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What isalready known on thistopic?

Previous deep learning research in the diagnosis of cardiovascular disease using chest X-rays has
focused on predicting specific disease categories, forecasting cardiovascular outcomes, and
automatically measuring the cardiothoracic (CT) ratio. The end-to-end learning methods that predict
disease categories or outcomes are typically limited to specific conditions and often lack explainability.
While the CT ratio istraditionally used in chest X-ray analysis, it often lacks well-defined normal
ranges and may not effectively detect conditions such as aortic dilatation or pulmonary trunk
enlargement.

What this study adds

To the best of our knowledge, thisisthe first study to propose age- and sex-specific normal values for
all cardiovascular borders (CVBs) aswell asthe CT ratio. Utilizing 96,129 normal chest X-rays from
multiple centers, we have established normal ranges for CV Bs and standardized these values into z-
score mapping. This approach simplifies and enhances the practicality of clinical application. The z-
score mapping of CVBs has demonstrated clinical utility in diagnosing and categorizing diseases, as
well asin predicting prognosis. The Al software that automatically analyzes CVBsfrom CXR s
availablefor external validation and free trial use through our dedicated research website

(www.adcstudy.com). This study has transformed the interpretation of cardiovascular configuration on

chest X-ray from subjective expert assessmentsto objective, quantifiable, and standardized

measurements expressed as Z-Scores.
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ABSTRACTS

OBJECTIVE

The analysis of cardiovascular borders (CVBs) on chest X-rays (CXRs) has traditionally relied on
subjective assessment, and the cardiothoracic (CT) ratio, its sole quantitative marker, does not reflect
great vessel changes and lacks established normal ranges. This study aimed to develop adeep
learning-based method for quantifying CVBs on CXRs and to exploreitsclinical utility.

DESIGN

Diagnostic/prognostic study

SETTING

Pre-validated deep learning for quantification and z-score standardization of CV Bs: the superior vena
cavalascending aorta (SVC/AQ), right atrium (RA), aortic arch, pulmonary artery, left atrial
appendage (LAA), left ventricle (LV), descending aorta, and carinal angle.

PARTICIPANTS

A total of 96,129 normal CXRsfrom 4 sites were used to establish age- and sex-specific normal
ranges of CVBs. The clinical utility of the z-score analysis was tested using 44,567 diseased CXRs
from 3 sites.

MAIN OUTCOMESMEASURES

The area under the curve (AUC) for detecting disease, differences in z-scores for classifying subtypes,
and hazard ratio (HR) for predicting 5-year risk of death or myocardial infarction.

RESULTS: A total of 44,567 patients with disease (9964 valve disease; 32,900 coronary artery
disease; 1299 congenital heart disease; 294 aortic aneurysm; 110 mediastinal mass) were analyzed.
For digtinguishing valve disease from normal controls, the AUC for the CT ratio was 0.79 (95% Cl,
0.78-0.80), while the combination of RA and LV had an AUC of 0.82 (95% ClI, 0.82-0.83). Between
mitral and aortic stenosis, z-scores of CV Bs were significantly different in LAA (1.54 vs. 0.33,
p<0.001), carinal angle (1.10 vs. 0.67, p<0.001), and SV C/AO (0.63 vs. 1.02, p<0.001), reflecting

digtinct disease pathophysiology (dilatation of LA vs. AO). CT ratio was independently associated

with a 5-year risk of death or myocardial infarction in the coronary artery disease group (z-score =2,
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adjusted HR 3.73 [95% ClI, 2.09-6.64], reference z-score <-1).

CONCLUSIONS

Fully automated, deep learning-derived z-score analysis of CXR showed potential in detecting,
classifying, and stratifying the risk of cardiovascular abnormalities. Further research is needed to

determine the most beneficial clinical scenarios for this method.
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INTRODUCTION

Advancements in artificial intelligence (Al) have significantly changed the way chest X-rays (CXR)
are analyzed, enabling the automatic diagnosis of diseases affecting the lungs, pleura, and bones.™*
Recent studies have also demonstrated Al’ s potential in cardiovascular disease for diagnosing heart
failure, predicting cardiovascular disease risks, and identifying various types of valvular diseases using
CXRs.*® Al systemstrained to predict cardiovascular abnormalities in CXRs can provide saliency
maps for their explainability, which highlight the areas focused on making diagnoses.®” However, it is
important to note that these heatmaps might have limitations, particularly in pinpointing specific
abnormalities or diagnosing rare diseases.’

