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Abstract 

Background: Alzheimer's disease (AD) has so far proved refractory to intervention. However, disease 
incidence is variable across prior medication and observational measures. The present study adopted 
a data-driven approach to inform possible drug repurposing strategies in the light of concurrent 
prescription and biometric data. 

Methods and Results: A real-world dataset was harnessed to compare observational and prescription 
data for 250,000 individuals prior to AD diagnosis against an age-, sex-, and clinical practice-matched 
control cohort with no AD history. Observation data was shown to both explain the associations of 
classes of drug prescription with AD incidence and to bolster the repurposing potential of the GLP-1 
agonist class of anti-diabetic drugs. 

Conclusion: This study provides insights into how drug repurposing based on prescription histories 
can be informed by concurrent observational data. These findings offer novel insights to be explored 
in future research on causal models for AD progression.  

Introduction 

With the exception of the controversial approval for AD of the at best moderately effective anti-
amyloid antibody therapies[1-4], with aducanumab being recently discontinued due to cost and side 
effect issues[5], there have been no new AD therapeutics coming to market in over 20 years. The 
inherently complex nature of the disease with multiple pathological features associated with various 
biological pathways and risk factors encompassing lifestyle[6] and genetic variants[7] has led 
researchers to go so far as to question AD’s status as a disease and argue that it should be rather 
considered a syndrome[8] due to the mismatch in causal factors and ultimate presentation. Turning 
away from target-based drug discovery approaches, the wealth of data on the disease has informed 
lifestyle modifications[9, 10] and motivated a search for repurposing candidates where existing 
approved therapeutics with extensive safety data and prescription histories are hypothesised as 
candidate therapeutics for diseases for which they weren’t initially developed[11, 12]. Other 
neurodegenerative conditions like Parkinson’s disease (PD) have also been the subject of repurposing 
efforts[13]. Repurposing can take many forms from the emergence of targets shared with other 
diseases[14] to the correlation of high content biological data, such as gene expression profiles[15, 
16], between disease and compound. A more direct approach is based on epidemiology, where low 
disease incidence associations with drug prescription may inform a new intervention route, as shown 
with the emergence of salbutamol as a potential protective against PD though an analysis of the 
Norwegian NorPD prescription database [17]. However, without a viable biological mechanism, 
epidemiology-based associations do not establish causality but rather inform future research through 
generating hypotheses.  

The COVID pandemic precipitated the Health Data Research UK (HDRUK), through the British Heart 

Foundation Data Science Centre, making available primary health care data for 57 million people in 

England to researchers in the hope of gaining insights into amelioration strategies[18]. The HDRUK 

data is currently available for COVID pandemic related studies, at least on a fee free basis. However, 

on a smaller scale, the well-established Clinical Practice Research Datalink (CPRD)[19, 20] provides 
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curated data on approximately 19 million currently contributing (67 million historical) patient’s 

observation and prescription histories from across the UK. CPRD provides an ideal platform to 

investigate associations between disease incidence and prior prescription history and observational 

data and has been the basis of investigating associations of dementia with inflammatory 

biomarkers[21], comorbidities like type 2 diabetes (T2D) [22] and drug use[23, 24]. Other initiatives 

like the UK Biobank[25] provide the researcher with valuable diagnostic data linked to genetic variant 

information and tissue samples for over half a million individuals. 

In the present work we sought to harness electronic health records from a large real-world dataset to 

investigate the associations, both positive and negative, between AD incidence and prior prescription 

history and observational data. Specifically, we collected a cohort with an AD diagnosis and defined 

the index date as the date of first diagnosis. Everyone with an AD diagnosis was matched with people 

of the same age, sex and clinical practice with no AD diagnosis at index. This effectively constituted a 

retrospective case-control study to investigate disease risk factors prior to onset. We found that high 

systolic blood pressure (SBP) and low blood albumin levels are significantly associated with a higher 

incidence of AD up to ten years prior to diagnosis. A combination of blood-borne biomarkers and 

biometric data gathered 10 to 20 years prior to diagnosis of AD facilitated a modest predictability of 

future AD incidence with an operating characteristic (ROC) area under the curve (AUC) of 0.79+/-0.001. 

An analysis of prescription histories revealed both positive and negative associations of drug 

prescription with AD incidence. An analysis of concurrent observational data was used to investigate 

the possible causal relationships between drug use and AD incidence. Notably, the negative association 

of anti-hypertensives with AD incidence was explained by SBP being higher in the cohort going on to 

develop AD. The highly significant negative association of the migraine triptan medications was shown 

to be confounded by both SBP levels and migraine incidence. Two classes of T2D medications were 

shown to be associated with a lower AD incidence and this bolstered by the observation of a higher 

AD incidence in the T2D sub cohort. Our analysis within the female cohort recapitulates the reported 

AD risk lowering potential of hormonal therapies. It is hoped that this analysis will help build 

hypotheses around new repurposing candidates and lend support to existing AD therapy candidates 

in trials. 

