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Abstract 

Technological trends point to Artificial Intelligence (AI) as a crucial tool in healthcare, but its 

development must respect human rights and ethical standards to ensure robustness and safety. 

Despite general good practices are available, health AI developers lack a practical guide to 

address the construction of trustworthy AI. We introduce a development framework to serve as 

a reference guideline for the creation of trustworthy AI systems in health.  The framework 

provides an extensible Trustworthy AI matrix that classifies technical methods addressing the EU 

guideline for Trustworthy AI requirements (privacy and data governance; diversity, non-

discrimination and fairness; transparency; and technical robustness and safety) across the 

different AI lifecycle stages (data preparation; model development,  deployment and use, and 

model management). The matrix is complemented with generic but customizable example code 

pipelines for the different requirements with state-of-the-art AI techniques using Python. A 

related checklist is provided to help validate the application of different methods on new 

problems. The framework is validated using two representative open datasets, and it is provided 

as Open Source to the scientific and development community. The presented framework 

provides health AI developers with a theoretical development guideline with practical examples, 

aiming to ensure the development of robust and safe health AI and Clinical Decision Support 

Systems. GitHub repository: https://github.com/bdslab-upv/trustworthy-ai 

Keywords: trustworthy artificial intelligence, health, ethics, pipeline, machine learning, AI 

regulation, checklist, open source. 
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1. Introduction 

It is widely acknowledged that artificial intelligence (AI) based decision support systems will be 

of utmost importance to our current and future society, particularly in the health domain. 

However, the rapid development of this technology has not adequately considered the 

implications of human rights as set out in the Charter of Fundamental Rights of the European 

Union (EU Charter) (Charter of Fundamental Rights of the European Union, 2012). The failure to 

address these declarations could have deleterious consequences for society (Raso et al., 2018), 

and potentially risk the safety and fundamental rights of millions of patients (Sáez et al., 2024). 

It results imperative that AI based systems are designed to be trustworthy throughout their 

entire life cycle. 

The European Commission identified three components of Trustworthy AI (TAI): lawful, ethical 

and robust (European Comission, 2019). Furthermore, the EU outlines four ethical principles to 

ensure compliance with fundamental rights without hierarchical priority: respect for human 

autonomy, empowers cognitive, social, and cultural capabilities to maintain self-determination; 

prevention of harm, safeguards physical and mental integrity, addressing vulnerabilities from 

power or information asymmetries; fairness, ensures equitable distribution of benefits, prevents 

bias, discrimination, and requires fair decision-making processes; explainability, promotes 

transparency in AI processes, varying by application to ensure comprehensibility and 

accountability for potential errors. The aforementioned ethical principles are addressed through 

the following TAI requirements, which must be considered throughout the AI system’s life cycle 

(European Comission, 2019): human agency and oversight, technical robustness and safety, 

privacy and data governance, transparency, diversity, non-discrimination and fairness, societal 

and environmental wellbeing, and accountability. 

The European Union also exhibits a legal framework constraint as a result of the AI Act (European 

Parliament, 2024). Nevertheless, the quantitative limits set by the law remain ambiguous. The 

AI Act is a risk-based proposal. The objective of this initiative is to establish a systematic approach 

for determining the conformity of high-risk. These steps are based on the requirements 

proposed in the guidelines. Nevertheless, this regulatory framework does not provide a technical 

or concrete methodology for achieving trustworthy AI. 

Despite the EU's stipulation that the requirements for trustworthy AI must be met throughout 

the system's entire lifecycle, there is currently no consensus on the specific phases that must be 

addressed. The CRISP-DM framework (Hotz, 2018), used for data mining, includes phases like 

business understanding, data understanding, data preparation, modeling, evaluation, and 

deployment. The GenAI lifecycle (Saltz, 2024), for building generative AI applications, defines 

steps such as problem definition, data investigation, data preparation, development using large 

language models, evaluation, and deployment. The AWS Well-Architected Framework (Amazon 

Web Services, 2023), used for developing machine learning projects on AWS, outlines stages 

including business objective identification, ML problem formulation, data processing, model 

development, implementation, and monitoring. Lastly, the MLOps approach (Neupane, 2023), 

aimed at automating and managing the machine learning lifecycle, involves design, model 

development and operations. Therefore, there is also a need to harmonize and frame well-

established AI life-cycle stages with the requirements for trustworthy AI. 