The cardiothoracic (CT) ratio, atraditional metric derived from CXRs, often lacks specific
reference values and may not effectively reveal changesin cardiovascular borders (CVBs) such as
dilatation of the aorta or pulmonary trunk.’®** We have developed a fully automated, deep learning-
based software that analyzes CV Bs comprehensively.* This Al software might offer us an opportunity
to establish precise normal ranges and detect various patterns of CV B enlargement associated with
cardiovascular diseases. Z-scores, which represent the number of standard deviations adata point is
from the mean of a normally distributed population, are frequently used to compare quantitative test
results with reference data. The precise normal ranges of CVBs may help the standardization of all
CVBs into simple z-scores for newly inputted CXRs. We therefore conducted the ADC (* Automated
Diagnosis of Cardiovascular abnormalities using chest X-ray”) study to develop a deep learning-based

method for quantifying CVBs on CXRs and to explore its clinical utility.
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METHODS

Study design

The ADC was a retrospective, multicenter study initiated by investigators and included 140,696 CXRs
from three academic centers in two countries (South Korea, USA), as well as two public US datasets.™®
14 The study protocol received ethical approval from the Institutional Review Boards of all
participating institutions, and informed consent was waived for all participants (Asan Medical Center,
Seoul, Korea; 2023-1001; Severance Hospital, Seoul, Korea; 4-2020-0628; Emory University, Atlanta,
GA; STUDY00005513). The study design is summarized in Figur e 1. Briefly, we utilized a pre-
validated deep learning model to automatically delineate CVBs on 96,129 normal CX Rs.*? This deep
learning-based analysis enabled the quantification of CVBs and the establishment of age- and sex-
specific normal ranges for both Korea and the USA. These normal ranges facilitated the
standardization of individual CVBsinto simple z-scoresfor newly inputted CXRs (Figure 2). The
clinical utility of the z-score mapping was evaluated across various disease groups, including valvular
heart disease (VHD), coronary artery disease (CAD), congenital heart disease (CHD), aortic aneurysm,

and mediastinal mass.

Study cohorts

The normal cohorts used to establish reference ranges of CV Bs encompassed data from Asan Medical
Center (Seoul, Korea) labeled as “Normal Korean” (n=71,493) and three American datasets
collectively labeled as“Normal American” (n=24,636). The dataset from Asan Medical Center
spanned from 2002 to 2016, including 428,000 individuals who underwent both CXR and
transthoracic echocardiography within a six-month period, with 71,493 meeting the criteria for
normality in both tests (eTable 1 and eFigure 1 in Supplement) . Data extraction and analysis were
performed by the Big Data Research Center at Asan Medical Center utilizing the CardioNet database,
ameticulously curated database integrated within the electronic health records.™ The selection criteria
for normal CXRs involved a comprehensive review of structured echocardiography records,
radiological reports, and international classification of disease codes, carefully excluding any cases

indicative of cardiac, pleuropulmonary diseases, or skeletal anomalies such as scoliosis. The Normal
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American dataset was derived from two publicly accessible datasets—one from the National Institutes
of Health Clinical Center (NIH subgroup)™ and another from Stanford University Hospital (CheX pert
Subgroup)'*—as well as adataset from Emory University Medical Center, Atlanta, USA (Emory
Subgroup) (eTable 2 in Supplement). For these datasets, CXRs without lung lesions and cardiomegaly
were chosen after evaluations of structured radiological reports and labels. Individuals in the Emory
subgroup were selected based on having normal results in both CXR and echocardiography.