Methods 

Cohort 

The present study used routinely collected data from the CPRD, one of the world largest primary care 

electronic health records datasets. The CPRD contains medical records for about 24% of the UK primary 

care population with complete prescribing data and clinical diagnosis information, laboratory tests, 

and referrals made following a primary care consultation. The CPRD population is representative in 

terms of size, patients’ socio-demographic attributes, and geographical distribution of practices. The 

data have been validated extensively for pharmaco-epidemiological, clinical and public health 

investigations. The study population included patients aged 50 years or over at the time of a first 

diagnosis of AD between 1st January 2012 and 31st December 2022. These patients were individually 

matched on age, sex and practice with a set of controls without AD, see Table 1. There were on average 

six controls per AD individual. AD diagnosis was defined using SNOMED CT and Read medical codes 

reflective of an AD event (see Supplementary Table S1 for a complete list of codes). Data was extracted 

from the CPRD Aurum version in September 2023.  

Table 1. The case-control cohort characteristics for AD. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2024. ; https://doi.org/10.1101/2024.07.17.24310553doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.17.24310553
http://creativecommons.org/licenses/by-nc-nd/4.0/


Observations 

Individuals were assigned to T2D and migraine status based on observations corresponding to the 

SNOMED CT codes in Supplementary Tables S2 and S3. The observational biometric and blood borne 

variables defined for the cohort are listed in Supplementary Table S4. Each measure has a mean and 

standard deviation and measures outside 2 standard deviations of the mean were dropped as 

erroneous or outliers. The measures have various coverage over the cohorts, see Supplementary Table 

S4.  

Medication 

Medication incidence is determined by prescription events for any of the British National Formulary 

(BNF) (www-medicinescomplete-com.apollo.worc.ac.uk/#/browse/bnf) (1364) medications, 

all prescription variants of a given BNF type are pooled. Two different time ranges prior to index were 

analysed, pooling prescription data 5 to 10 and 10 to 20 years prior diagnosis. To address the 

differential coverage of prescription data the cohort matching was refined so that the overall 

medication frequency or observation frequency over the given age range prior to index period was 

non-zero and within 20% for AD and non-AD pairing. The cohort characteristics 5 to 10 and 10 to 20 

years prior to index are shown in Table 2.  

Tabel 2 The cohort summary for the medication association with AD incidence analysis. Cases were 

matched with controls based on age, sex, clinical practice together with the number of observations 

and prescriptions over the given time period. 

 

 

 

 

 

 

 

Associations 

The associations between the biometric and blood borne measures and AD status were defined as 

Cohen’s effect sizes. For the prediction model, the data was split into 70:30 training and validation sets, 

and a random forest model based on 15 measures plus age and sex, selected based on a cohort 

coverage of at least half of those with blood pressure readings, was built and fit to the training data. 

The model was then tested on the validation set. The random forest analysis was carried out within 

the R environment using the randomForest package[26]. Predictability was assessed through a ROC 

AUC analysis. 

The associations of drug prescriptions with AD incidence were defined by the corresponding odds 

ratios, where drug prescription status was a binary call based on any prescription of the drug over the 

given time period. For drugs mostly prescribed for one sex, based on prescription frequency being 

above 10-fold higher in men versus women or women versus men, analysis was restricted to the given 

sex. To test for the robustness of cohort matching we also calculated odds ratios with age, sex and 

number of observations as covariates with a linear logistic regression model. As a further sensitivity 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2024. ; https://doi.org/10.1101/2024.07.17.24310553doi: medRxiv preprint 

https://www-medicinescomplete-com.apollo.worc.ac.uk/#/browse/bnf
https://doi.org/10.1101/2024.07.17.24310553
http://creativecommons.org/licenses/by-nc-nd/4.0/


analysis, we included clinical practice as a random effect in the logistic regression model, we found 

that the inclusion of this error term and additional covariates had no significant effect on our 

conclusions.  

Results 

Biometric associations with AD incidence 

Certain biometrics, like hypertension[27-29] and BMI[6], and blood borne marker levels[30-33] are 

associated with increased risk of developing AD with differences between people going on to develop 

AD and those that aren’t sometimes arising a relatively long time prior to diagnosis. As can be seen in 

Table 3 SBP is significantly high in the AD cohort 10 years prior to diagnosis, with an effect size of 0.89. 

Here, we find SBP in the AD cohort of 140.78+/-11.80 compared to 128.38+/-14.87 in the controls. 
Where we defined the AD cohort to mean those who will go on to develop the disease within the time 

frame of our dataset. The positive association of high SBP is consistent from ten years prior to diagnosis 

whereas the positive association of diastolic blood pressure (DBP) is more marked at ten years prior 

diagnosis than at later stages, with an effect size of 0.36 10 to 20 years prior index dropping to 0.05 in 

the 5 to 10 years range. Another previously reported association with AD incidence is blood serum 

albumin level[34]. This observation is validated in our dataset with albumin levels being the strongest 

negative association with AD incidence across the ten years prior to diagnosis, with levels of 41.97+/-
2.80 in the AD cohort and 42.82+/-3.04 in the controls. This association becomes stronger as diagnosis 

gets closer going from an effect of -0.27 at 10 to 20 years and -0.34 at 5 to 10 years prior to index. 

Table 3. Most significant associations measured by Cohen’s d effect size with confidence intervals for 

blood measures and biometrics with AD for data averaged over 10 to 20 and 5 to 10 years prior to 

diagnosis.  