Since a number of entities have identified and proposed methods for addressing trustworthy AI 

(Deloitte, 2022; IBM, 2021) or proposed guidelines for prediction model studies based on 

artificial intelligence (Collins et al., 2021), despite the significance and relevance of this issue in 
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health, to our knowledge there is currently no available comprehensive methodology classifying 

open and technical methods to support health AI developers develop and use systems that fully 

respect all necessary ethical guidelines and requirements.  

Consequently, in this work we propose a development framework to serve as a reference 

guideline for the creation of trustworthy AI systems in health supported with example code 

pipelines comprising technical methods that may be used to fulfil the trustworthiness 

requirements and achieve a TAI in the health sector. The framework is validated using two open 

healthcare datasets, and all codes and guidelines are published as Open Source. 

2. Materials and methods 

2.1. Workflow 

Figure 1 describes the workflow of this work, whose aim is to provide a clear and systematic 

framework to develop a reliable and generalizable AI solution. As such, the methodology starts 

by establishing the requirements for TAI to be addressed, alongside the harmonization of AI 

lifecycle stages. Next, for each TAI requirement state of the art technical methods are classified 

and organized throughout the AI lifecycle stages, which are then compiled into specific code 

notebooks. The components for each requirement and AI stage are sorted in a trustworthy AI 

matrix, which helps relate and navigate through the proposed concepts. Next, a related checklist 

of accomplishments is proposed while the notebooks are validated with two open datasets. 

 

Figure 1. Flowchart of the work methodology. 

Within AI and specifically machine learning, the predictive branch includes classification 

problems with categorical or discrete outputs (e.g., readmission or no readmission) and 

regression problems with numerical or continuous outputs (e.g., number of months of patient 

survival). Currently, the technical methods proposed in study focus on classification problems, 

although regression problems could be addressed in future work by extending the current 

guidelines.  
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2.2. Tools 

The study integrates Python notebooks in Jupyter Notebook (versions 3.12.1 and 7.0.7) within 

Visual Studio Code (VS Code), effectively combining code with text to demonstrate the 

development of reliable AI models. Python's versatility and robustness, alongside its rich library 

support for data analysis and machine learning, made it a leading choice in this work. 

The preference for notebooks over purely code-based files underscores their pivotal role in 

providing extensive, clear tutorials with executable AI development processes. This structured 

approach, akin to literate programming (Knuth, 1984), aids comprehension and guides users 

through workflows, preventing confusion that might arise from less clear, context-lacking code 

files. Furthermore, the study employs machine learning algorithms such as Random Forest and 

Naive Bayes from the scikit-learn Python library. Random Forest constructs multiple decision 

trees and aggregates their predictions, offering robustness against overfitting and suitability for 

complex datasets with diverse features and classes (Shanthakumari et al., 2022). Naive Bayes , 

based on Bayesian theorem, assumes feature independence (Sureskumar, 2017) and is 

implemented here using Python's 'GaussianNB' and 'CategoricalNB' models. 

2.3. Datasets 

The proposed framework is primarily validated using the "Diabetes 130-US Hospitals for Years 

1999-2008" dataset (John Clore, 2014). It is constructed using data from 101 768 encounters of 

diabetic patients with a classification problem. The goal is to predict whether there will be a 

readmission within <30 days, >30 days, or no readmission after discharge. It includes numerical 

and categorical features from different nature, such as demographic or diagnosis. 

In order to verify the generalization of the AI model's performance across different healthcare 

conditions, the framework is also validated using the "Heart Disease Set”(Ali et al., 2021; 

Alizadehsani et al., 2019). This dataset is renowned for its application as a benchmark in health 

AI and dates back to 1988, combining data from Cleveland, Hungary, Switzerland, and Long 

Beach. It consists of 11 features and 1190 encounters, with the target label indicating the 

presence of heart disease (1 for presence, 0 for absence). The dataset includes 5 numerical and 

6 categorical variables, which notably have fewer categories compared to those in the Diabetes 

Set, making it a suitable complement to validate the proposed AI model's reliability across 

diverse medical datasets. 