The study enrolled five disease groups including the VHD group (n=9964), patients evaluated for
CAD with coronary computed tomography angiography (CCTA) (CAD group, n=32,900),"
individuals who had undergone surgery for atrial or ventricular septal defects (CHD group, n=1299),
patients confirmed with thoracic aortic aneurysms by computed tomography (Aneurysm group,
n=294), and patients with biopsy-proven mediastinal masses (Mass group, n=110). The VHD group
was recruited from three ingtitutions: Asan Medical Center, Severance Hospital, and Emory University
Medical Center, while therest were from Asan Medical Center. Further details about each disease
subgroup are provided in the Supplement (eTable 3-5 and eFigure 2) and summarized in Table 1. The
VHD group was further categorized into the aortic stenosis (AS), aortic regurgitation (AR), mitral
stenosis (MS), mitral regurgitation (MR), and tricuspid valve (TV) subgroups. The CAD group data,
which was used for the prognostication testing in this study, included a median follow-up of 2.9 years
(interquartile range, 1.0-4.5) and was segmented into significant CAD subgroups based on >50%
stenosis observed in CCTA.* The primary long-term clinical outcome was the composite of death
from any cause or myocardial infarction at 5 years after CCTA.*® The Aneurysm group was composed
of patients with an ascending aorta greater than 4.5 cm or a descending aorta/arch larger than 4 cm as
confirmed by CT. The Mass group retrospectively enrolled patients with mediastina masses

confirmed by CT-guided biopsy.

Al model
The CVB analysis software has been previously validated against multi-ingtitutional datasets.” This
Al software automatically delineates each CVB when a CXR isinputted. The width of each CVB was

calculated by measuring the distance from the midline of the CXR to the centerpoint of the height
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(Figure 2). Each CVB was named based on its normal anatomical location as follows: superior vena
cavalascending aorta (SVC/AO), right atrium (RA), aortic arch (Arch), pulmonary trunk (PT), left
atrial appendage (LAA), left ventricle (LV), descending aorta (DAO), and the carinal angle (the angle
between the lower borders of the right and left main bronchi). The definitions of each CVB are
detailed in eTable 6. For CVB analysis, only CXRstaken in the postero-anterior direction with the
patient standing and with proper lung inflation were analyzed. Therefore, a separate imaging filter was
developed to exclude inappropriate CXRs. Detailed information on the deep learning algorithm and
imaging analysis workflow is provided in the eMethods (eFigure 3 in Supplement). This Al model is
available for external validation and public use viaour non-commercial research website

(www.adcstudy.com), which provides real-time CXR analysis capabilities (eFigure 4 in Supplement).

Analysisof Al measurements

While most of the extracted CV B metrics approximated a symmetrical distribution, some variationsin
kurtosis across different metrics as well as skewnessin DAO were noted (eFigure5and 6 in
Supplement). To account for these discrepancies, each CV B metric underwent a transformation to a
Box-Cox normal distribution using Generalized Additive Models for Location, Scale, and Shape.”’
Percentile curves were plotted for individual measurements, and z-scores were computed.'” *® Then,

the dimensions of each CV Bs were standardized into z-scores.

Statistical analysis

Continuous variables are presented as means and standard deviations, while categorical variables are
presented as counts and percentages. Z-scores for each disease group are shown along with their
means and 95% confidence intervals (Cls). The diagnogtic performance of CVB metrics in detecting
specific diseases was evaluated using the area under the receiver operating characteristic (AUC),
calculated with the pROC package (version 1.18.5) and included sensitivity, specificity, accuracy,
positive predictive value (PPV), and negative predictive value (NPV) with cut-off point determined by
the maximum Y ouden index. Diagnostic performance was assessed for the VHD, CAD, and CHD

groups, as well asfor subgroups within VHD. For each disease category, a control group three times
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the size of the disease group was randomly selected from the Normal Korean cohort. Multivariate
logigtic regression analysis was used to identify CVBs significantly associated with the presence of
disease. Only CV B metrics that demonstrated a p-value <0.01 in univariate analysis and had low inter-
correlations (r<0.2) were included in the multivariate analysis. The multivariate model was developed

using 60% of the randomly divided data and validated using the remaining 40%.

For the CAD group, Kaplan—Meier survival analyses were conducted using the survival package
(version 3.5.5), and Cox proportional-hazards regression models were used to examine the relationship
between CVB z-scores and patient outcomes, independent of known cardiovascular risk factors. These
anal yses focused on the composite outcome of death from any cause or myocardial infarction
following CCTA. The Framingham Risk Score, body mass index (BM1), the presence of diabetes
mellitus, estimated glomerular filtration rate, symptomsat CCTA, and obstructed CAD (defined as
>50% diameter stenosis) on CCTA were incorporated into the multivariate regression models,
consistent with previously published results.'® The CVB z-scores were categorized as follows: z-score

<-1,-1<z-score<0,0<z-score< 1, 1<z-score< 2, and z-score> 2.