 

 

 

 

 

 

 

 

 

 

 

Given that there are multiple factors showing association with AD incidence we sought to build a 

predictive model based on these factors. As can be seen in Table 3, there is variable coverage of the 

cohort across the measures. Restricting measures defined in the 10 to 20 years prior to index with 

cohort coverage above half of the SBP we are left with 15 measures defined for a cohort of 219,639.  

Splitting this data into 70:30 training and validation sets and training a random forest predictor model 

on the training set we find a ROC AUC (mean+/-sd) of 0.79+/-0.001 from 10 independent data split 
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runs (accuracy 0.71+/-0.001, precision 0.78+/-0.002, recall 0.66+/-0.003). Not surprisingly, this modest 

level of predictability falls far short of models based on AD specific biomarkers such as phosphorylated 

tau and amyloid[35]. However, in the next section we will see how the observational correlates of AD 

incidence can help in the interpretation of epidemiological drug repurposing.  

Medication prescription associations with AD incidence 

As described in the Methods section, the study cohort was filtered based on matching prescription 

and observation frequencies over given time frames prior to index date. To see to what extent prior 

drug use is associated with AD incidence we gathered prescription data in time frames of 5 to 10 and 

10 to 20 years prior to diagnosis. For sex specific drugs analysis was restricted to the given sex. The top 

positive and negative associations of drug prescriptions prior to index with AD incidence are shown in 

Table 4.  

Table 4. The associations of prior drug prescriptions with AD incidence. The top 20 positive and 

negative associations are shown (ranked by Z score) for drugs taken by both sexes. 

 

 

 

 

 

 

 

 

 

 

 

Table 5. The associations of prior drug prescriptions with AD incidence. The top 20 positive and 

negative associations are shown (ranked by Z score) for drugs taken predominantly by women. 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2024. ; https://doi.org/10.1101/2024.07.17.24310553doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.17.24310553
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 6. The associations of prior drug prescriptions with AD incidence. The top 20 positive and 

negative associations are shown (ranked by Z score) for drugs taken predominantly by men. 

 

 

 

 

 

 

 

In agreement with our observations on the AD risk associated with high blood pressure, we find 

enhanced prescriptions for anti-hypertensive medications (bendroflumethiazide, amlodipine, 
furosemide, atenolol, bisoprolol, ramipril) in the AD cohort, see Table 4 on the right.  Of interest in the 

negative association drug set is Salbutamol which has previously been reported to protect against PD 

based on epidemiological evidence[17], but this has been disputed based on confounding effects of 

smoking and the protective effects of nicotine[36]. Interestingly, salbutamol has been hypothesised as 

a PD repurposing candidate based its driving the transcription of the FGF20[13]. Smoking has been 

reported to be associated with increased rates of dementia[37, 38], ranking number three in the set 

of modifiable risks[39]. However, there have been reports on the possible cognitive benefits of 

nicotine[40, 41]. In this context, the present analysis shows a negative association of nicotine with AD 

incidence, and it would be interesting to include data on non-prescription nicotine use to see to what 

extent the effects of salbutamol and nicotine can be separated.  

Type 2 diabetes drugs 

Not shown in Table 4 are the GLP-1 agonist and SGLT2 inhibitor class of T2D medications which have 

consistent negative associations with AD incidence, see Table 7 for details. Given the consistent 

negative association we also defined correlations for prescription of any of the GLP-1 drugs in the data 

base, see entries under pooled in Table 7. Interestingly, the GLP-1 agonist liraglutide has been recently 

reported to have positive effects in a year-long phase 2 trial in people with AD[42] and the closely 

related exenatide has shown evidence of reducing AD risk[43]. Other groups have reported on the 

positive effects of GLP-1 agonists in PD. This result is of interest outside diabetes as a GLP-1 medication, 

semaglutide, has recently been licensed as a weight loss drug[44, 45]. It will be of great interest to 

follow dementia incidence in this population. Another class of T2D medication showing potentially 

positive effects are the glucose lowering SGLT2 inhibitors, see Table 7. This has also been reported in 

a recent systematic review[46]. The SGLT2 inhibitors have only been licenced relatively recently and 

we thus did not have data to power an analysis 10 years prior to diagnosis of AD. These results are of 

especial interest as T2D is a known risk factor for developing the disease[22, 47-49]. In agreement with 

this, our data show a positive association with the most frequent T2D medication, metformin, and AD 

incidence, (logODDs 0.37 (0.31 0.42) Z 12.51 at 10 to 20 years prior AD incidence and logODDs 0.20 
(0.17 0.24) Z 10.64 at 5 to 10 prior AD incidence). The observational data enables us to uncouple the 

effects of disease and the drugs for which they are prescribed. To this end we delimited T2D disease 

cohorts within the 10 to 20 years prior AD diagnosis medication dataset (6,382 men aged 80.57+/-7.77 

and 11,859 women aged 82.69+/-7.70).  In agreement with T2D being a risk factor for AD, we find a 

higher future AD incidence in those with a T2D observation, within this time frame, of 48% as opposed 
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to 45% in those with no T2D observation, with an effect size of 0.13 (0.10 0.16) and Z score 8.15. This 

observation bolsters the positive effects of the T2D drugs as they show a negative association with AD 

and are prescribed for a condition that is associated with a higher AD risk. Further, restricting the 

analysis to the T2D cohort we find a stronger negative association with AD incidence with the GLP-1 

medication, with an effect size of -1.34 (-2.25 -0.57) and Z score of -3.19, contrast with Table 7.  