3. Results 

Next, we describe the results including the proposed Trustworthy AI matrix, the validation on 

the two datasets, and the proposed checklist of recommendations. In the spirit of open science, 

all the following results, as well as the source code, are publicly available on the GitHub 

repository: https://github.com/bdslab-upv/trustworthy-ai. 

3.1. Trustworthy AI matrix 

The study introduces a matrix for trustworthy AI to guide developers in constructing reliable AI 

models by correlating lifecycle requirements, aligned with the European Commission's TAI 

guidelines (European Comission, 2019). After reviewing methodologies, we propose lifecycle 

stages as follows: Data Preparation involves data pre-processing for cleaning, transformation, 

feature selection, and quality control. Model Development includes designing, training, and 

validating models, selecting types and parameters while adhering to ethical and technical 
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robustness principles. Deployment and Use assesses real-world model implementation, 

monitors ongoing performance, and adjusts as needed. Management involves auditing results, 

documenting model details, and conducting regular audits for operational integrity and 

stakeholder collaboration. 

 
Figure 2. Requirements matrix for trustworthy AI (columns) by lifecycle stage (rows). The boxes represent 

the components necessary to fulfil each requirement. Technical methods are indicated by items within the 

boxes. Discontinued boxes indicate that the components are not strictly related to provided technical 

methods. Arrows indicate potential dependencies or workflows between the components. 

Preceding the matrix requirements, there is a Metadata step for dataset conditioning and 

introducing additional information transversal to the principles. Though the EU dictates no 

hierarchy (European Comission, 2019), we suggest column-based resolution: beginning with 

Data Privacy and Governance to ensure appropriate material handling; Diversity, non-

Discrimination and Fairness to prevent or quantify biases during training; Transparency for 

comprehensive data understanding and supplementary tool development; and lastly, 

Robustness and Security for model performance and uncertainty management assurance. 

Addressing the transversality of the remaining requisites, integrating them within established 

categories ensures a comprehensive approach to AI system development aligned with ethical 

and regulatory frameworks. 

The remaining three, Human Agency and Supervision, Social and Environmental Well-being, and 

Accountability, for their indirect technical resolution and close transversality regarding the 

former, are proposed to be included in future work. Nevertheless, although the scope of these 

requirements is not defined, they are partially addressed in other components. Human Agency 

and Supervision could align within Diversity, Non-Discrimination, and Justice, due to their 

fundamental rights implications. Accountability relates to Transparency's explainability and 
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auditability in Robustness and Security, warning of significant performance declines prompting 

retraining. 

A further significant outcome is the creation of pipelines as a generic implementation tool. In 

accordance with the methodologies proposed in the TAI Matrix, a comprehensive notebook has 

been constructed, incorporating code and detailed explanatory text for each specified 

requirement. To facilitate comprehension of the study, the following section presents an 

overview of some methodologies employed in each notebook, along with a discussion of their 

assessment on diverse health data sets. Emphasizing the use of external functions or pipelines 

to streamline code complexity, the framework includes a standalone implementation of the 

Naive Bayes mixed model and a 'handleData' class designed to handle data transformations, such 

as encoding or feature grouping. 

3.1.1. Data Collection and Metadata  

As an antecedent step to the TAI matrix, data collection encompasses all code for properly 

obtaining data in an analysable format, such as in a tabular format. The transition from this stage 

to the guide necessitates an intermediate phase for the preparation of required metadata. The 

objective of this phase is to specifically formatting the data for the developed pipeline, including 

additional information that is crucial to meet various requirements. 

Once metadata is compiled and adapted to the dataset, it is exported to a JSON file for easy 

access across requirements, facilitating the development of trustworthy AI, starting with Data 

Privacy and Governance. 