10
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RESULTS

Study population

The study population comprised 96,129 individuals in the normal cohorts and 44,567 patients in the
disease cohorts (Table 1, Figure 1). The mean age ranged from 46.5 years in the CHD group to 59.4
yearsin the Aneurysm group. The VHD group included 1432 AS (14.4%), 1756 AR (17.6%), 2897
MS (29.1%), 2971 MR (29.8%), 785 TV disease (7.9%), 72 PV disease (0.7%), and 51 multi-valve
disease (0.5%) cases (eTable 7 in Supplement). Echocardiography results show LV gjection fraction
and other cardiac dimensions, with disease groups often showing enlarged measurements compared to

normal.

Normal range of CVBs

eTable 8 in Supplement summarizes the normal ranges for CV Bs on postero-anterior CXR for
different age groups in both Korean and American populations according to sex. Figure 3 presents a
set of graphs depicting age-related percentile curves for various CVBsin normal individuals; detailed
graphs for Normal American and Korean cohorts were provided in the eFigure 7-10 in Supplement.
For both populations, the CT ratio tends to increase with age; similarly, the diametersfor SVC/AO,
RA, Arch, LV, and DAO also increased with age, reflecting physiological changesin the
cardiovascular system as age advances. | nter-cohort comparisons revealed dlightly larger CVBsin the

American group, differencesthat were mitigated after adjusting for CT ratio.

Z-scoresof CVBsin disease groups

In the analysis of disease groups, z-scores for CVB were generally elevated, with the VHD and CHD
groups displaying significantly higher z-scores compared to the CAD group (Figure 4 and eTable 9 in
Supplement). Specifically, the mean z-scoresfor the CT ratio were 0.39 in CAD, 1.27 in CHD, and
1.40in VHD. Figure 4 highlights the variations in z-scores across diseases, showcasing the disease-
specific changesin CVB parameters. M S, often accompanied by left atrial enlargement, showed
marked increasesin the LAA (z-score=1.54) and carinal angle (z-score=1.10) as a result of the left

atrial pushing upwards; this wasin marked contrast to AS where the increase in the SVC/AQO (z-

11
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203  score=1.02) indicated dilation of the ascending aorta. In CHD, including atrial or ventricular septal
204  defects, the z-score of the aortic arch (0.01) was relatively low, reflecting the reduced cardiac output
205  of theleft heart due to left-to-right shunt disease. The aortic aneurysm group showed significant

206  increasesinthe arch (1.95) and DAO (2.65) z-scores, indicating aneurysmal changes. Mediagtinal
207  mass conditions also demonstrated elevated z-scores, especially for the SVC/AO (1.04) and the

208  pulmonary trunk (1.03), which may indicate a mass shadow or compression caused by the tumor.

209

210 Diagnostic performance

211  Thediagnogtic evaluation of CVBs highlighted the CT ratio z-score as a robust metric across VHD,
212  CAD, and CHD groups (Figure 5). The AUC for detecting VHD using the CT ratio reached 0.79 (95%
213  ClI, 0.78-0.80), which was increased to 0.82 (95% ClI, 0.82—0.83) when combined with RA and LV
214  metrics. CHD detection benefited from a CT ratio AUC of 0.77 (95% ClI, 0.74-0.79), which improved
215 t00.81(95% Cl, 0.79-0.84) when PT and carinal angle were added. Among the subgroups of VHD,
216 TV disease detection had the highest AUC of 0.87 (95% CI, 0.84-0.89) using the CT ratio. Detailed
217  information on demographics, AUC, sensitivity, specificity, cut-off, PPV, and NPV is provided in
218  €Table 10-17 in Supplement.