Triptans and migraine 

Various triptan migraine medications appear to negatively associate with AD incidence. The 

correlations for the complete set of triptan drugs are shown in Table 7 together with the correlations 

for a prescription of any of the triptans. In contrast to T2D discussed above, there is no consensus in 

the literature as to whether migraine is a risk factor for AD, with groups reporting contradictory results 

[50, 51]. Interestingly, there may be an association of blood pressure with migraine incidence, with a 

large study showing a positive association of low blood pressure and migraine incidence in 

adolescents[52]. However, there does not appear to be a consensus on whether migraine is due to 

high or low blood pressure or whether there is indeed any association[53]. In this context, our data 

shows that those on the triptan class of migraine medication have significantly lower SBP. For, example 

at 10 to 20 years prior to AD diagnosis SBP is lower in the triptan cohort in both the control and case 

cohorts, with effect sizes of -0.24 (-0.29 -0.20) N triptans +/- 1967/65027 in the controls and -0.23 (-

0.30 -0.16) N triptans +/- 794/62149 in cases. Triptans make up only for part of the migraine 

prescription options, with NSAIDs being another option, see the BNF drug data (www-

medicinescomplete-com.apollo.worc.ac.uk/#/browse/bnf). The observational data allows for 

delimiting a migraine cohort within the AD case control cohort. The overall migraine incidence 10 to 

20 years prior to index is 3.4%. However, we find that this rate is significantly lower, 2.06%, in the those 

going on to develop AD, with an effect size of -0.83 (-0.88 -0.77) and Z score of -27.73. Restricting to 

the migraine cohort, we now have no negative association of triptan medication with AD status, with 

31% of the migraine cohort having triptan medication in both the AD and control cohorts. Thus, we 

can conclude that in this instance the negative association we found in our initial analysis was driven 

by the underlying disease status as opposed to the medication for the disease. With regard to 

establishing a rigorous association between migraine, AD and SBP, a further appropriately matched 

case control analysis would have to be carried out. 

Hormonal drugs 

In the analysis of drugs predominantly prescribed to women, see Table 5, we find consistent negative 

associations with hormonal medications with the top negative association with AD incidence at both 

5 to 10 years and 10 to 20 years prior index being with the postmenopausal medication estradiol. In 

this context the protective effects of oestrogen in the context of AD it has been reported that 

postmenopausal women on oestrogen had significantly delayed AD onset[54, 55]. However, a trial in 

AD patients did not show a positive effect of disease progression, rather the reverse[56, 57]. It has 

been suggested that the positive effects of hormone replacement are only present in a younger 

cohort[58]. Prescription of the weaker estrogen estriol is associated with increased AD incidence, and 

this may be accounted for by the types of conditions it is prescribed for, such as urinary tract infections 

and vaginal atrophy in contrast with the hormonal replacement use of the negatively associated 

estrogen drugs. 

The number of male specific drugs is smaller than those prescribed specifically for women, and we 

find no significant negative associations with AD incidence and prescription of these medications. The 

drugs associated with increased AD incidence are prescribed for prostate enlargement and impotence, 

see Table 6. It is not clear how these medications of the corresponding diseases are linked to AD, 
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though it has been reported that men with benign prostate hyperplasia have a higher rate of AD and 

other dementias[59]. 

Table 7. Sets of compounds belonging to classes. The associations based on prescriptions of any of the 

medications in the various classes are shown as combined scores. 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

Effective disease modifying therapeutics for AD have so far proved elusive due to the multi-factorial 
nature of the condition with a complex set of diverse causes converging on catastrophic dementia 
with onerous and increasing burdens on the health care system as well as the obvious toll it takes on 
the quality of life for the individual. The increasing availability of curated diagnosis, prescription and 
biometric data, through resources such as the CPRD[19], HDRUK[18] and UK Biobank[25], has allowed 
for an investigation of the associations between modifiable lifestyle factors and disease incidence that 
can inform guidelines as well as providing a basis for segregating populations for focussed early 
intervention. Also, strong associations between drug use and disease incidence can build hypotheses 
for repurposing initiatives. The present study sought to investigate both biometric and prescription 
associations with future AD incidence within one case-control cohort, where each case is 
demographically matched with a control at the time of diagnosis and data collected prior to diagnosis. 