3.1.2. Privacy and Data Governance 

The Privacy and Data Governance section is concerned with the assurance of data quality, 

integrity, and compliance with data privacy regulations through the application of anonymization 

techniques. These include k-anonymity (Murthy et al., 2019; Olatunji et al., 2022), which serves 

to prevent the identification of individuals, as well as standardization (e.g., OMOP-CDM for 

healthcare (OHDSI, 2024)), and data quality control (e.g., completeness, consistency, correction) 

(Sáez et al., 2012, 2024). The completeness and correction dimensions are addressed 

technically. Outliers are treated with in two ways: univariate outliers are treated with using the 

95th percentile, while multivariate outliers are treated with using principal component analysis 

(PCA) with Hotelling's T-squared test (HT2) (Taskesen, 2023), with a significance level of α=5%. 

Furthermore, all forms of missing data (MCAR, MAR, MNAR) are addressed using MICE 

imputation methods (Stavseth et al., 2019), specifically linear regression and KNN imputers. The 

management of data post-implementation would include the maintenance of change logs, 

access protocols, and the implementation of rigorous data handling protocols to restrict access 

to authorized personnel only. 

3.1.3. Diversity, non-discrimination and fairness 

This section emphasizes inclusivity and the protection of fundamental rights throughout the AI 

lifecycle. In Data Preparation, there's a focus on conducting sensitive subgroup analyses to 

meticulously scrutinize data for any disparities linked to sensitive variables. A comparison of 

different methods for bias mitigation is offered. Oversampling techniques such as Synthetic 

Minority Oversampling Technique (SMOTE) (Krasanakis et al., 2018) are employed to mitigate 

biases pre-training. This involves modifying the previous data distribution in order to achieve a 

more balanced dataset. Moving to Model Development, reweighting, which assigns weights to 
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categories based on their prevalence in the dataset, is implemented to counteract biases during 

training. Additionally, performance evaluations across sensitive subgroups help identify and 

rectify any disparities that may affect model fairness. 

During Implementation and Use, efforts continue with post-processing techniques such as Reject 

Option Based Classification (Kamiran et al., 2018), designed to handle uncertain classifications 

conservatively, particularly in cases where disadvantaged groups are involved. The section 

emphasizes using color palettes like "viridis" or "colorblind" configurations (Michael Waskom, 

2012) to improve accessibility for individuals with color vision deficiencies, aligning with efforts 

to promote equity and justice in AI applications. 

3.1.4. Transparency 

This requirement aims to achieve a thorough understanding of the data, model, and predictions 

through exploration, explanation, and documentation processes. Initial data preparation 

involves extracting lineage information from metadata to contextualize data appropriately. 

General exploratory analysis aims to uncover correlations between variables and the predicted 

class, utilizing techniques such as correlation matrices for numerical data and bar charts for 

categorical data to assess class proportions per category. During the development of the model, 

it is of the utmost importance to document the rationale behind the selection of the model, the 

adoption of the parameters, and the training and validation methods. This can be achieved by 

utilizing frameworks such as TRIPOD (Collins et al., 2021). Furthermore, explainability graphics, 

such as confusion matrices and ROC curves, aid in the understanding of the model decisions. 

Once the training process has been completed, methods such as SHAP (SHapley Additive 

exPlanations)(Albahri et al., 2023; Molnar, 2021) are employed for model interpretation, which 

highlights the feature contributions to the predictions. Management includes the 

documentation of predictive model outcomes and the provision of a disclaimer to acknowledge 

the characteristics and limitations of the model, with the objective of facilitating incident 

reporting in order to address unforeseen risks to end-users or stakeholders. 

3.1.5. Technical Robustness and Safety 

Finally, technical robustness and security aim to prevent or minimize unintended harm by using 

comprehensive methods to improve model performance and accurately assess its behaviour 

throughout its lifecycle.  In the context of data preparation, it is of paramount importance to 

implement critical steps such as feature selection or dimensionality reduction in order to 

mitigate the so-called "curse of dimensionality" (Karanam, 2021), which could affect model 

robustness. Furthermore, it is of paramount importance to address class imbalances through the 

use of techniques such as SMOTE (Elreedy & Atiya, 2019). In the context of model development, 

the focus is on hyperparameter optimization through techniques such as grid search, which 

ensures the optimal selection of parameters for model performance. In addition, the optimal 

probability threshold for the model must be identified in consideration of the trade-off between 

sensitivity and specificity for each context. 