219

220  Prognostic value

221  Inthe cohort of 32,900 CAD patients, there were 390 (1.18%) instances of all-cause death or

222  myocardial infarctions. CT ratio z-scoresindicated an increasing risk with higher scores (Figure 6).
223  Patients with a CT ratio z-score of 2 or higher were at a significantly elevated risk (adjusted HR 3.73,
224 95% Cl, 2.09-6.64), showing a higher percentage of cumulative events (4.6% vs. 0.6%, p<0.001) over
225  5yearscompared to the reference group with a z-score less than -1 (HR 1.00). Elevated risks were
226  also observed with higher z-scores (>2) for SVC/AO, RA, DAO, and carinal angle, whilethe Arch, PT,
227  LAA, and LV z-scores not reaching statistical significance (eTable 18 and eFigure 11-18in

228  Supplement).

229

230 Caseexamples

12
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We presented eight CXR case examples (eFigure 19-26 in Supplement), illustrating the application of
Z-score mapping in diagnosing various cardiomediastinal diseases. The cases span arange of

conditions, including AS, MS, AR, atrial septal defect, aortic aneurysms, and mediastinal masses.

DISCUSSION

In the ADC study, we established normal values for CVBs and introduced a new methodology for
utilizing CXRsin cardiovascular disease diagnosis. Our main findings are as follows. First, z-score
mapping for CVBs was feasible in disease diagnosis. In certain cases, combining different CVBs
enhanced diagnostic accuracy beyond the CT ratio. Second, variationsin z-scores, reflecting the
underlying disease pathophysiology, indicate that CXRs could be useful in classifying diseases, such
as distinguishing between aortic and mitral valve diseases. As demonstrated through our case
presentations, the changes in individual CVB z-scores may be correlated with the pathophysiological
changes observed in patients' echocardiograms or CT scans. The z-score mapping allows for a more
objective and quantifiable method of interpretation compared to traditional approachesto CXR
analysis. Lastly, measures of CVB, including the CT ratio, showed potential in predicting clinical
outcomes, adding value to traditional risk scoring systems.

Regarding the quantitative analysis of CXR, previous studies have focused on automatically
extracting the CT ratio™®# and biological age® from CXRs using Al. As demonstrated in the ADC
study, the variability of the CT ratio's normal values based on age and sex indicates limitations in
applying a single cutoff 0.5. Moreover, conditions such as pulmonary trunk and ascending aortic
dilatation cannot be adequately assessed by the CT ratio alone. The significance of this ADC study lies
in standardizing various CVBs into a single parameter of z-score, not just the CT ratio, particularly
showing some success in making differential diagnoses that were not previously possible with the CT
ratio. Extracting biological age from CXR has shown promising prognostic value when added to
existing cardiovascular risk matrices, offering a potential new utility for CXR.* Since, CX R-derived
biological age and CV B z-scores are numerical dataand likely independent, combining them could

offer potential for clinical practice and research applications.
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The use of “end-to-end” supervised learning, where Al directly learns from CXRs with
abnormalities compared to a control group, isawidely adopted approach in current Al research. This
method has been extensively applied in the field of cardiovascular disease to predict conditions such
as acute chest pain syndrome®, aortic dissection, LV systolic dysfunction®, structural LV disease’,
valvular heart disease®, aortic stenosis®, and atrial fibrillation?” using CXRs. Other studies have also
tried to predict the 10-year risk for major adverse cardiovascular events using CX Rs.? These studies
often employ saliency maps to improve the explainability of Al, indicating the specific areas of the
image that the Al prioritized to reach its decision. However, saliency maps can struggle with the
precise localization of abnormalities and may pose interpretative challenges when applied to diseases
not included in the algorithm's training.® Z-score mapping, by providing interpretable numerical values
independent of specific diseases, can help overcome these limitations, offering broader applicability
across various cardiomediagtinal conditions. This advancement may offer a modernized approach to
interpreting CXRs, aligning with clinicians preference for quantifiable metrics, such as blood tests and
echocardiographic parameters. Moreover, this numerical approach facilitates a more objective
comparison during the follow-up of CXRs, making it easier to interpret changesover timein a
patient's condition.

