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Abstract. In this paper, we propose a reservoir computing-based
and directed graph analysis pipeline. The goal of this pipeline is to
define an efficient brain representation for connectivity in stroke data
derived from magnetic resonance imaging. Ultimately, this represen-
tation is used within a directed graph convolutional architecture and
investigated with explainable artificial intelligence (Al) tools.

Stroke is one of the leading causes of mortality and morbidity
worldwide, and it demands precise diagnostic tools for timely in-
tervention and improved patient outcomes. Neuroimaging data, with
their rich structural and functional information, provide a fertile
ground for biomarker discovery. However, the complexity and vari-
ability of information flow in the brain requires advanced analysis,
especially if we consider the case of disrupted networks as those
given by the brain connectome of stroke patients. To address the
needs given by this complex scenario we proposed an end-to-end
pipeline. This pipeline begins with reservoir computing causality, to
define effective connectivity of the brain. This allows directed graph
network representations which have not been fully investigated so
far by graph convolutional network classifiers. Indeed, the pipeline
subsequently incorporates a classification module to categorize the
effective connectivity (directed graphs) of brain networks of patients
versus matched healthy control. The classification led to an area un-
der the curve of 0.69 with the given heterogeneous dataset. Thanks to
explainable tools, an interpretation of disrupted networks across the
brain networks was possible. This elucidates the effective connec-
tivity biomarker’s contribution to stroke classification, fostering in-
sights into disease mechanisms and treatment responses. This trans-
parent analytical framework not only enhances clinical interpretabil-
ity but also instills confidence in decision-making processes, crucial
for translating research findings into clinical practice.

Our proposed machine learning pipeline showcases the potential
of reservoir computing to define causality and therefore directed
graph networks, which can in turn be used in a directed graph clas-
sifier and explainable analysis of neuroimaging data. This complex
analysis aims at improving stroke patient stratification, and can po-
tentially be used with other brain diseases.

* Corresponding Author. Email: a.crimi @sanoscience.org

1 Introduction

Stroke is one of the leading causes of morbidity and mortality world-
wide. Accurate classification can aid in effective treatment and man-
agement. Magnetic resonance imaging (MRI) has emerged as a pow-
erful tool for stroke diagnosis, providing detailed images of brain
structures and abnormalities. However, the analysis of MRI data
poses significant challenges due to its complexity and the need for
efficient and reliable classification algorithms, especially when we
want to understand the dynamics of the brain.

The classification of stroke using medical images has been the pri-
mary focus of previous studies [42, 2]. However, most of the ap-
proaches carried out so far are focused on the extent of lesions and
limited correlation to functional damages such as aphasia and mo-
tor deficits [11]. Recent studies have started investigating the brain’s
inner functioning from the point of view of the influence of one
brain region on another one, and how lesions compromise those in-
teractions [3, 2]. Indeed, brain connectivity encompasses the com-
plex interactions between neurons and their intricate network of con-
nections. It is a broad term that encompasses connections between
neurons at various levels of granularity and with different connec-
tion characteristics. Within this domain, three distinct types of con-
nectivity have emerged: structural (SC), functional (FC), and effec-
tive connectivity (EC). Each of these holds clinical and predictive
value, offering valuable insights into the brain’s intricate workings
[44]. Effective connectivity investigates the causal link between the
time series of two regions of the brain and can be represented as di-
rected graphs. Classification and explanation of directed graphs have
not been fully investigated and the study of stroke with those tools
provides the opportunity to create a pipeline exploring all those ele-
ments.