The quantification of uncertainty during training is achieved through the utilization of confidence 

intervals, while robust evaluation methods such as cross-validation are employed to ensure the 

reliability and accuracy of model predictions. In the implementation phase, strategies for 

uncertainty quantification involve the utilization of confidence intervals derived from the training 

process (Bayesian methods) and data augmentation methods (Abdar et al., 2021). These 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2024. ; https://doi.org/10.1101/2024.07.17.24310418doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.17.24310418
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

methods compare the consistency of multiple methods applied to the same sample, as well as a 

single method applied to multiple times perturbed data. 

Furthermore, the monitoring of dataset shifts once a model is put into production enables the 

evaluation of potential data variability over time or across different contexts (Sáez et al., 2012). 

This enables the adaptation of models through retraining strategies, thereby maintaining 

accuracy and security in the face of changing distributions. These measures collectively aim to 

ensure the model's stability and reliability in real-world applications, thereby minimizing the risk 

of inaccurate predictions and ensuring robust performance across diverse scenarios. 

3.2. Check-list of recommendations 

In addition to the previously established Trustworthy AI Matrix, a generic checklist has been 

developed to facilitate the implementation of trustworthy AI in accordance with EU 

requirements. This checklist consolidates all aspects necessary to achieve the aforementioned 

goal. Table 1 presents a comprehensive checklist that encompasses all addressed requirements, 

along with the supporting technical components and methods. It is designed to be expandable, 

allowing for the incorporation of new technical methods to address unaddressed requirements 

or enhance existing ones, such as preventive attack methods.   
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Table 1. Checklist of recommendations for trustworthy AI according to requirement and lifecycle (P: Data 

preparation, D: Model development, U: Deployment & Use, M: Management, X: Not part of the life cycle) 

* Item structure: Requirement – Index – Subsection Index | EXAMPLE: T3a (Requirement: Transparency – Index: 3 – 

Subsection: a) 

** This checklist is open to new methods for the current and remaining requirements  

 

 

CHECKLIST OF TRUSTWORTHY AI RECOMMENDATIONS based on EU Trustworthy AI guidelines and this work’s framework 

Stage Requirement Item Checklist item Satisfied 

 Data collection and metadata 

X 

Data types and 
ranges 

M1a Data types have been identified  

M1b The valid ranges or domain for each variable are defined  

Data provenance M2 Metadata includes information about the origin of data  

Target variable 
M3a The target variable is defined  

M3b The positive class is defined  

Sensitive Variables 
M4a The possible sensitive variables have been identified and provided  

M4b A sensitive variable has been selected to balance its instances  

Identification 
Variables 

M4 The identification variables are defined  

 Privacy and data governance 

P 

Anonymization G1 The data does not contain any identifying information  

Standardisation G2 The information is adapted to the standards of the context  

Data quality control 
G3a 

A data quality assessment has been carried out based on well-defined 
dimensions 

 

G3b Data variability across data sources and over time has been evaluated  

M Changelogs G4 A log system changes exists  

 Diversity, non-discrimination and fairness 

P 

Sensitive exploratory 
analysis 

F1 
A sensitive exploratory analysis has been done to find possible 
relationships associated with sensitive variables in the dataset  

 

Bias mitigation 

F2a There is implemented a bias mitigation pre-processing method  

D F2b There is implemented a bias mitigation in-processing method  

U F2c There is implemented a bias mitigation post-processing method  

D 
Sensitive variables 
performance 

F3 Model performance is evaluated specifically for each sensitive variable  

U Fairness monitoring F4 The system includes a fairness monitoring system in the deployment  

 Transparency 

P 
General exploratory 
analysis 

T1 
A general exploratory analysis has been done to find possible 
relationships or further problems in the dataset variables 

 

D 

Design description T2 System design steps are considerably explained  

Explainability plots 

T3a 
Explainability techniques or visualizations are included to support the 
results of the training model. 

