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Abstract

Understanding and forecasting infectious disease spread is pivotal for effective
public health management. Traditional dynamic disease modeling is an essential
tool for characterization and prediction, but often requires extensive expertise and
specialized software, which may not be readily available in low-resource envi-
ronments. To address these challenges, we introduce an AI-powered modeling
assistant that utilizes advanced capabilities from OpenAI’s latest models and func-
tionality. This tool enhances the accessibility and usability of infectious disease
models and simulation frameworks by allowing users to generate or modify model
configurations through intuitive natural language inputs or by importing explicit
model descriptions. Our prototype integrates with an established open-source dis-
ease simulation framework called the Compartmental Modeling Software (CMS)
to provide a seamless modeling experience from setup to analysis. The AI assistant
efficiently interprets disease model parameters, constructs accurate model files,
executes simulations in a controlled environment, and assists in result interpretation
using advanced analytics tools. It encapsulates expert knowledge and adheres to
best practices to support users ranging from novices to expert modelers. Further-
more, we discuss the limitations of this AI assistant, particularly its performance
in complex scenarios where it might generate inaccurate specifications. By en-
hancing the ease of disease modeling and supporting ongoing capacity-building
initiatives, we believe that AI assistants like this one could significantly contribute
to global health efforts by empowering researchers, especially in regions with
limited resources, to develop and refine their disease models independently. This
innovative approach has the potential to democratize disease modeling in global
health, offering a scalable solution that adapts to diverse needs across a wide-range
of geographies, languages, and populations.

1 Introduction

Infectious diseases continue to pose a significant global health challenge, contributing substantially to
morbidity and mortality worldwide. This burden disproportionately affects low- and middle-income
countries (1; 2). In these regions, the capacity to implement effective public health interventions—
which can vary widely depending on the pathogen—is often constrained by limited resources (3).
Despite the availability of effective interventions, the scarcity of resources in high-burden areas
complicates efforts to manage and mitigate the impact of diseases effectively (2). Central to over-
coming these challenges is planning and evidence-based decision-making, which heavily relies on
data collection, quantitative modeling, and analysis (4). However, the detailed modeling and analysis
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requires specialized skills, knowledge of advanced software, and significant time investment to tailor
models to specific geographic contexts (5). This paper explores how recent advancements in artificial
intelligence (AI) can address these obstacles, providing specialized tools that empower public health
officials to directly engage with modeling and analysis using their own data and hypotheses. By
enhancing the accessibility and efficiency of these processes, AI innovations offer a promising avenue
for strengthening global health responses in resource-limited settings.

A wide array of mathematical and statistical models are employed in global health for policy planning
and disease management (6). Advances in data-driven forecasting methods have enhanced our ability
to characterize epidemiological trends and predict future infection trajectories (7). Throughout the
COVID-19 pandemic, an international consortium of modelers utilized diverse methodologies to
integrate new data streams, refine models, and generate predictions that informed critical public health
decisions (8; 9; 7) with varying levels of predictive success (10; 11). Similarly, mechanistic models,
which incorporate geography-specific factors such as demographics, human mobility, and historical
disease data, have proven invaluable in understanding localized disease scenarios and planning
targeted interventions for malaria control and elimination (12; 13). Both types of models—data-
driven and mechanistic—demand substantial expertise and development effort. Although a vast
number of models and simulation engines have been detailed in scholarly articles and books, with
code often shared on platforms like GitHub, utilizing these resources to develop new models or adapt
existing ones remains a formidable challenge. Even setting up the computational environment with
the correct libraries and packages can be prohibitive. Reducing these barriers to entry is crucial,
especially for individuals in resource-constrained environments who may lack the resources or time
to develop models from scratch. Facilitating easier access to and use of these modeling tools could
significantly accelerate disease modeling efforts in areas most in need.