Our findings recapitulate several significant associations between biometric measures and the risk of 
developing AD. Specifically, SBP and DBP were consistently associated with an increased risk of AD, 
with SBP showing a significant positive association up to ten years before diagnosis. Blood serum 
albumin levels also emerged as a strong negative predictor of AD, reaffirming its potential role as a 
biomarker for early detection. It would be of interest to see whether compromised blood brain barrier 
due to elevated blood pressure[60-62] and reduced clearance of toxic protein aggregates due to low 
albumin levels[63-65] contribute additively to dementia risk. There may be however and independent 
correlation between serum albumin and hypertension, with a study showing that low albumin levels 
predict hypertension[66]. Supporting this, out of all the blood borne markers we have data for, serum 
albumin level is the most significant negative correlator of SBP level (logODDs -0.20 Z -37.93, 
controlling for age and sex). This motivates further investigation of dementia incidence in people with 
hypoalbuminemia.  
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In terms of medication prescriptions, our analysis dovetails with the biometric data, showing a 
relatively high prescription of anti-hypertensives in the cohort going on to develop AD. As such, the 
drug associations reflect the risk associated with hypertension and not with taking the drug. Of the 
drugs showing a negative association with AD, salbutamol has been shown to be protective in PD in a 
relatively large epidemiological study[17] and an animal model of the disease[13], but the direct causal 
link has been questioned with a study claiming that the association is confounded by the relatively 
low PD incidence in smokers[36].  In contrast, there appears to be a consensus that smoking is a 
dementia risk[39], and it is difficult to argue that smoking would confound the negative association of 
salbutamol use with AD incidence. However, we see a negative association of nicotine prescription 
and AD incidence and it would be of interest to include non-prescription nicotine use in the analysis 
to see whether the salbutamol effect is robust. Other drugs with reported beneficial effects in 
dementia are two classes of T2D medications, the insulin modulating GLP-1 agonists and the glucose 
lowering SGLT2 inhibitors. These results are particularly interesting given the increased dementia 
incidence in diabetics[67]. The SGLT2 inhibitors have only been licenced relatively recently and we 
thus did not have data to power an analysis 10 years prior to diagnosis of AD and it will be of interest 
to return to the analysis once more long-term use data becomes available. The GLP-1 agonists have a 
longer track record as T2D medications but perhaps of greater interest is the recent licencing of the 
GLP-1 agonist semaglutide as a weight loss drug[68]. The subsequent larger cohort of users will 
facilitate a more robust association analysis. The strongest negative associations with AD incidence in 
AD were with postmenopausal hormonal prescriptions. The protective effects of estrogen has been a 
long established[54, 55], however the subsequent clinical trials proved to be disappointing[56, 57]. 
One criticism of the trial is that it was conducted with older women and perhaps therefore less 
relevant to investigating a protective effect[58]. Apart from the reported neuroprotective effects of 
sumatriptan in an animal stroke model[69], as far as we know the triptan class of migraine medications 
have not previously been reported in connection with neurodegenerative conditions.  Our analysis 
points to the negative association of triptan prescription with AD incidence as being condition driven, 
as we observe a lower AD incidence in the migraine population. Further, when the analysis is restricted 
to those with a migraine diagnosis there is no longer a negative association of the drugs with incidence 
of AD. This observation highlights the importance of the inclusion of concurrent observational data in 
drug repurposing strategies based on prescription data. 

Overall, these results underscore the importance of a multifaceted approach in understanding and 
addressing intervention in AD. By integrating observational data and medication histories, we can 
enhance our ability to predict and potentially mitigate AD risk through tailored interventions. Future 
research should continue to explore these associations in larger and more diverse populations, 
considering the potential for drug repurposing and the development of targeted preventive strategies. 

Study limitations 

As with most retrospective studies, it is problematic to make conclusions as to causality based on 
correlations. For example, as shown here, the seemingly protective effects of anti-migraine 
medication are confounded by the lower incidence of AD in the migraine cohort. Which in turn may 
be due to the differential biometrics in the migraine cohort. In contrast to the analysis of biometrics 
and blood borne factors, where one is comparing numerical measures, the analysis of medication 
incidence is complicated by being categorical, where a null assignment for a given medication may be 
due to the lack of data. The present study aimed to circumvent this problem by filtering the cohort to 
ensure a degree of observation and prescription matching. 
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Supplementary Data 

Table S1. The SNOMED codes and descriptions for AD assignment in the case cohort. First ever 
diagnosis of AD was between 1/1/2012 and 31/12/2022 and this was defined as the index date 
for control cohort matching. 

Original Read Code Term Snomed CT Concept Id Snomed CT Description Id 

F110 Alzheimer's disease 26929004 45046017 

Eu00 [X]Dementia in 
Alzheimer's disease 

26929004 45046017 

Eu002 [X]Dementia in 
Alzheimer's dis, atypical 
or mixed type 

26929004 45046017 

Eu00z [X]Dementia in 
Alzheimer's disease, 
unspecified 

26929004 45046017 

Fyu30 [X]Other Alzheimer's 
disease 

26929004 45046017 

Eu00z-1 [X]Alzheimer's dementia 
unspec 

26929004 45046017 

^ESCTAD293123 AD - Alzheimer's disease 26929004 1225144019 

^ESCTAL293124 Alzheimer disease 26929004 2839267017 

^ESCTAL293125 Alzheimer dementia 26929004 3424952012 

Eu025 Diffuse Lewy body 
disease 

80098002 132893017 

F116 Lewy body disease 80098002 132893017 

^ESCTLE380262 Lewy body variant of 
Alzheimer's disease 

80098002 132894011 

^ESCTLB380264 LBD - Lewy body disease 80098002 1234436013 

^ESCTDE380265 Dementia of the Lewy 
body type 

80098002 1234437016 

^ESCTCO380267 Cortical Lewy body 
disease 

80098002 1234439018 

^ESCTFA500550 Familial Alzheimer's 
disease of early onset 

230265002 345083019 
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^ESCTFA500554 Familial Alzheimer's 
disease of late onset 