More specifically, local ischemia damages neurons and structural
neural connections at the site of injury. This affects primarily subcor-
tical regions, subsequently altering long-range functional connectiv-
ity between cortical areas. Decreases in functional connectivity al-
terations suggest deficits but cannot reveal the directionality or time
scale of the information flow, leaving several open questions related
to the directionality and functioning of the brain after a non-traumatic
injury such as a stroke. Allegra and colleagues carried out previous

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.


https://doi.org/10.1101/2024.07.17.24310349

medRxiv preprint doi: https://doi.org/10.1101/2024.07.17.24310349; this version posted July 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

studies where this transfer of information view of the brain of stroke
patients was investigated through Granger Causality (GC) analyses
[3], where they observed a significant decrease in inter-hemispheric
information transfer in stroke patients compared to matched healthy
controls. GC has been used largely in computational neuroscience
studies due to its low computational costs compared to other meth-
ods [20, 46]. Practically, the method estimates autoregressor vari-
ables relating to different time series which are then further validated
by F-statistics to establish causality. Yet, due to the potential con-
founding characteristics that each autoregressor may generate [33]),
there are still ongoing disagreements on whether this can help de-
fine causal interaction between brain regions [36] using this frame-
work, and some authors consider GC as just a relation measures [16].
To overcome these limitations, researchers have explored the use of
reservoir computing in a completely detached paradigm to extract
causality [25, 17]. Reservoir computing is a computational frame-
work that leverages the dynamics of recurrent neural networks to
process and classify complex temporal data effectively, by exploiting
the inherent memory and non-linear dynamics of reservoirs [26, 31].
It has also been used to classify electroencephalography data from
stroke patients [6], though as a classifier itself, not to estimate the
structure of the human brain.

Finally, capturing both spatial and temporal patterns can help un-
derstand stroke beyond traditional voxel-based lesion-symptom map-
ping [5] to consider specific information transfer and interactions in
the brain [18, 17]. Technically, this will produce a directed graph
representation that can be classified and explored with explainable
Al tools.

In summary, using reservoir computing we i) defined causality in
stroke patients, and, given the generated representation of causality
as directed graphs, investigated ii) the value of the resulting directed
maps together with their classification, and iii) the explainability of
the classification to provide insights into the overall brain network
disruption in stroke patients (Fig. 1). To our knowledge, no study has
classified directed graphs and explained their significance in compu-
tational neuroscience and neurology. Thus, incorporating these fea-
tures into classification algorithms could improve stroke diagnosis
accuracy and efficiency.

2 Methods
2.1 Data and preprocessing

The dataset was previously collected by the School of Medicine of
the Washington University in St. Louis and complete procedures can
be found in [10]. They collected MRI data and behavioral exami-
nations of stroke patients and healthy controls. The imaging data
comprise structural and functional MRI from controls and patients
suffering from hemorrhagic and ischemic stroke. Acquisitions were
done within the first two weeks of the stroke onset (i.e., acute). Struc-
tural scans include T1-weighted, T2-weighted, and diffusion tensor
images. Functional images include a resting state paradigm. Scan-
ning was performed with a Siemens 3T Tim-Trio scanner. Briefly,
we closely followed the pre-processing steps outlined in [27]. Fol-
lowing a quality control of fMRIPrep outputs, 104 stroke subjects
and 26 control subjects were qualified for further analysis. For our
purposes, it suffices to say that structural scans were used in combi-
nation with functional acquisitions to co-register all participants into
a common template. Gray matter signal was finally obtained after
artifact removal and parcellated into 100 regions of interest (ROIS)
[15, 38]. For every subject and patient, these 100 time series (i.e., one

for each ROI) were fed into the pipeline outlined below to obtain the
subject-specific effective connectivity maps.

The dataset is not public but it is available upon re-
quest to the original authors [10]. The used code is in-
stead available at the URL https://github.com/Wotaker/
Effective-Connectivity-Reservoir-Computing.