Recent advances in generative artificial intelligence have catalyzed transformative changes across
various scientific and industrial sectors (14; 15). The introduction of OpenAI’s GPT-4 has sparked a
myriad of innovative applications leveraging these sophisticated large language models (LLMs) (16).
These LLMs excel not only in engaging dialogues but also in a range of functions, including
software development, text summarization, advanced data analytics, and the execution of specialized
functions—all through natural language prompts—and potentially even general reasoning (16; 15; 17).
Critically, these capabilities can be enhanced by the integration of retrieval-augmented generation
techniques, which dynamically incorporate external, contextually relevant information into the
generation process, thereby enriching the output’s quality and applicability (18). The potential of
these LLMs to streamline, enhance, and accelerate complex workflows is substantial, indicating their
pivotal role in advancing current technological capabilities.

In this article, we explore the application of these transformative AI tools to develop an AI assistant
designed to facilitate infectious disease modeling. We detail the process by which the AI modeling
assistant can interpret disease model descriptions—either through direct user prompts or by processing
input documents—to generate syntactically correct model files. Subsequently, we illustrate how
these models can be simulated using OpenAI’s custom functions and a known simulation engine, and
analyze the resultant data using OpenAI’s advanced Code Interpreter capabilities. Furthermore, we
identify and discuss the principal limitations of the current prototype and propose potential directions
for future development. This discussion aims to provide a comprehensive understanding of how AI
can enhance disease modeling practices, particularly for policymakers in settings constrained by
resources and expertise.

2 Methods

In this section, we describe the methods, models, data, and workflow. Figure 1 portrays both the
types of questions that users may ask the assistant and how the AI modeling assistant engages with
different elements of the modeling workflow. Note that the AI nodeling assistant does not simply
execute the entire modeling workflow, but can be used for only one part of the workflow or iterate
between elements adaptively and as the user needs.

2.1 LLM and computational environment

OpenAI’s Python package, openai=1.9.0, was employed to access the API to query the GPT-4
model, specifically version gpt-4-1106-preview. The model was utilized with its default parame-
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Figure 1: Schematic representation of the AI Modeling Assistant workflow. This diagram illustrates
the interactive process between the user and the AI assistant. User prompts (left) initiate various tasks
such as building, modifying, or analyzing disease models, which are handled by the AI Modeling
Assistant. The assistant’s role involves extracting and interpreting model descriptions from documents,
building and running models through a containerized CMS engine, and analyzing the model outputs
using advanced Code Interpreter tools. Each step in the workflow demonstrates the assistant’s
capabilities in facilitating an iterative, inefficient, and user-friendly approach to disease modeling.
The image representing the AI Modeling Assistant was created using OpenAI’s multimodal model.

ters, including the temperature setting. The functionality of the AI assistant was integrated within
this framework. For execution and documentation of the code, a Jupyter Notebook environment was
utilized. This environment was managed using Anaconda (conda 23.7.4). The setup included cap-
turing all installed packages and their dependencies. Detailed information regarding the configuration
of the computational environment and a complete list of the software and libraries can be found at
(19). The jupyter notebook was run on a Apple MacBook Pro with a Apple M3 Max with 36 GB of
memory on the Sonoma 14.4.1 macOS.

2.2 Prompt Engineering for the AI modeling assistant

The AI modeling assistant is provided a specific role definition. This is directly input into the OpenAI
API role definition for the assistant. The prompt describes the AI modeling assistant as responibile to
help build the model syntax file, write the file, call the modeling simulation engine, and use Code
Interpreter to plot the output data of the CMS; see Appendix §A for the specific role definition. To
test the performance of the assistant with few-shot learning, three model files are included in the
prompt as examples for the assistant to better understand the context; these model files can be found
in Appendix §B. For the AI modeling assistant, we enable the File Retrieval and Code Interpreter
functionality offered in the assistant API allowing documents to be uploaded and output data to be
analyzed and visualized.

2.3 Compartmental Modeling Software for disease simulation

The Compartmental Modeling Software (CMS) is a professionally developed and tested code-base
to simulate infectious disease models in the eradication regime using discrete stochastic reaction
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numerical methods (20). In this disease transmission regime, numerical methods are required that
can handle small discrete case counts. The application requires a model description in the format
of text and a custom model file format called EMODL. In addition, a configuration file in a json
format includes details about the simulation including numerical solver, duration of the simulation,
number of realizations, etc. The code respository for CMS can be found at (21) along with links
to a docker image containing the application (22). In the workflow described here, we leverage the
Docker image and Docker platform for Mac to run the container. The output file from the CMS
simulation is automatically uploaded to the thread through the file retrieval functionality.