 

U 
T3b 

Explainability techniques or visualizations are included to support the 
results of the deployed model 

 

Disclaimer T4 The system includes a disclaimer with its features and limitations  

M 

Output 
Documentation 

T5 Outputs are carefully recorded  

Incident Sharing T6 There has been provided a way to report incidents  

 Technical robustness and safety 

P 

Dimensionality  R1 
Potential dimensionality problems are handled with feature selection or 
dimensionality reduction methods 

 

Class balancing 
R2a There is implemented a class balancing pre-processing method  

R2b There is implemented a class balancing in-processing method  

D 

Hyperparameter 
optimization 

R3 
Extensive hyperparameter optimization has been performed to optimize 
model performance 

 

Well-formed 
evaluation 

R4 Metrics evaluation provides robust results appropriate to the context  

Attack prevention R5 
There have been implemented methods to prevent the model for attacks 
of different nature 

 

Uncertainty 
Quantification 

R6a Uncertainty is quantified and reported in metric  

U 

R6b Uncertainty is quantified in predictions  

R6c Predictions have a threshold of uncertainty above which are not made  

Dataset shift 
monitoring 

R7 
Dataset shifts are considered and handled in the development & 
monitored in further use 

 

Retraining R8 A retraining system for external implementations has been considered.  
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3.3. Evaluation of datasets 

In this section we describe some of the results of validating the TAI framework with the two open 

datasets. Full results are described in the project GitHub repository. 

The metadata parameters for each dataset, as a stage previous to entering the TAI matrix, are 

described in Table 2. 

Table 2. Initial metadata for diabetes and heart disease datasets. Names of variables are single quoted. 

Descriptions for the datasets are provided in section 2.3. 

 

Regarding the Diversity, non-discrimination and fairness requirement, Figure 3 illustrates the 

presence of imbalanced sensitive features in both datasets, along with the implementation of 

various solutions. With respect to the Diabetes dataset, it is feasible to address the issue of racial 

imbalance by examining the relative importance of each variable in models trained with different 

racial groups. In contrast, the Heart Disease dataset has been subjected to a comparison of three 

techniques to address the issue of sex imbalance. The first is to take no action, which may be 

considered a simple approach. The second is to mitigate bias pre-training (oversampling), and 

the third is to address the issue during training (reweighting). 

 DIABETES DATASET HEART DISEASE DATASET 

Dataset ‘dataset_diabetes_simplified.csv’ 'dataset_heart_disease_full.xlsx' 

Output ‘readmitted’ ‘target’ 

Positive class ‘<30’ ‘1‘ 

Identifying features ‘encounter_id’ y ‘patient_nbr’ ‘ ‘ 

Sensitive features ‘race’ y ‘gender’ ‘sex’ 

Balancing feature ‘race’ ‘sex’ 

Data provenance 

[“A Health Facts database that represents 10 
years (1999-2008) of clinical care at 130 
hospitals in United States.”, 
‘admission_type’] 

[“The dataset consists of 1190 records of 
patients from US and Hungary”, ‘ ‘] 

Acquisition date [“Empty”, ‘ ‘] [“Empty”, ‘ ‘] 

Variable types 

▪ race: categorical 

▪ gender: categorical 

▪ age: categorical 

▪ weight:  categorical 

▪ admission_type:  categorical 

▪ discharge_disposition:  categorical 

▪ admission_source:  categorical 

▪ time_in_hospital:  numerical 

▪ payer_code:  categorical 

▪ medical_specialty:  categorical 

▪ num_lab_procedures:  numerical 

▪ num_procedures:  numerical 

▪ number_outpatient:  numerical 

▪ number_emergency:  numerical 

▪ number_inpatient:  numerical 

▪ diag_1:  categorical 

▪ diag_2:  categorical 

▪ diag_3:  categorical 

▪ number_diagnoses:  numerical 

▪ change:  categorical 

▪ diabetesMed:  categorical 

▪ age: numerical 

▪ sex:  categorical 

▪ chest_pain_type:  categorical 

▪ resting_bp_s: numerical 

▪ cholesterol: numerical 

▪ fasting_blood_sugar:categorical 

▪ resting_ecg:  categorical 

▪ max_heart_rate: numerical 

▪ exercise_angina:  categorical 

▪ oldpeak: numerical 

▪ ST slope:  categorical 
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Figure 3. Selection of the Diversity, non-discrimination and fairness notebook results for both datasets. 