2.2 Reservoir computing

Reservoir computing networks (RCN), despite being known for more
than two decades, have been largely eclipsed by other frameworks.
A reservoir network is a set of artificial neurons that are randomly
connected between themselves thus forming a recurrent architecture
[26, 31]. Sometimes this is also called echo-state network since the
internal dynamics of the reservoir (or "echo state") maintain infor-
mation about the system’s input history. In this framework, an input
series u; is fed into this high dimensional dynamical system of [NV
units through a non-linear activation function,

ri" = (W), (1

where W is an N x (N, 4 1) matrix of random weights including
biases, N;y, is the dimensionality of the multivariate input, and f;y,
is the non-linearity. At each time step ¢ the former projection is used
to drive the reservoir units r;. The current state of each unit is a
combination of the past states as well as the current input,

re = (1= Nreo1 + Mf(rf" + Wre_1), ()

where W is an N x N matrix of random weights, and A is the leak-
age that controls the importance of the reservoir’s history to the cur-
rent time stamp ¢. The final component of the reservoir is a set of
readout weights W°"“* that extract information from the hidden state
and map onto specific predictions. That is,

yie =Wr,. 3

The predictions y: might be of arbitrary dimension N°“* and, impor-
tantly, are linear w.r.t. to the reservoir states. Within this paradigm,
only that readout weights W°“* are trained via incremental linear
regression optimization [45, 28],

W = (RR” + oI) ' (YRT), 4)

with « being a regularization parameter, R is the matrix obtained af-
ter concatenating all the reservoir states, and Y contains the outputs.
Once again, the readout weights contain a set of Ny, biases.

Noteworthy, as opposed to other architectures suited for time se-
ries forecasting, only a reduced set of output weights needs to be
trained, thus increasing its computational efficiency. The random
weights W™ are drawn from a uniform distribution bounded be-
tween -1 and 1. The recurrent connections are drawn from a standard
normal distribution and are later scaled by the spectral radius. The
latter largely ensures that the network possesses the echo-state prop-
erty, although there is recent evidence disagreeing with this aspect
[52,13].

Briefly, the main idea behind reservoir-like computing is that a
given input pushes the reservoir to specific locations in a high-
dimensional manifold [26, 31]; the output weights are then optimized
to retrieve information from the nearby regions. Were the input to
move the reservoir away to other points, the output weights would not
be able to recover meaningful information hence completely miss-
ing the prediction. Further evidence suggests that RCNs supersede
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Figure 1. Overall pipeline of the study, where MRI data are preprocessed, used to define an effective connectivity representation, classified and the results are
investigated by explainable Al tools.

deep learning-based models for temporal series prediction even on
the verge of chaos [40]. Richer approaches aim to train the reservoir
connections themselves and have been proven to be useful in under-
standing the dynamical properties of cortical networks [35], offering
an interesting framework for similar use cases. The parameter values
used in our experiments can be found in Table 1.

Object Input-to-Node ~ Node-to-Node
Units (#) 50 50
Sparsity 1 1

Activation logistic tanh

Scaling 1 NA

Shift 0 NA

Bias scaling 1 NA

Bias shift 0 NA

Random seed null null
Spectral radius NA 1
Leakage (\) NA 1

Bidirectional NA false

Table 1. Summary of the parameters chosen to train the Reservoir
Computing Networks (RCNs) in this work. For the two different blocks, NA
stands for Not Applicable, and null indicates that the value was left empty to

be chosen by the implemented random sampler. For further details on the
meaning of each one of these parameters we refer the reader to the original
publication of the package [45] and documentation.

2.3 Reservoir computing networks to map causal
interactions in lesioned brains

Traditionally, effective connectivity in neuroimaging can be esti-
mated in different ways, as dynamic causal modeling [20], GC [23],
continuous-time implementations [21], or information theory [50].
Granger-like interpretations are often preferred due to their relative
computational costs and implementation, though they are not exempt
from controversy [24] thus justifying alternative approaches.

An unrelated proposal relies on the properties of the state-space of
the dynamical system to reconstruct asymmetric mappings between
delayed embeddings of each component of the system [46]. That s, it
leverages Taken’s theorem to find the optimal neighborhood as well
as the exact delay at which the reconstruction is optimal. Recent ex-
tensions [48, 51, 7] have incorporated non-linear methods as well as
reducing the number of ad-hoc parameters. Most prominently, reser-
voir computing has proven to be an efficient and accurate alternative
to automatize the process almost in its entirety [25].