2.4 Code Interpreter for interrogating model output

The Code Interpreter function is enabled for this assistant. The output of the CMS simulation is
uploaded in the thread. Code Interpreter is used to analyze and plot the output data from the simulation
using natural language prompts.

2.5 Defining custom functions

Custom functions are defined to support the AI modeling assistant’s goals. Multiple custom functions
are constructed to write the model file from the prompt and to run the CMS simulation using the
model file and config file. With the CMS container running in the background, the custom function
executes a docker command function that points to the model and configuration file.

3 Results

3.1 Zero-shot learning and prompt engineering can produce inaccurate model files

Using the assistant’s role description alone, it is possible to prompt the AI to generate an EMODL file
based on a specified disease description. However, the results indicate that the syntax of the EMODL
files generated from nearly every model query was incorrect, as demonstrated in the example provided
in Appendix §C. While the pre-trained model seems to possess a foundational understanding of the
CMS framework and EMODL format, the files it produced were often flawed. For the example in
Appendix §C, the EMODL file is incomplete (does not include the import packages and the start-
model and end-model flags), inaccurate (does not define the species, params, or reaction correctly),
and inconsistent (does not replicate the reaction definition correctly).

3.2 Few-shot learning and prompt engineering produces model files from natural language
prompts

Incorporating three EMODL files from a public GitHub repository into the prompts as examples
significantly improved the accuracy of the AI-generated model files. Notably, the syntax of the
resulting model files was predominantly correct, with minimal errors or ’hallucinations’ observed,
even when repeating the same prompt. Figure 2 illustrates an example where the AI modeling assistant
was prompted to generate a model file based on a description of a Susceptible-Infected-Susceptible
(SIS) system. The assistant not only produced an EMODL file with syntactically correct format but
also accurately captured the mathematical specifics of the SIS model. It is important to note that the
SIS model was not included in the initial few-shot learning used for prompt engineering. Interestingly,
the AI assistant named the EMODL file simple-SIS and correctly described it as an SIS model in the
response. This highlights that information about disease models and concepts likely existed in the
corpus of documents used to train GPT4.

3.3 The AI assistant can extract information from a model description in a document and
translate to the EMODL format

Alternatively to direct input in a chat interface, users can upload a model description document to
the AI assistant. This assistant is capable of extracting text from the document and converting the
extracted model description into EMODL format. The nature of the model descriptions in these
documents often mirrors those found in peer-reviewed journal articles on modeling; for an example
of such a model description, refer to Appendix D.
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Figure 2: Interaction and output of the AI Modeling Assistant using the EMODL language for a
Susceptible-Infected-Susceptible (SIS) disease model. The upper section of the image displays a
text-based dialogue where the user requests the creation of an EMODL file, which the assistant
generates based on specified model parameters and dynamics. Below, the assistant runs the model
using a computational simulation engine (CMS) and presents a time series plot of the simulation
results. This plot depicts the changes in the numbers of susceptible (S) and infected (I) individuals
over time, demonstrating the model’s dynamics as simulated by the assistant. The dialogue showcases
the assistant’s capabilities in model creation, execution, and result visualization, highlighting its
practical application in disease modeling workflows.
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This capability to directly convert textual model descriptions from documents into EMODL using
natural language prompts represents a significant advancement in streamlining disease modeling
workflows. However, there are notable limitations to this method. The assistant struggles with
documents that are complex either in terms of their length, content, or if they are a scanned copy of
an older document. A specific instance of this limitation is illustrated by the assistant’s inability to
accurately extract the epidemiological model from the seminal 1996 research article by Eichner and
Dietz (23). This document poses considerable challenges for parsing, as the model is described using
a combination of text, tables, appendices, and equations, with the equations expressed in deterministic
ordinary differential equation form even though the article describes simulating a discrete stochastic
reaction network. While the AI assistant can extract portions of the information, it often requires
additional input to accurately complete the model description.