230267005 345085014 

^ESCTFO500558 Focal Alzheimer's 
disease 

230269008 345087018 

F1100 Alzheimer's disease with 
early onset 

416780008 2957141019 

Eu000-3 [X]Alzheimer's disease 
type 2 

416780008 2957119019 

Eu000 Dementia in Alzheimer's 
disease with early onset 

416780008 2957119019 

Eu000-1 [X]Presenile 
dementia,Alzheimer's 
type 

416780008 2957138011 

Eu000-2 [X]Primary degen 
dementia, Alzheimer's 
type, presenile onset 

416780008 2957119019 

^ESCTPR689721 Primary degenerative 
dementia of the 
Alzheimer type, 
presenile onset 

416780008 2549310013 

^ESCTDE689724 Dementia of the 
Alzheimers type with 
early onset 

416780008 2957133019 

^ESCTPR689725 Presenile dementia, 
Alzheimer's type 

416780008 2957138011 

^ESCTDE689727 Dementia in Alzheimer's 
disease - type 2 

416780008 2957156011 

F1101 Alzheimer's disease with 
late onset 

416975007 2957124016 

Eu001-1 [X]Alzheimer's disease 
type 1 

416975007 2957137018 

Eu001 Dementia in Alzheimer's 
disease with late onset 

416975007 2957137018 

Eu001-3 [X]Primary degen 
dementia of Alzheimer's 
type, senile onset 

416975007 2957137018 

Eu001-2 [X]Senile 
dementia,Alzheimer's 
type 

416975007 2957124016 

^ESCTPR690018 Primary degenerative 
dementia of the 
Alzheimer type, senile 
onset 

416975007 2549518019 

^ESCTDE690020 Dementia of the 
Alzheimers type, late 
onset 

416975007 2957123010 

^ESCTSD690022 SDAT - Senile dementia, 
Alzheimer's type 

416975007 2957134013 

^ESCTDE690024 Dementia in Alzheimer's 
disease - type 1 

416975007 2957155010 

^ESCTNO783407 Non-amnestic Alzheimer 
disease 

722600006 3332846016 

^ESCTMI802420 Mixed dementia 79341000119107 2955467016 

^ESCT1237064 Dementia with mixed 
etiology 

79341000119107 3670850017 
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^ESCT1237065 MVAD - Mixed vascular 
Alzheimer dementia 

79341000119107 3670851018 

^ESCT1237066 Dementia with mixed 
aetiology 

79341000119107 3670852013 

^ESCTDE804491 Delusions in Alzheimer's 
disease 

141991000119109 2968442016 

^ESCTDE804494 Depressed mood in 
Alzheimer's disease 

142001000119106 2968437012 

^ESCTNO500556 Non-familial Alzheimer's 
disease of late onset 

230268000 345086010 

^ESCTNO500552 Non-familial Alzheimer's 
disease of early onset 

230266001 345084013 

^ESCTAL804498 Alzheimer's disease co-
occurrent with delirium 

142011000119109 3311926019 

^ESCTPR257573 Primary degenerative 
dementia of the 
Alzheimer type, senile 
onset, with delirium 

4817008 9023015 

^ESCTPR292993 Primary degenerative 
dementia of the 
Alzheimer type, senile 
onset, with depression 

26852004 44934012 

^ESCTEA803291 Early onset Alzheimer's 
disease with behavioural 
disturbance 

105421000119105 2985868010 

^ESCTEA803293 Early onset Alzheimers 
disease with behavioral 
disturbance 

105421000119105 2987421013 

^ESCTDE796928 Dementia of the 
Alzheimer type with 
behavioural disturbance 

1581000119101 2967544019 

^ESCTPR357504 Primary degenerative 
dementia of the 
Alzheimer type, senile 
onset, uncomplicated 

66108005 109791011 

^ESCTPR260327 Primary degenerative 
dementia of the 
Alzheimer type, 
presenile onset, 
uncomplicated 

6475002 11739017 

EMISNQDD3 [D] Dementia in 
Alzheimer's disease 

914951000006105 914951000006114 

EMISICD10|F0024 Dementia in Alzheimer's 
dis, atypical or mixed 
type, other mixed 
symptoms 

1972341000006107 1972341000006111 

EMISICD10|F0094 Dementia in Alzheimer's 
disease, unspecified, 
other mixed symptoms 

1972471000006107 1972471000006111 

EMISICD10|F0020 Dementia in Alzheimer's 
dis, atypical or mixed 
type, without additional 
symptoms 

1972231000006105 1972231000006114 

HNG0062 [RFC] Alzheimer's 
disease 

905791000006104 905791000006115 
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EMISICD10|F0014 Dementia in Alzheimer's 
disease with late onset, 
other mixed symptoms 