Let’s consider the relationship between two one-dimensional vari-
ables, x and y, where it hypothesizes that the delay at which inter-

actions take place is not smaller than the sampling rate (e.g., Time
of Repetition in functional MRI). The prediction skill, denoted by
pz—y(T), is defined as the Pearson correlation between the true time
series, y(t + 7), and the predicted series y (¢ + 7) from the input
x(t).

pacsy(7) 1= corr [y(t+7), 5t +7)]. 5)

Noteworthy, the Pearson correlation between the true and recon-
structed series (p) is used to estimate directedness, though other met-
rics like mean squared error could also be used. Directionality can
still be assessed using the same hypothesis testing mechanisms [48].

Moreover, the time series are fed into the reservoir all-at-once,
letting the network project all of them. The neighboring points in
the variable’s embedding are then remapped to the target embedding
via the training of the output weights. It should noted that this rep-
resents a deviation from more canonical usages [25, 13]. To investi-
gate the causal relationship between variables, we first calculate both
Pz—y(T) and py_,»(7) in a given temporal domain. We then exam-
ine the values of 7 at which either py—,(7) or py—«(7) reaches its
peak value [51, 25]. To streamline the subsequent description, we
introduce the following notation:

Tooy i= argmin pg_y (1)
T

Q)

Ty—e = argmin py_,, (7).
T
Empirically, directionality is then defined as follows [46]:

e if 7,_,, is positive, and 7, is negative, we say that x causes y;

e if 7,_,, is negative, and 7, is positive, we say that y causes x;

e if both 7, and 7,_,, are negative, we say that x and y causes
each other.

Despite seeming counterintuitive, information of y is present in
earlier observations of x and, consequently, that current information
of the cause x is useful to predict future observations of the con-
sequence y (see [46] for a comprehensive explanation). In certain
systems, predictability scores peak at negative lags 7 < 0 for both
directions, being the height of the peaks informative of the coupling
strength [25]. However, the existence of this bidirectionality does not
necessarily invalidate the former statements [17].

It was quickly noted that in large and noisy networks, such as the
brain, it is unlikely that the predictability scores in Eq. 5 reach clear
and distinct peaks. Functional signals are notoriously noisy [43], and
indeed prediction with this approach is challenging [4]. A solution
to this issue relies on assessing the minimal requirements that are
needed to suggest causal interactions [17]. For that, the difference
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Table 2. Potential causal directions based on the sign of A-score and the
positive or negative T regime.

between prediction scores should be evaluated and contrasted with
proper surrogate predictions [34, 39, 30]. That is,

Dusy(T) 1= pasy(T) = py—a(T), @)
which can be interpreted as an indication of the potential causality
direction (Table 2). The scores in Eqgs. 5 and 7 can be contrasted
against the 95% confidence interval obtained from a surrogate testing
procedure [17]. It has been shown that the requirements to define
causality can be compressed into a reduced set of §-scores [17],

(S o (T) _ (1 7pp:c~>y(7')>0)(1 7pAz~>y<T)>0) if > 0
! (1 =Ppysu(n>0)(1 —=Pa, ,u(n)>0) 7 <0
(3

for directed interactions, and

Syera(T) = (1 = Pporyy(m>0) (1 = Ppy 0 (1)>0)PAL y20  (9)

for bidirectional interactions. px, is the p-value after testing the al-
ternative hypothesis H; against the surrogate data (Fig. 2). For in-
stance, pp,._,, i a p-value for the hypothesis that x influences y. The
values of the §-scores range from O to 1, with higher values indicat-
ing greater confidence in the existence of a causal relationship with
a coupling delay of 7 between the examined variables.

H pe(1,2) pe(2,15)

- 1->2
e 2->1
p(1,25) - 1<->2

— p(2.1)

Scores

A= - »a
0+ - - - - )
-30 20 -10 0 10 20 30
T(s)

Figure 2. Predictability scores from an the same chaotic system defined in
[46, 17]. Solid lines show the predictability in Eq. 5 between embeddings.
Shaded regions show 1 standard error of the mean. Transparent lines show

the predictability of the surrogate system, which is used to define the
expected level of chance against which the hypotheses are tested. In this
academic example, it can be said that strong asymmetric interactions
between two time series exist at different temporal lags.