3.4 The AI assistant can efficiently call CMS and plot the output from natural language
prompts

The AI assistant is equipped to automatically initiate the execution of the CMS container using the
model file alongside a standard configuration file. Upon completion of the simulation within the CMS
container, the resulting data are uploaded into the AI assistant thread. Utilizing the Code Interpreter
functionality, users can pose natural language questions to analyze and visually represent the data.
Figure 2 provides an illustration of this capability, showcasing a request to plot the simulation outputs.
In this example, the trajectories of susceptible and infected populations are graphically depicted over
time, representing a minimal output from a disease model simulation.

This example, while illustrative, represents a simple model and scenario. More realistic modeling
efforts may generate outputs that are significantly more complex and larger in size, potentially
encompassing detailed statistical analyses such as calculating 95% confidence intervals for observable
measurements across multiple model realizations. It is anticipated that there may be limitations to the
volume of data that Code Interpreter can handle efficiently. To address larger datasets, the AI assistant
has the capability to generate analytical scripts in languages such as python and R, facilitating offline
data processing.

3.5 The AI assistant can navigate natural language conversations adapting a model iteratively

The AI assistant demonstrates the capability to iteratively refine model descriptions in collabora-
tion with users. Figure 3 presents an example typical of infectious disease modeling, where the
transmission characteristics differ between adults and children, such as higher transmission rates
among children in group childcare settings. The assistant efficiently generated a new EMODL file
that extended the model to include different age groups, both younger and older individuals. While
this model was syntactically correct and compatible with the CMS simulation engine, the initial
model description inaccurately omitted transmission routes between the designated age groups. This
oversight could be considered either a ’hallucination’ or the result of an inadequately specified prompt.
Upon receiving a follow-up prompt to correct this omission (as shown in Figure 3), the assistant
addressed the issue effectively.

For users with limited experience in model building, this highlights a critical limitation. To mitigate
such issues, several strategies could be employed: expanding the range of example model files to
cover various types of models, incorporating disease model building best practices into prompt
engineering for a more interactive experience, and involving specialized agents to review the model
files for common errors. These measures would enhance the reliability and user-friendliness of the
AI assistant in complex model generation scenarios.

4 Discussion

This study aligns with contemporary efforts within the broader scientific and technological community,
where the modular components of OpenAI’s offerings are increasingly being integrated into diverse
workflows (24; 25; 26; 27). Particularly, functionalities such as file retrieval, Code Interpreter,
and custom functions are pivotal in enhancing the capabilities of various applications (28). In
application development, there is a growing trend towards constructing sophisticated apps that
leverage these custom elements and plug-ins. Additionally, the ability to augment these applications
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Figure 3: Enhancement of an EMODL file to include age stratification in a Susceptible-Infected-
Susceptible (SIS) model. The figure depicts an exchange where the user requests the inclusion of
age as a factor in the disease model, leading to separate categories for young and older individuals.
The assistant generates a new model named "age structured SIS," specifying separate compartments
and infection dynamics for young and older populations. Parameters and reactions are defined for
each group, with the initial conditions setting the young and older susceptible populations at 99, and
infected populations at 1. Notably, the green box highlights a critical omission in the model: the lack
of reactions representing transmission between the young and older groups.

with knowledge through retrieval-augmented generation (RAG) exemplifies the advancements in how
AI can be tailored to meet specific research and commercial needs (18). Our work leverages these
developments, demonstrating how AI assistants can be effectively applied in the domain of infectious
disease modeling.