For the utilization of z-score mapping of CXR in real-world clinical practice, it is crucial to
establish the most appropriate clinical application scenarios. For example, z-score mapping of CXRs
could serve as agatekeeper before proceeding to more costly and complex tests such as
echocardiography. Another promising scenario could involve using z-score mapping of CXRsas a
screening tool to detect left-to-right shunt diseases before they progressto irreversible pulmonary
hypertension. Such applications could significantly enhance the utility of CXR, providing a cost-
effective, accessible, and non-invasive method. Particularly, using CXRsfor VHD or CHD in
screening scenarios could be a viable alternative in underdeveloped countries where healthcare
infrastructure is insufficient.?®

This study hasthe following limitations: First, the CVB analysisis subject to limitations of the
CXR modality compared to echocardiography or CT. Asdemonstrated in Case 4 (ASD) and Cases 6

and 7 (mediastinal mass), CVBs can be influenced by adjacent structures. Therefore, the interpretation
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of CVB anaysis must be based on understanding of the specific disease's pathophysiology and
topographical anatomical knowledge in CXR. Second, although this study presents diagnostic
performance, z-score pattern analysis, and prognostic value, it has not provided definitive cut-off
values refined enough for application in actual practice. Thisis because, although the normal ranges
and disease cohorts included data from multiple institutions, they did not encompass a wide variety of
ethnicities and real-world conditions, including disease groups. Future research should conduct more
extensive studies across a wide range of clinical application scenarios.

The ADC study has introduced a fully automated, deep learning-derived z-score analysis of CXR
showed potential in detecting, classifying, and stratifying the risk of cardiovascular abnormalities.

Further research is needed to determine the most beneficial clinical scenarios for this method.
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405 FIGURE LEGENDS

406  Figure 1. Study workflow
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408  Al=artificial intelligence. AMC=Asan Medical Center. CAD=coronary artery disease.

409  CHD=congenital heart disease. CheX pert=Chest eX pert (public dataset from Stanford University

410  Hospital). CV=cardiovascular. CXR=chest X-ray. Emory=Emory University Hospital. KUMH=Korea
411  university Ansan Hospital. NIH=National Institute of Health Clinical Center. SNUBH=Seoul National

412  University Bundang Hospital. Y onsei=Y onsei University Severance Hospital.
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413  Figure 2. Z-score mapping processfor cardiovascular bordersin chest X-rays
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414
415 1. A standard postero-anterior chest X-ray isused astheinput for the Al analysis.

416 2. Al algorithms automatically identify and delineate the CVBs on the chest X-ray.

417 3. The software measures the dimensions from the midline to key points on the CVBsto calcul ate the
418  cardiothoracic (CT) ratio and the dimensions of individual CV Bs. The width of each CVB is defined
419  asthedistance between the center points of each CVB and the midline of the CXR. The CT ratio was
420  calculated by dividing the maximum width of the right lower CVB (corresponding to the right atrium)
421  andtheleft lower cardiovascular border (corresponding to the left ventricle) by the maximal horizontal
422  thoracic diameter.

423 4. The measurements are then standardized into z-scores based on the normal range, allowing for

424 comparison according to age and sex.

425  LAA=Ilé€ft atrial appendage. SV C/AO=superior vena cavalascending aorta.
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Figure 3. Agerelated percentile curvesfor cardiovascular bordersin normal chest X-ray.
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Normal Cardiovascular Measurements in Women
ais CT ratio Aortic Arch Left Ventricle
P“'“““‘I:Q Percentile 150 | Percentile
0.7 e
v = 8 130
§ 0.6 : E - 99 € 99
© - 60| = E_ 104
ot @ o @ )
] > a0 _———— g % 3
0.4 — — - 1
— L - SRR, 1
qgl == 20| T ———i il
10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100
Age(years) Age(years) Age(years)
SVC/Ascending Aorta Pulmonary Trunk Descending Aorta
B0 Percentile Percentile Parcentile
80 100 ¢
- . 99 - -
E 601 2 E P E 80
E E 60 E - 99
8 8 9 8 :
2 400 T 2 2
= __.F-——'—"—- ——_ 50 I 400 ¢ 50 2 0|
— | 1o
20| Smm——— 10 20 |
TP — 1 -1 20
10 20 30 40 S0 60 70 80 S0 100 10 20 30 40 50 &0 70 80 90100 10 20 30 40 50 60 70 80 80100
Age(years) Age(years) Age(years)
Right Atrium LA Appendage Carina Angle
Percentile Percentile Percentile
80 | 80 | 120 |
€ € <99 $ 100 ooz 99
8 e g 2w i
2 — E 50 § f— —
40 —m 40 — 2 e —
= 50 = — 10 z 60 = - 10
— — L T T -1 B e 1
20 sessssseessrrEIEEIEIEIL, 1 20 40|
U + - - - - - - - - 1 0 i - - - - - - - 1 20 + - - - - - - - - 1
10 20 30 40 S0 60 70 80 90 100 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100
Age(years) Age(years) Age(years)
(B)