Then, for a given lag 7, a matrix A, collects the §-scores, where
each element [z, y] represents the causal relationship from node sig-
nal x to ROIs signal y,

Arlz,y] = Gy (T) uTlifiirec.tional (10)
0z—y(T) 4+ dxery(7) bidirectional.

The effective connectivity (RC) matrix A, is a final representation
of the effective connectivity network of every subject; it is directed,
non-symmetric, and can incorporate bidirectional causality connec-
tions. For our experiments, for every possible interaction x — y, we
trained 20 different reservoirs and tested against 100 shuffled targets,
strictly following what was outlined in [17]. Furthermore, only uni-
directional connections were kept from the adjacency matrix in Eq.
10.

In our experiments, we investigated the classification of patholog-
ical groups with the effective connectivity matrices used as features
(Fig. 3 TOP), and we also compared those to the effective connectiv-
ity matrices obtained by Granger causality, representing one of the
state-of-art approaches. As a last step, for each entry A; [z,y], we
standardized all samples by subtracting the mean connectivity of the
control group and dividing by the standard deviation. Finally, these
standardized causal relationships (i.e., directed graphs) were fed into
two simple graph classifiers to explore and explain the most informa-
tive nodes and links to detect stroke occurrence.

2.4 Graph convolutional neural networks

Graph convolutional neural networks (GNNs) are a variation of tradi-
tional convolutional neural networks which capitalize on graph data
representations and can learn non-trivial representations by lever-
aging the complex topological organization of the data [49]. Intu-
itively, a graph constitutes a non-Euclidean geometric space where
complex relationships between data points can be embedded and for-
warded as inputs into a GNN [8]. More formally, a graph G = (V, £)
is defined as a set of nodes V = {1,...,n} and a set of edges
& = {(i,7) | i,5 € V} where (i,7) represents a link or interac-
tion between the i-th and j-th nodes. Initially, each node i € V is
associated with a column feature vector h§°) e R4,

Every layer [ of a GNN updates the hidden representation of each
node by aggregating information from the neighborhoods:

BV = g (0O F (e ND)), A

(1+1) . .
where hl(-l'H) e R? are the new node representations, N; is the

neighborhood of the i-th node, fs denotes a nonlinearity, and F is a
permutation-invariant aggregator. Several proposals exist for the ag-
gregation operator, determining the expressive power, interpretabil-
ity, learning stability, and scalability of the network [49].

The non-symmetric effective connectivity maps derived are also
non-attributed, that is, there are no node features to be aggregated in
Eq. 11. Although non-attributed graphs are classifiable, they dramat-
ically increase the problem’s difficulty. Fortunately, the Local Degree
Profile (LDP) method effectively decreases the challenge by setting
the attributes of each node to local neighboring properties [9]. Thus,
we computed the in and out degree of each node as well as the min-
imum, maximum, mean, and standard deviation of the in/out degree
of its neighbors. This created a feature vector hgo) of dimension 10
that was propagated through the directed adjacency matrix for every
subject. The neural network consisted of [ = 2 hidden layers and
was trained for 150 epochs with a learning rate of 0.005 to mini-
mize the binary cross entropy between the predicted and true classes
(Fig. 3 BOTTOM). The metrics were computed with a balanced class
weight to account for the different number of samples in each class.
The model was tested in a 10-fold cross-validation scheme and used
a validation set to test for overfitting.
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Figure 3. Working diagram of causality given by the reservoir computing (TOP) and graph convolutional architecture (BOTTOM).

2.5 Local Topology Profile

A recent extension of the LDP attribution outlined before incorpo-
rates other local properties to the already-mentioned descriptors. This
Local Topology Profile [1] has been shown to improve the accuracy
over its parent version, namely LDP. Following the original proposal,
we extended the feature vector hEO) with the edge betweenness cen-
trality [22], the overlap between node neighborhoods (i.e., Jaccard
index), and the local degree score [29].