To our knowledge, the application of generative AI tools within the field of global health, as demon-
strated in this study, represents a novel integration of cutting-edge AI technologies with traditional
disease modeling. Prior initiatives have not fully harnessed the capabilities of large language models
(LLMs) to enhance disease modeling processes. This work uniquely combines the strengths of AI,
particularly its proficiency in text processing, summarization, and software development, with estab-
lished and vetted numerical methodologies and software packages for disease modeling. The AI’s
ability to generate syntactically correct model files from natural language inputs, contextualize the
specific requirements of the disease being modeled, and iteratively refine these models through user
interaction, highlights a significant advancement. Conversely, the mathematical modeling community
has excelled in numerically integrating diverse models using sophisticated mathematical techniques
and maintaining control over computational environments. By bridging these two domains, our
approach circumvents the need for AI to redundantly develop numerical schemes that are already
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well-established. Instead, it leverages these existing strengths, providing a pathway to accelerate
learning and adoption in disease modeling for researchers and policy makers in low and middle
income countries.

5 Limitations and challenges

Despite the promising advancements demonstrated in this study, there are inherent limitations and
challenges associated with the integration of AI in disease modeling. This study has highlighted
the ability for AI to support disease modeling through building a working prototype, however, the
application of the prototype has been on a small number of models for demonstration purposes; more
testing is required to verify and validate the capabilities of the assistant and solicit feedback from the
modeling community. In future iterations of this tool, we foresee a significant challenge is the AI’s
capacity to accurately handle large, complex models. While simpler models have been successfully
explored within this article, more intricate systems may not be as readily processed by the AI. To
mitigate this issue, breaking down complex models into smaller, manageable components, employing
multiple AI agents, and iteratively refining the outputs can enhance accuracy and feasibility.

Additionally, the Code Interpreter component, particularly in terms of data plotting, is not yet
perfected. Challenges arise especially when handling large datasets, which may lead to suboptimal
visualization outcomes. While improvements in these functionalities are anticipated as technology
advances, providing supplementary code that can be executed directly in a browser may offer a
more robust solution for handling complex analytical tasks. Furthermore, it is crucial to recognize
that the efficacy of the workflow in generating accurate outputs can vary, and the responsibility for
verifying and refining these outputs ultimately rests with the user. Acknowledging and addressing
these challenges is essential for effectively leveraging AI tools in disease modeling and for ensuring
that the results are both reliable and actionable.

6 Conclusion

Looking ahead, the prototype introduced in this study holds promising avenues for further evolution
and application. One exciting direction is the expansion of the EMODL model file repository to
include a greater variety of model types, each accompanied by text descriptions that elucidate their
design and function. These models could be adaptively selected using RAG, tailored specifically to
the requirements of the desired disease model, geographical context, and demographic considerations.
Data to inform parameters and initial conditions could also be automatically retrieved through RAG
or other retrieval methods. Moreover, the inclusion of multiple modeling and simulation engines,
both bespoke and tailored, is feasible as long as these models are developed within a controlled
computational environment such as Docker. The AI modeling assistant would then be able to select
from a whole library of models allowing the tool to dynamically respond to diverse user needs and
efficiently integrate new modeling platforms. The architecture required to achieve this broader vision
of a modeling assistant will likely require multiple agents specialized to different sub-tasks with a
coordinating agent. More generally, this conceptual architecture could be applied to a diverse set of
modeling domains beyond infectious disease modeling and epidemiology.

The tool described in this article could be enhanced to incorporate a deeper knowledge of disease
modeling by leveraging retrieval-augmented generation of scientific articles or best-in-class guidance
on model construction, operation, and analysis. Such advancements would not only refine the tool’s
utility but also broaden its appeal to a wider audience, particularly those lacking access to specialized
tools and expertise. This could make the AI assistant an invaluable resource, especially in low- and
middle-income countries, where it could significantly support public health decision-making by
democratizing access to advanced disease modeling capabilities.
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A Assigning the AI modeling assistant’s role:

The following is the assigned role for the modeling assistant:

You are an assistant helping to build model files to be executed by the compartmental
modeling software CMS and plot the output of the model.

For the input, you will interact with the user to ask questions of the model or help
parse a document that might describe the model. You will use Code Interpreter to output the
model in the EMODL format.

Once you have written model, then you will call the CMS function to run the sim-
ulation engine on the model.