Percentile graphs of cardiovascular borders according to age for normal men (A) and women (B). The

datain red or blue represents Normal Korean individuals, and the data overlapped in gray represents

that of Normal Americans.

22



https://doi.org/10.1101/2024.07.17.24310314
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.07.17.24310314; this version posted July 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

441  Figure4. Comparative z-scoreforest plot for disease classification
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444  Each parameter isrepresented by a horizontal line, with data points indicating the mean z-score and
445  error bars showing 95% confidence intervals.

446  (A) Comparison across different disease groups: coronary artery disease, congenita heart disease, and
447  valvular heart disease.

448  (B) Comparison across specific valvular heart disease: aortic stenosis, mitral stenosis, and tricuspid
449  valve disease.

450

451

23


https://doi.org/10.1101/2024.07.17.24310314
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.07.17.24310314; this version posted July 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

452  Figure5. Performance of the z-score mapping of cardiovascular bordersfor the detection of
453  cardiovascular disease
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456  AUC=area under the receiver operating characteristic curve. CA=carinal angle. CT=cardiothoracic.
457  DAO=descending aorta. LAA=left atrial appendage. LV =left ventricle. PT=pulmonary trunk.
458  RA=right atrium. SV C=superior vena cava (SV C/aorta).

459
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461  Figure®6. All-cause death or myocardial infarction stratified by cardiothoracic ratio z-score
462

A
CT ratio
Z-score Death or Mi/participants (%) HR (95% ClI)
z-score < -1 15/3161 (0.4%) 1.00 (1.00-1.00) ?
“12z<0 61/8263 (0.7%) 1.39 (0.79-2.486) -
0=zz<1 137/11932 (1.1%) 1.94 (1.13-3.34) S p—
152<2 111/7155 (1.5%) 2.16 (1.24-3.75) S —
2 = z-score 66/1999 (3.3%) 3.73 (2.09-6.64)
B
CT ratio

p <0.001

Cumulative event (%)
[*]

Years
Number at risk
——  z-scOfe < -1 3176 (0) 2314 (852) 1921 (1242) 1366 (1796) 884 (2277) 465 (2696)
— 1sz<0 8324 (0) 6260 (2035) 5288 (3002)  3861(4421) 2574 (5699) 1396 (6872)
— 0<z=<1 12069 (0) 9170 (2834) 7842 (4127) 5847 (6100) 3961 (7980) 2224 (9714)
— 1sz<2 7266 (0) 5489 (1717) 4649 (2543) 3623 (3557) 2492 (4682) 1478 (5686)
—  2<z-score 20865 (0) 1528 (508) 1295 (722) 1011 (998) 732 (1274) 500 (1501)

463

464  Inthecoronary artery disease group, all-cause death or myocardial infarction were Sratified by z-
465  score categories of the CT ratio. Adjusted HRs were compared with the lowest z-score group (<-1).
466  (A) Percent of death or myocardial infarction and adjusted HR increased across ascending z-score
467  categories.

468  (B) Cumulative event rate for each z-score category of the CT ratio during afollow-up duration of 5
469  years.