However, as an attempt to further reduce the complexity of the
workflow, we used the 13 LTP features with a random forest classifier
of max depth 2 and a maximum number of features equal to 5. As
in the GCN classifier, we used class weights to balance the dataset
and used a 10-fold cross-validation scheme. The architecture used in
practice is summarized in Figure 3.

2.6 Local Interpretable Machine-Agnostic
Explanations

To explain the features allowing the classification we used the LIME
(Local Interpretable Model-agnostic Explanations) approach. This
technique explains the prediction of any classifier by learning the
model locally around the prediction [37]. In our case, this was used
to highlight the edges that contributed to the classification perfor-
mance the most. LIME assigns a coefficient to each edge on the EC
matrix based on the contribution to the final classification score.
Positive values were useful in identifying the stroke group,
whereas negative values were consistent in identifying the control
group. The total explainability values of each ROI were calculated
for both groups separately. These values were thresholded with the

arbitrary threshold of 0.02 for the stroke group and -0.02 for the con-
trol group (because these directions helped the correct decisions).
Edges associated with wrong decisions were not studied due to their
lack of meaning in neurological terms.

3 Results

3.1 Effective connectivity maps derived from
Reservoir Computing

EC maps were not readily interpretable given the complex inter-
actions expected to occur at different spatial and temporal scales.
Consensus stipulates that information transfer is obscured by the
hemodynamic response function, which effectively masks the corre-
sponding temporal delay between cause-consequence associations.
We computed effective connectivity maps between 100 ROIs at two
different delays (Time of Repetition = 1 and 2; see Fig. 4). The aver-
age maps showed clear patterns of hemispheric segregation while at
the same time exhibiting strong connectivity between homotopic re-
gions. In canonical functional connectivity studies, this a priori seg-
regated structure can be considered as an initial quality assessment
of the resulting maps, forming the basis for an accurate description
of the functional relationships expected to occur in brain disease.
Even though stroke occurrence is not entirely random [10, 47],
their exact morphologies and functional disconnection patterns are
highly variable. We further examined the properties of the directed
networks by computing the average directed connectivity for con-
trols, subjects suffering from right-hemispheric stroke, and subjects
suffering from a stroke located on the left hemisphere (Fig. 5).
Global hemispheric connectivity was computed by averaging the
EC maps within and between hemispheres. That is, averaging the val-
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Figure 4. Group averaged effective connectivity matrices for two different
Times of Repetition. Top: -1 TR. Bottom: -2 TRs. The left column is the
average of subjects suffering from a stroke located in the left hemisphere.

The middle column is the average of subjects suffering from a stroke located

in the right hemisphere. The right column is the average of the control group.

ues in each on of the 4 visible squares in the average EC maps (Fig.
4). Briefly, intra- and inter-hemispheric connectivity was severely al-
tered in all patients, showing a clear break of symmetric communi-
cation w.r.t. the control group, especially for right-impaired subjects
[27].

3.2 Classification results

The results of the classification are reported in Tables 4 and 3 re-
spectively for the GCN and LTP classifiers. Results are reported for
both the proposed method and Granger Causality: Average AUC,
accuracy, precision, recall, and F1 are reported. As expected, the
LTP (augmented with a random forest classifier) generally increased
the classification metrics, although both models are comparable. It
should be noted that classifying effective connectivity graphs is a
complicated task due to sample heterogeneity [12, 2], and that very
similar scores compared to the chance levels (e.g., an increase of 0.2-
0.3) are found in the literature [1].

Table 3. Classification performance of the GCN model. Results are shown
by comparing the classification of EC networks derived with the whole-brain
RCC method and the GC method.

