined by multiple criteria (e.g., significant impairment in functioning) and is associated 

with multiple psychological consequences (e.g., financial and social difficulties) [78]. As such, 

results should be repeated using genetic instruments for cannabis frequency [68], to more 

accurately estimate the effect of higher frequency cannabis use on depression risk. Second, 

there is a well-documented selection bias in UK Biobank such that the population are 

substantially better educated and healthier (e.g., fewer chronic health conditions) which can 

distort genetic associations and downstream analyses (e.g., MR estimates) especially for socio-

behavioural traits [79]. If both cannabis use and MDD influence selection into our study (i.e., less 

likely to participate) then results may be biased towards the null. Finally, the summary-statistics 

used to inform the MR analyses were all derived in participants of European ancestry. As such, 

results may not be generalisable to other populations especially considering the population-

specific differences in routes of administration (e.g., in Europe, cannabis is frequently co-

administered with tobacco) [12]. 
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CONCLUSION  

 The current study provides evidence for a causal effect of tobacco use on risk of MDD. 

This finding is consistent with evidence from previous observational and MR studies. Our results 

provide weaker evidence that cannabis initiation or CUD has a causal effect on risk of MDD, 

independent of liability to smoking initiation. However, we had limited power to detect the causal 

effect of these phenotypes in UK Biobank. Future studies of the independent effects of these 

substances should triangulate results with high-quality observational studies which are affected 

by different underlying sources of bias.  

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2024. ; https://doi.org/10.1101/2024.07.17.24310564doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.17.24310564
http://creativecommons.org/licenses/by/4.0/


ADDITIONAL INFORMATION 

Contributions 

 CB, TF, HS, RW and GT conceived the study. CB carried out the data curation and 

analysis and drafted the initial manuscript. RW and HS provided expert guidance on MR 

methodology and guided all stages of the analysis. All authors assisted in interpretation of the 

study results, refining of manuscript drafts and approved the final manuscript.  

Data availability 

 The data used in this study comes from several sources. Summary statistics for the 

tobacco use instruments are available at: https://conservancy.umn.edu/items/ca7ed549-636b-

41c0-ae79-97c57e266417. The summary statistics for the cannabis initiation instrument, without 

23andMe, are available at: https://www.ru.nl/en/bsi. Access to the summary statistics including 

23&Me, requires a separate data transfer agreement from 23andMe. Further information about 

obtaining access to 23andMe are available from: https://research.23andme.com/dataset-access/. 

The summary statistics for the CUD instrument, including iPSYCH, are available at: 

https://medicine.yale.edu/lab/gelernter/stats/. Access to the summary statistics excluding 

iPSYCH was obtained through request to the authors. Primary data from the UK Biobank 

resource used to derive the summary statistics for the outcome GWAS of MDD are accessible 

upon application (https://www.ukbiobank.ac.uk/). The PGC MDD summary statistics are available 

at: https://pgc.unc.edu/for-researchers/download-results/.  

Code availability 

 A copy of the code used in the MR analyses is available at: 

https://github.com/chloeeburke/cantob_mvmr.  

Patient and public involvement  

 Details of public and patient involvement in UK Biobank regarding the MHQ development 

are available online [35]. For this study there was no specific patient involvement processes in 

setting the research question, exposures, outcome measures or study methodologies. UK 

Biobank will disseminate key findings from projects on its website, and we aim to disseminate 
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findings through non-academic platforms including the use of research group partnerships and 

appropriate social media platforms.  
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