Then you will import the output file called trajectories.csv in order for the user to
ask questions of the output and plot it in various ways.
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B Few Shot Learning

The following example EMODL files are included in the prompt for few shot learning. These are directly
included as example files in the prompt for the AI Modeling assistant. These models can also be found in the
source code repository ():

B.1 Susceptible Exposed Infected Recovered (SEIR) Model
(import (rnrs) (EMODL cmslib))

(start-model "seir")

(species S 990)
(species E 0)
(species I 10)
(species R 0)
(species CI 0)

(param beta 0.52)
(param Kei 0.25)
(param Kir 0.2)
(param Kwaning 0.0027397260273972603)

(reaction transmit (S) (E CI) (/ (* beta S I) (+ S E I R)) 0)
(reaction shed (E) (I) (* Kei E) 0)
(reaction recover (I) (R) (* Kir I) 0)
(reaction waning (R) (S) (* Kwaning R) 0)

(observe S S)
(observe E E)
(observe I I)
(observe R R)
(observe cumulative CI)
(observe population (+ S E I R))
(end-model)

B.2 Garki model for malaria:
(import (rnrs) (EMODL cmslib))

(start-model "garki.EMODL")

(species X1 1000)
(species X2)
(species Y1 100)
(species Y2)
(species Y3)
(species X3)
(species X4)

(func totalpop (sum X1 X2 X3 X4 Y1 Y2 Y3))

(observe susceptible X1)
(observe latent X2)
(observe infected Y1)
(observe recovering Y2)
(observe immune (+ X3 X4 Y3))
(observe totalpopulation totalpop)

(param delta 0.0001) ; birth and death rate
(param a 0.3) ; human biting rate
(param N 15) ; incubation in human
(param n 10) ; incubation in mosquito
(param alpha2 0.00019) ; rate of transitioning to fast recovery
(param g 0.097) ; susceptibility to bite
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(param r1 0.0023) ; slow daily recovery rate
(param r2 0.023) ; fast daily recovery rate
(param alpha1 0.002) ; rate of losing infectivity

; seasonal parameter
(func C (* 0.2 (+ 1.01 (sin (* (/ time 365) 2 pi)))))
; infection rate
(func h (* g (- 1 (exp (/ (* (- C) Y1) totalpop)))))

(reaction birth () (X1) (* delta totalpop))
(reaction deathX1 (X1) () (* X1 delta))
(reaction deathX2 (X2) () (* X2 delta))
(reaction deathX3 (X3) () (* X3 delta))
(reaction deathX4 (X4) () (* X4 delta))
(reaction deathY1 (Y1) () (* Y1 delta))
(reaction deathY2 (Y2) () (* Y2 delta))
(reaction deathY3 (Y3) () (* Y3 delta))
(reaction infectX1 (X1) (X2) (* X1 h))
(reaction latencyX2 (X2) (Y1) (* X2 100))
(reaction lossinfectY1 (Y1) (Y2) (* Y1 alpha1))
(reaction acquireimmunityY2 (Y2) (Y3) (* Y2 alpha2))
(reaction recoveryY3 (Y3) (X3) (/ (* Y3 h) (- (exp (/ h r2)) 1)))
(reaction infectX3 (X3) (X4) (* X3 h))
(reaction latencyX4 (X4) (Y3) (* X4 100))
(reaction recoveryY2 (Y2) (X1) (/ (* Y2 h) (- (exp (/ h r2)) 1)))

(end-model)

B.3 Polio model with surveillance
; polio_observation_model

(import (rnrs) (EMODL cmslib))

(start-model "polio_surveillance.EMODL")

(species S 2500)
(species I 5)
(species Cu)
(species Cd)
(species R)
(species V)

(func population (sum S I Cu Cd R V))
(func cases (+ Cu Cd))
(func vaccinated (/ V population))

(observe vaccinated_ratio vaccinated)
(observe infection_ratio (/ I population))
(observe cases_ratio (/ cases population))
(observe susceptible_ratio (/ S population))
(observe recovered_ratio (/ R population))
(observe population population)
(observe susceptibles S)
(observe infections I)
(observe cases cases)
(observe observations Cd)
(observe recovereds R)
(observe vaccinated V)