Metric | whole-brain RCC  Granger Causality
AUC score | 0.6866 =+ 0.0830 0.6074 £ 0.0588
Accuracy 0.6816 £ 0.0551 0.5386 £+ 0.1610
Precision 0.9253 £ 0.0654 0.9178 £ 0.0585
Recall 0.6870 £ 0.0991 0.4968 £ 0.2184
F1 score 0.7808 £+ 0.0511 0.6143 £ 0.1922

Table 4. Classification performance of the LTP model. Comparing the
classification of EC networks derived with the whole-brain RCC method and

the GC method.
Metric | whole-brain RCC  Granger Causality
AUC score | 0.6900 % 0.0652 0.7240 £ 0.1186
Accuracy 0.6972 £ 0.0552 0.7921 £0.1377
Precision 0.9228 4+ 0.0523 0.9121 4+ 0.0451
Recall 0.7041 £ 0.0757 0.8233 £ 0.1493
F1 score 0.7947 £+ 0.0443 0.8606 £ 0.1040
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Figure 5. Global effective connectivity alterations between regions located
in the same hemisphere (top) and between regions located in different
hemispheres (bottom). Error bars depict 1 standard error of the mean. Insets
show the average difference between left-left and right-right effective
connectivity (top) and between left-right and right-left effective connectivity
(bottom). Statistical significance was assessed via a two-sample t-test ("*’
p<0.05). Global connectivities were obtained by averaging the weight value
over the connections belonging to the corresponding hemispheres H.

3.3 Node and edge importance in stroke detection

We used the LIME explainability framework on the LTP classifier
due to its slightly better performance and higher computational ef-
ficiency to highlight the most descriptive ROIs and edges related to
stroke onset. Importantly, the explanations were done on top of the
EC matrices obtained with the reservoir method and not the granger
one. For each node in the EC networks, we summed all the ex-
plainability coefficients to assess the contribution of each connec-
tion arising in each node to the correct classification (i.e., sum over
all columns). Lastly, binarized and thresholded explainability values
were projected back to the surface mesh (Fig. 6; see also Methods
and [27]). The resulting maps show that regions in visual, dorsal, and
ventral attention have the most contribution to the classification per-
formance for stroke subjects, while ventral attention and frontopari-
etal networks contributed the most to the detection of control sub-
jects.
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Figure 6. Interpretation of the LIME explainability outputs for each group.
Cortical projection of the total contribution of each ROI (left) and its
association with one of the 7 resting-state networks. The Dorsal attention
network is distinctively necessary to discriminate the presence of a lesion.

4 Discussion

This study addresses the critical need for precise diagnostic tools in
stroke management, highlighting the complexity and variability of
MRI data and the limitations of conventional machine learning ap-
proaches in capturing dynamic network disruptions. The proposed
pipeline begins by employing reservoir computing to define effec-
tive connectivity of the brain [20]. Effective connectivity using reser-
voir computing has been recently proposed to unravel more precise
interactions in large neural systems [17]. However, studies that thor-
oughly assess the quality of the resulting causal mappings remain un-
seen. We propose to evaluate them by first studying existing asyme-
tries in brain information transfer. These maps lead to directed graph
representations, which have been loosely explored by graph convo-
lutional network classifiers. Later, we used these directed maps in a
Al classification and explainability paradigm; that is, disentangling
regions and connections that are important for each control or stroke
group.

Functional and effective connectivity asymmetries have been pre-
viously characterized in two different formats. Using a Granger-
based methodology, Allegra and colleagues [3] described a connec-
tivity imbalance between lesioned and healthy hemispheres. With the
maps obtained with the whole brain reservoir computing causality
methodology, we observed a similar pattern which was exacerbated
in subjects suffering from right-sided lesions (Figs. 4 and 5). Further-
more, upon examining the connectivity between hemispheres, the
same type of broken balance was significantly visible as well. Future
work could assess how this asymmetry relates to subject behavior.
With respect to this, Koba and colleagues [27] explored hemispheric
asymmetry in functional connectivity gradients [32] finding a slightly
higher correlation between behavior and functional aberrancy in sub-
jects with right-sided lesions. Hence, our findings agree with the fact
that the location of the stroke conveys different functional and effec-
tive information at a connectomic scale strengthening the need for a
more accurate characterization of the expected behavioral dysfunc-

tions and prognosis [18].