470 CT=cardiothoracic. HR=hazard ratio.
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471 Table 1. Basdine characteristics and measur ements of echocardiography and chest X-ray
Normal Korean A'\:'?érr;“cin VHD CAD CHD Aneurysm Mass
n=71,493 . n=9964 n=32,900 n=1299 n=294 n=110
n=24,636

Demographics
Age, years 54.2 (11.4) 46.3 (16.5) 56.9 (15.4) 57.2 (10.0) 465 (14.2) 59.4 (13.9) 47.4 (18.4)
Male sex (%) 42932 (60.1) 13566 (55.1) 4304 (43.2) 20047 (60.9) 482 (37.1) 214 (72.8) 54 (49.1)
Height, cm 164.1(8.7) NA 160.5 (9.2) 164.4 (8.7) 161.8 (9.1) 167.2 (10.1) 90.7 (29.4)
Weight, kg 63.8 (10.7) NA 60.1 (10.9) 66.6 (11.3) 59.5 (11.3) 67.6 (12.4) 65.7 (13.3)
Body mass index, kg/m? 23.6(2.9) 29.3 (9.2)* 23.4(34) 245 (3.0) 226 (3.3) 24.1(3.7) 24.3(3.9)
Body surface area, m’ 1.70 (0.18) NA 1.64 (0.18) 1.74(0.18) 1.63 (0.19) 1.77 (0.20) 1.94 (1.97)

Echocardiography
LV EDV index, mL/m’ 83.4 (20.8) NA 105.1 (49.7) 89.2 (26.4) 87.4 (29.7) 109.3 (45.9) 90.7 (29.4)
LV ESV index, mL/m? 30.8 (8.6) NA 45.8 (32.5) 335 (13.0) 34.7 (15.5) 47.1(32.4) 34.2 (16.7)
LV ejection fraction, % 63.1(3.7) 61.3 (4.98)* 59.4 (10.1) 62.6 (8.3) 60.9 (7.1) 59.0 (9.4) 62.8 (6.2)
Ascending aorta, mm 32.1(35) NA 32.9(7.0) 33.1(6.7) 31.4 (4.4) 36.9 (5.3) 324 (45)

Chest X-ray
Acceptance rate, % 98.2 96.8 96.2 95.5 97.3 89.9 98.2

(71,493/72,772) | (24,636/25444) | (9964/10,357) | (32,900/34,446) (1299/1335) (294/327) (110/112)

CTratio 0.48 (0.05) 0.47 (0.06) 0.56 (0.08) 0.49 (0.06) 0.55 (0.08) 0.56 (0.07) 0.49 (0.05)
SVC/AO, mm 28.4 (6.8) 29.3 (8.5) 32.6 (9.4 29.7 (7.2) 29.8 (9.2) 37.8 (11.3) 36.3 (12.4)
Right atrium, mm 39.1(7.8) 41.4 (9.4) 46.2 (11.3) 40.8 (8.2) 441 (12.4) 480 (11.9) 40.8 (8.7)
Aortic arch, mm 38.3(6.7) 35.3(8.3) 39.4 (8.2) 395 (6.8) 37.2(8.0) 52.6 (14.0) 409 (9.4)
Pulmonary trunk, mm 38.5 (6.4) 37.8(7.9) 43.3 (8.6) 39.8 (6.8) 47.0(9.2) 46.2 (10.4) 45.3(10.1)
Left atrial appendage, mm 46.4 (7.3) 46.7 (9.1) 53.9 (10.2) 48.1(7.8) 58.1 (10.6) 54.1 (10.8) 53.2 (10.0)
Left ventricle, mm 84.6 (10.5) 85.6 (14.2) 96.6 (14.0) 88.7 (11.3) 98.7 (14.4) 101.9 (14.2) 85.9 (10.9)
Descending aorta, mm 33.3(8.6) 29.1 (9.5) 422 (11.2) 36.2 (9.4) 35.0 (11.5) 56.3 (16.0) 35.2 (9.5)
Carinal angle, degree 71.1(8.7) 72.3(9.6) 79.3 (11.2) 72.1(9.6) 77.7 (11.1) 80.7 (12.1) 779 (8.9)

* 3SUB2I| [euoeWIBIU| 0 AN-DN-AG-DD € Japun 3|qejiene apeuw si |

472  Values are mean (SD) or number (%). CT = cardiothoracic; DAO = descending thoracic aorta; EDV = end-diastolic volume; ESV = end-systolic volume; LV
473 = left ventricle; NA = not available; SVC/AO = superior vena cava/ascending aorta. Acceptance rate represents the proportion of inputted chest postero-
474  anterior X-raysthat were successfully analyzed and found to be free of lung hyper- or hypo-inflation. Body massindex and LV € ection fraction in the Normal
475  American from Emory University subgroup.
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