1972211000006104 1972211000006115 

EMISICD10|F0004 Dementia in Alzheimer's 
disease with early onset, 
other mixed symptoms 

1972141000006109 1972141000006113 

EMISICD10|F0090 Dementia in Alzheimer's 
disease, unspecified, 
without additional 
symptoms 

1972371000006104 1972371000006115 

EMISICD10|F0010 Dementia in Alzheimer's 
disease with late onset, 
without additional 
symptoms 

1972171000006101 1972171000006117 

EMISICD10|F0022 Dementia in Alzheimer's 
dis, atypical or mixed 
type, other symptoms, 
predominantly 
hallucinatory 

1972291000006109 1972291000006113 

EMISICD10|F0021 Dementia in Alzheimer's 
dis, atypical or mixed 
type, other symptoms, 
predominantly 
delusional 

1972251000006103 1972251000006119 

EMISICD10|F0023 Dementia in Alzheimer's 
dis, atypical or mixed 
type, other symptoms, 
predominantly 
depressive 

1972311000006108 1972311000006112 

EMISICD10|F0000 Dementia in Alzheimer's 
disease with early onset, 
without additional 
symptoms 

1971401000006107 1971401000006111 

EMISICD10|F0013 Dementia in Alzheimer's 
disease with late onset, 
other symptoms, 
predominantly 
depressive 

1972201000006102 1972201000006118 

EMISICD10|F0093 Dementia in Alzheimer's 
disease, unspecified, 
other symptoms, 
predominantly 
depressive 

1972451000006102 1972451000006118 

EMISICD10|F0011 Dementia in Alzheimer's 
disease with late onset, 
other symptoms, 
predominantly 
delusional 

1972181000006103 1972181000006119 

EMISICD10|F0003 Dementia in Alzheimer's 
disease with early onset, 
other symptoms, 
predominantly 
depressive 

1972131000006104 1972131000006115 

EMISICD10|F0091 Dementia in Alzheimer's 
disease, unspecified, 
other symptoms, 

1972401000006101 1972401000006117 
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predominantly 
delusional 

EMISICD10|F0012 Dementia in Alzheimer's 
disease with late onset, 
other symptoms, 
predominantly 
hallucinatory 

1972191000006100 1972191000006116 

EMISICD10|F0001 Dementia in Alzheimer's 
disease with early onset, 
other symptoms, 
predominantly 
delusional 

1971541000006105 1971541000006114 

EMISICD10|F0002 Dementia in Alzheimer's 
disease with early onset, 
other symptoms, 
predominantly 
hallucinatory 

1971771000006108 1971771000006112 

 

Table S2. The SNOMED codes and descriptions for T2D assignment. 

Original Read Code Term Snomed CT Concept Id Snomed CT Description Id 
L1809 Gestational diabetes 

mellitus 
11687002 20191016 

C1001-2 Non-insulin 
dependent diabetes 
mellitus 

44054006 493773010 

C10 Diabetes mellitus 73211009 121589010 
C10F Type 2 diabetes 

mellitus 
44054006 197761014 

1252 FH: Diabetes 
mellitus 

160303001 249794016 

1434 H/O: diabetes 
mellitus 

161445009 251591016 

C10F-1 Type II diabetes 
mellitus 

44054006 493774016 

C109-2 Type 2 diabetes 
mellitus 

44054006 197761014 

8CA41 Diabetes mellitus 
diet education 

284350006 2575925018 

C109 Non-insulin 
dependent diabetes 
mellitus 

44054006 493773010 

C108 Insulin dependent 
diabetes mellitus 

73211009 121589010 

EMISNO3 No H/O: diabetes 
mellitus 

857361000006103 857361000006119 

HNG0605 [RFC] Diabetes 
mellitus 

908831000006102 908831000006118 

C10FJ Insulin treated Type 2 
diabetes mellitus 

237599002 2967820013 
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Table S3. The SNOMED codes and descriptions for migraine assignment. 

Original Read Code Term Snomed CT Concept Id Snomed CT Description Id 
F260-1 Migraine with aura 4473006 7595017 
F260 Migraine with typical 

aura 
230462002 345348012 

F26 Migraine 37796009 63055014 
F261-1 Migraine without 

aura 
56097005 93294013 

F261 Common migraine 56097005 93295014 
1297 FH: Migraine 160342001 249890015 
1474 H/O: migraine 161481007 251645017 
F261z Common migraine 

NOS 
56097005 93295014 

F262 Migraine variants 193030005 297337016 
F262z Migraine variant 

NOS 
193030005 297337016 

F26z Migraine NOS 37796009 63055014 
8B6N Migraine prophylaxis 408381007 2159945013 
14740 History of migraine 

with aura 
608837004 2958210010 

EMISNQH/12 H/O: migraine with 
aura 

1763401000006105 1763401000006114 

EMISNQH/13 H/O: migraine 
without aura 

1763411000006108 1763411000006112 

^ESCTCL257016 Classical migraine 4473006 7596016 
^ESCTHI454016 History of migraine 161481007 2986612014 
^ESCTCO476993 Complex migraine 193039006 2966546010 
^ESCTMI500829 Migraine aura 

without headache 
230465000 345351017 

^ESCTRE701607 Refractory migraine 423894005 2644986016 
^ESCTMI730629 Migraine variant with 

headache 
445322004 2872940010 

^ESCTMI752039 Migraine with 
persistent visual 
aura 

699314009 2983774015 

^ESCTCH803879 Chronic intractable 
migraine without 
aura 

124171000119105 2967600014 

^ESCT1234532 Chronic migraine 427419006 3638229012 
 
Table S4. The blood borne measures and biometric data together with their averages and 
standard deviations. Data for these variables was collected for the case and control cohorts 
and only values falling within two standard deviations of the mean were included in the analysis. 
 