Regarding the classification paradigm, graph-structured data is
ubiquitous across various disciplines, yet the use of specific graph
convolutional neural networks is relatively recent (see [54] for an ex-
tensive review). Extensions of methods for directed graph analysis
have also been proposed [53], modifying the architecture to perform
node classification or link prediction. In this study instead, we fo-
cused on overall directed graph classification which was achieved by
using conventional graph convolutions with directed adjacency ma-
trices. We are then aggregating these Local Degrees and Topological
Profiles based on the message passing across these directed connec-
tions.

The pipeline achieves promising results, yielding an area under
the curve of 0.69, superior to the state-of-art method (GC) using the
GCN classification model. This should be considered a promising
result given the highly heterogeneous dataset (stroke lesions were
present in different parts of the brain), where similar scores relative
to chance levels are often observed [2]. Furthermore, it was also pos-
sible to employ explainable Al tools to interpret disrupted networks
despite these diversified lesions across brain networks. This eluci-
dates the contribution of effective connectivity biomarkers that can
capture aspects at a general level despite those individual differences,
offering insights into disease mechanisms and treatment responses.

Previous studies on structural connectome of stroke patients high-
lighted network dysfunctions [41]. Stroke-related modulations in
inter- and intra-hemispheric coupling were recently investigated
highlighting asymmetry and inter-areal interactions after stroke, re-
lated to broad changes in inter-areal communication and resulting in
several deficits [3]. Moreover, Erdogan and colleagues argued that
the global fMRI signal is affected by the stroke lesion generating a
delay of the blood-oxygen-level-dependent (BOLD) signal depend-
ing on the lesions [14]. Our results were in line with those previ-
ous analyses. We found inter-hemispheric connectivity was severely
altered in all patients, showing a clear break of symmetric commu-
nication w.r.t. the control group. The differences were particularly
pronounced in the case of stroke lesions in the right hemisphere. This
can hypothesized as the integrity of the within-hemispheric networks
is sustained through language-related connections, as the right hemi-
sphere is less involved in speech generation and suffers more from
the injury. [19]. Indeed, the explainability maps of the control sub-
jects resemble the vision and language networks. It is possible that
the algorithm abused the connections from/to the language network
to detect control subjects. Aphasia is a common symptom in the case
of ischemic stroke, therefore the connections of the language network
in the stroke group may show different characteristics. A similar hy-
pothesis can be suitable also for stroke subjects because the supple-
mentary motor area, which plays an important role in language pro-
cessing, was also useful for accurate classification. Importantly, alter-
ations in the ventral and dorsal attention networks are often present
in stroke [10, 11, 2, 27], which are in line with our explainable maps
in Fig. 6. Nevertheless, these claims should be confirmed with larger
datasets.

Undoubtedly, there are several ways to discriminate control sub-
jects from stroke patients which are less computationally demanding
[42], and previous studies also showed a correlation between func-
tional and effective connectivity with the first being easier to com-
pute than the latter [3]. Here, we emphasized the use of a classifi-
cation task for two reasons 1) to further assess the effective connec-
tivity maps and 2) to provide a strong basis for which to implement
explainability pipelines. With this we also propose an approach to
classify directed graphs. However, we showed the need to use fur-
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ther mapping into anatomical atlases to allow acceptable explainabil-
ity. Although, in conclusion, this proposes an end-to-end pipeline for
studying effective connectivity brain disorders, capitalizing on a spe-
cific approach for directed graph and explainability.

This analytical framework enhances clinical interpretability but
also can inspire confidence in decision-making processes, crucial for
translating research findings into clinical practice as it can translate
complex neuroimaging features into simple visualizations. The study
lays the groundwork for improved patient stratification in other brain
diseases as well, with the ultimate goal of assisting doctors, demon-
strating also the potential of reservoir computing causality, graph
convolutional networks, and explainable analysis.
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