(param mu1 0.005) ;birth rate
(param mu2 0.005) ;death rate
(param alpha (/ 1 200)) ;case/infection rate
(param gammaC (/ 1 30)) ;recovery rate cases
(param gammaI (/ 1 30)) ;recovery rate infections
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(param betaC (/ 1 1000)) ;infectivity rate cases
(param betaI (/ 1 8000)) ;infectivity rate infections
;(param theta .01) ;RI vaccination rate less than 1
(param detection .8) ;active surveillance sensitivity

;parameters for vaccination outbreak response
(param x1 .25) ;upper asymptote is also the maximum coverage level for outbreak response
(param x2 0) ;lower asymptote
(param x3 1)
(param x4 1)
(param x5 .5) ;speed of response/growth rate
(param x7 3)
(param x8 0) ;vertical shift

;infection-triggered
;x6 between 80-120 produces multiple vaccination events when paired with alpha 1 over 200
;274 approximates 250 threshhold
;524 approximates 500 threshhold
;(param x6 600) ;median horizontal shift point which is somewhat higher than the trigger
point

;case detection-triggered
;use vaccination campaign calculation spreadsheet to estimate parameter x6
;44 approximates 20 threshhold
;39 approximates 15 threshhold
;34 approximates 10 threshhold
;29 approximates 5 threshhold
(param x6 34) ;median horizontal shift point which is somewhat higher than the trigger point

(reaction birth () (S) (* mu1 population))
(reaction deathS (S) () (* mu2 S))
(reaction deathV (V) () (* mu2 V))
(reaction deathI (I) () (* mu2 I))
(reaction deathCu (Cu) () (* mu2 Cu))
(reaction deathCd (Cd) () (* mu2 Cd))
(reaction deathR (R) () (* mu2 R))
(reaction infectI (S) (I) (* betaI S I))
(reaction infectC (S) (I) (* betaC Cu))
(reaction cases (I) (Cu) (* alpha I))
(reaction recoveryI (I) (R) (* gammaI I))
(reaction recoveryCu (Cu) (R) (* gammaC Cu))
(reaction recoveryCd (Cd) (R) (* gammaC Cd))

(end-model)

C Example model file from zero-shot learning assistant

The following is the exact user prompt and model output from the assistant in zero shot learning:

User: I need you to write me an EMODL file. There will be susceptible and infected as
states. The initial condition will have 99 susceptibles and 1 infected. The reactions are:
from susceptibles to infected at a rate of beta times susceptibles times infecteds; infected
back to susceptible at a rate of 0.1 times the number of infected individuals. The parameter
beta is 0.005.

Model produced by assistant in code:
;; Define compartments
(compartments
(susceptible)
(infected)
)

;; Set initial conditions
(initial
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(susceptible 99)
(infected 1)
)

;; Define parameters
(parameters
(beta 0.005)
(gamma 0.1)
)

;; Define reactions
(reactions
;; Infection process
(reaction infection
(reactants (susceptible 1) (infected 1))
(products (infected 2))
(rate (* beta susceptible infected))
)

;; Recovery process
(reaction recovery
(reactants (infected 1))
(products (susceptible 1))
(rate (* gamma infected))
)
)

D Model description in a separate document

In this section, we provide the model description that is contained in a pdf that is uploaded to the AI Modeling
Assistant using the file retrieval functionality. This file can also be found in the code repository ().

D.1 Model Description

D.1.1 States of the model and initial condition for simulation

The following is a list of the states of the model:

• Susceptibles: 100
• Infected: 1

D.1.2 Parameters of the model

The following is a list of the parameters and their values in the model:

• β = 1

• γ = 0.1

D.1.3 Reactions of the model

The following is a list of the stochastic reactions in the model:

• Susceptibles → Infected, at a rate of β × Susceptibles × Infected
N

• Infected → Susceptibles, at a rate of γ × Infected

D.1.4 Observables of the model

The following are the observables of the system:

• Susceptibles
• Infected
• Total Population which is Susceptibles + Infected
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