Regarding the Transparency requirement, for the Diabetes dataset, Figure 4 illustrates the in-

training feature importance, which could enhance explainability and could be employed in 

feature selection by applying importance thresholds. For the Heart Disease dataset, a bivariate 

plot is presented for general exploratory analysis. 

 

Figure 4. Selection of the Transparency notebook results for both datasets. 
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Regarding the Technical robustness and safety requirement, Figure 5 illustrates a selection of the 

results for both datasets. With regard to robustness, the figure depicts the ROC curve resulting 

from the optimization of the training process in Diabetes dataset, whereas the plot for Heart 

Disease shows its calibration curve. In addition, the uncertainty in predictions is quantified 

through the use of ten models for the prediction of an instance in Diabetes dataset and one 

model for the prediction of one hundred perturbed instances in Heart Disease. 

 

Figure 5. Selection of the Technical Robustness and Safety notebook results for both datasets. 

4. Discussion 

This work presents the development of a trustworthy AI framework tailored for healthcare 

environments, in alignment with European guidelines such as the European Commission's 

guidelines on trustworthy AI (European Comission, 2019) and the AI Act (European Parliament, 

2024), and aims to provide a step further towards achieving resilient AI in health (Sáez et al., 

2024). The methodology provides a robust framework for data engineers and other specialists 

to construct trustworthy AI systems, demonstrating high adaptability to various datasets. The 

practical value of this approach lies in its provision of executable code and hands-on 

implementation strategies. While the system performs optimally with ideal datasets such as the 

"Heart Disease" dataset and adapts to real-world complexities as seen with the "Diabetes" 

dataset, it remains a semi-automated pipeline that can be fine-tuned for specific implementation 

contexts to ensure maximum efficiency and reliability. 

This work is situated at the vanguard of the most advanced techniques for developing 

trustworthy AI, integrating methodologies that address all EU-established requirements for 

health AI. Regarding technical methods, this approach differs from others, such as those of 

Deloitte (Deloitte, 2022) and IBM (IBM, 2021), which adopt a segmented  methodology 

addressing trustworthy AI components individually. Other AI guidelines, such as TRIPOD-AI 

(Collins et al., 2021), not only focus uniquely on specific stages, such as model development or 

validation, but also do not address trustworthiness. In contrast, the current methodology 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2024. ; https://doi.org/10.1101/2024.07.17.24310418doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.17.24310418
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

encompasses the entire trustworthy AI lifecycle, from data collection to implementation and 

management. This addresses a significant gap in the field. 

Future work will concentrate on increasing the full automation of the pipeline, enhancing its 

capabilities with deep learning techniques for broader data generalization, such as using imaging 

or open text data, and addressing additional EU requirements such as Human Agency and 

Oversight, Social and Environmental Well-being, and Accountability. The expansion of metadata 

in accordance with the European Health Data Space (EHDS) (European Commission, 2022; 

European Union Agency for Fundamental Rights, 2019) will facilitate the standardization and 

interoperability of data for health AI, thereby enhancing transparency and reproducibility. 

Further validation with a larger user base will enable the methodology to be refined based on 

practical feedback. 

5. Conclusions 

The proposed framework establishes a pipeline for the creation of trustworthy AI in healthcare, 

in alignment with EU principles and requirements pertaining to privacy and data governance, 

diversity, non-discrimination and fairness, transparency, and technical robustness and safety. We 

provide a comprehensive methodological guideline that details the necessary actions 

throughout the AI lifecycle. Additionally, a matrix was developed as a conceptual map that linked 

methods with lifecycle stages and trustworthy requirements. The creation of dynamic notebooks 

for each reliability principle, which are available as open-source code, offers practical tools for 

the development of trustworthy AI systems. The pipeline demonstrated generalisability across 

various healthcare datasets, although some human supervision is still required, and three 

additional EU requirements can be further formalized in the matrix. In conclusion, this work 

provides a robust foundation for the development of trustworthy AI in healthcare. It offers a 

practical and adaptable framework that can be expanded and refined to provide optimal 

solutions in specific contexts aiming to ensure the development of robust and safe health AI and 

Clinical Decision Support Systems. 
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