Measure AVE SD 

Neutrophil count 4.581796 4.416166 

Basophil count 0.04585 0.308122 

Platelet count 267.4525 80.80724 

Monocyte count 0.567595 1.788406 
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Eosinophil count 0.211243 0.881311 

Lymphocyte count 2.168272 4.066914 

Serum C reactive protein level 10.40646 24.78166 

Nucleated red blood cell count 0.027757 0.463456 

Serum bilirubin level 309.9447 305.2885 

Corrected serum calcium level 2.383231 3.273162 

Serum high density lipoprotein cholesterol level 1.457952 1.016703 

Serum low density lipoprotein cholesterol level 2.885637 1.500549 

Plasma fasting glucose level 5.666369 10.16407 

Serum albumin level 42.00783 4.337708 

Serum sodium level 139.6322 4.714234 

Serum aspartate aminotransferase level 26.46625 26.42589 

Serum creatinine level 83.31377 35.19167 

Serum urate level 249.8492 190.4155 

Serum urea level 5.977894 3.183229 

Serum luteinising hormone level 13.79889 16.40006 

Plasma urea level 5.744658 3.030966 

Serum thyroid stimulating hormone level 2.540394 6.414843 

Plasma thyroid stimulating hormone level 2.485047 7.091601 

HbA1c level  7.257907 4.981173 

Serum free triiodothyronine level 5.669793 3.804148 

Serum free T4 level 15.01162 5.020864 

Serum total bilirubin level 10.06324 8.484136 

Serum gamma-glutamyl transferase level 54.16035 103.3814 

Plasma gamma-glutamyl transferase level 50.21046 86.74896 

Plasma creatinine level 83.43387 35.93568 

Plasma total bilirubin level 11.00833 10.4315 

Plasma high density lipoprotein cholesterol level 1.397647 0.419721 

Urine microalbumin level 32.8716 109.1479 

Plasma albumin level 40.66991 4.225833 

Plasma total cholesterol level 4.952289 1.225716 

Plasma sodium level 139.2439 3.313736 

Plasma alanine aminotransferase level 26.62394 35.96136 

Plasma alkaline phosphatase level 116.6087 84.45989 

Plasma calcium level 2.375753 0.122061 

Plasma potassium level 4.138521 0.950778 

Calculated low density lipoprotein cholesterol level 2.833689 1.182399 

Serum creatine kinase level 128.2204 126.8469 

Serum total cholesterol level 5.028981 2.580017 

Urine albumin level 35.93196 118.2024 

Urine creatinine level 13.64487 90.30944 

Thyroid stimulating hormone level 2.911864 11.787 

Total alkaline phosphatase level 84.17497 50.05719 

Total white cell count 7.417013 8.405416 
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ALT/SGPT serum level 28.48148 33.43329 

Blood glucose level 6.572861 6.822651 

Haemoglobin A1c level 7.717305 7.205028 

Serum glucose level 5.765725 3.269726 

Serum follicle stimulating hormone level 21.15659 29.55843 

Plasma glucose level 5.932626 10.43315 

Serum ferritin level 96.63587 142.6043 

Serum folate level 8.56991 6.817203 

Serum globulin level 28.67102 4.864038 

Serum inorganic phosphate level 1.124378 1.289073 

Serum iron level 14.83141 10.99456 

Serum potassium level 4.428088 1.214448 

Serum testosterone level 6.603195 8.670323 

Serum transferrin level 3.252408 21.23239 

Serum triglycerides level 1.665449 1.331858 

Serum vitamin B12 level 403.5655 231.3958 

Serum alkaline phosphatase level 87.00863 53.79808 

Serum bicarbonate level 26.39662 4.142428 

Serum calcium level 2.363842 1.642945 

Serum chloride level 101.2795 9.543153 

Serum cholesterol level 5.047981 2.307462 

Red blood cell count 4.512244 4.189216 

Prostate-specific antigen level 5.557065 36.24308 

Serum alanine aminotransferase level 26.27311 33.63325 

Non high density lipoprotein cholesterol level 3.469771 1.146355 

Haemoglobin A1c level  46.1461 15.69581 

Calcium adjusted level 2.381319 1.666903 

Serum prostate specific antigen level 6.247608 41.4478 

Serum non high density lipoprotein cholesterol level 3.427815 1.136847 

Serum total 25-hydroxy vitamin D level 55.12612 28.85768 

Systolic arterial pressure 133.3399 20.99563 

Diastolic arterial pressure 78.29111 12.19942 

weight 73.92255 26.27838 

height 159.714 32.51027 
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