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What is already known on this topic? 1 

Previous deep learning research in the diagnosis of cardiovascular disease using chest X-rays has 2 

focused on predicting specific disease categories, forecasting cardiovascular outcomes, and 3 

automatically measuring the cardiothoracic (CT) ratio. The end-to-end learning methods that predict 4 

disease categories or outcomes are typically limited to specific conditions and often lack explainability. 5 

While the CT ratio is traditionally used in chest X-ray analysis, it often lacks well-defined normal 6 

ranges and may not effectively detect conditions such as aortic dilatation or pulmonary trunk 7 

enlargement. 8 

What this study adds 9 

To the best of our knowledge, this is the first study to propose age- and sex-specific normal values for 10 

all cardiovascular borders (CVBs) as well as the CT ratio. Utilizing 96,129 normal chest X-rays from 11 

multiple centers, we have established normal ranges for CVBs and standardized these values into z-12 

score mapping. This approach simplifies and enhances the practicality of clinical application. The z-13 

score mapping of CVBs has demonstrated clinical utility in diagnosing and categorizing diseases, as 14 

well as in predicting prognosis. The AI software that automatically analyzes CVBs from CXR is 15 

available for external validation and free trial use through our dedicated research website 16 

(www.adcstudy.com). This study has transformed the interpretation of cardiovascular configuration on 17 

chest X-ray from subjective expert assessments to objective, quantifiable, and standardized 18 

measurements expressed as z-scores. 19 

 20 
  21 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2024. ; https://doi.org/10.1101/2024.07.17.24310314doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.17.24310314
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

ABSTRACTS 22 

OBJECTIVE 23 

The analysis of cardiovascular borders (CVBs) on chest X-rays (CXRs) has traditionally relied on 24 

subjective assessment, and the cardiothoracic (CT) ratio, its sole quantitative marker, does not reflect 25 

great vessel changes and lacks established normal ranges. This study aimed to develop a deep 26 

learning-based method for quantifying CVBs on CXRs and to explore its clinical utility.  27 

DESIGN 28 

Diagnostic/prognostic study 29 

SETTING  30 

Pre-validated deep learning for quantification and z-score standardization of CVBs: the superior vena 31 

cava/ascending aorta (SVC/AO), right atrium (RA), aortic arch, pulmonary artery, left atrial 32 

appendage (LAA), left ventricle (LV), descending aorta, and carinal angle. 33 

PARTICIPANTS  34 

A total of 96,129 normal CXRs from 4 sites were used to establish age- and sex-specific normal 35 

ranges of CVBs. The clinical utility of the z-score analysis was tested using 44,567 diseased CXRs 36 

from 3 sites.  37 

MAIN OUTCOMES MEASURES  38 

The area under the curve (AUC) for detecting disease, differences in z-scores for classifying subtypes, 39 

and hazard ratio (HR) for predicting 5-year risk of death or myocardial infarction.  40 

RESULTS: A total of 44,567 patients with disease (9964 valve disease; 32,900 coronary artery 41 

disease; 1299 congenital heart disease; 294 aortic aneurysm; 110 mediastinal mass) were analyzed. 42 

For distinguishing valve disease from normal controls, the AUC for the CT ratio was 0.79 (95% CI, 43 

0.78-0.80), while the combination of RA and LV had an AUC of 0.82 (95% CI, 0.82-0.83). Between 44 

mitral and aortic stenosis, z-scores of CVBs were significantly different in LAA (1.54 vs. 0.33, 45 

p<0.001), carinal angle (1.10 vs. 0.67, p<0.001), and SVC/AO (0.63 vs. 1.02, p<0.001), reflecting 46 

distinct disease pathophysiology (dilatation of LA vs. AO). CT ratio was independently associated 47 

with a 5-year risk of death or myocardial infarction in the coronary artery disease group (z-score ≥2, 48 
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adjusted HR 3.73 [95% CI, 2.09-6.64], reference z-score <-1). 49 

CONCLUSIONS  50 

Fully automated, deep learning-derived z-score analysis of CXR showed potential in detecting, 51 

classifying, and stratifying the risk of cardiovascular abnormalities. Further research is needed to 52 

determine the most beneficial clinical scenarios for this method. 53 

  54 
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INTRODUCTION 55 

Advancements in artificial intelligence (AI) have significantly changed the way chest X-rays (CXR) 56 

are analyzed, enabling the automatic diagnosis of diseases affecting the lungs, pleura, and bones.1-3 57 

Recent studies have also demonstrated AI’s potential in cardiovascular disease for diagnosing heart 58 

failure, predicting cardiovascular disease risks, and identifying various types of valvular diseases using 59 

CXRs.4-8 AI systems trained to predict cardiovascular abnormalities in CXRs can provide saliency 60 

maps for their explainability, which highlight the areas focused on making diagnoses.5 7 However, it is 61 

important to note that these heatmaps might have limitations, particularly in pinpointing specific 62 

abnormalities or diagnosing rare diseases.9  63 

The cardiothoracic (CT) ratio, a traditional metric derived from CXRs, often lacks specific 64 

reference values and may not effectively reveal changes in cardiovascular borders (CVBs) such as 65 

dilatation of the aorta or pulmonary trunk.10 11 We have developed a fully automated, deep learning-66 

based software that analyzes CVBs comprehensively.12 This AI software might offer us an opportunity 67 

to establish precise normal ranges and detect various patterns of CVB enlargement associated with 68 

cardiovascular diseases. Z-scores, which represent the number of standard deviations a data point is 69 

from the mean of a normally distributed population, are frequently used to compare quantitative test 70 

results with reference data. The precise normal ranges of CVBs may help the standardization of all 71 

CVBs into simple z-scores for newly inputted CXRs. We therefore conducted the ADC (“Automated 72 

Diagnosis of Cardiovascular abnormalities using chest X-ray”) study to develop a deep learning-based 73 

method for quantifying CVBs on CXRs and to explore its clinical utility.  74 

  75 
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METHODS 76 

Study design 77 

The ADC was a retrospective, multicenter study initiated by investigators and included 140,696 CXRs 78 

from three academic centers in two countries (South Korea, USA), as well as two public US datasets.13 79 

14 The study protocol received ethical approval from the Institutional Review Boards of all 80 

participating institutions, and informed consent was waived for all participants (Asan Medical Center, 81 

Seoul, Korea; 2023-1001; Severance Hospital, Seoul, Korea; 4-2020-0628; Emory University, Atlanta, 82 

GA; STUDY00005513). The study design is summarized in Figure 1. Briefly, we utilized a pre-83 

validated deep learning model to automatically delineate CVBs on 96,129 normal CXRs.12 This deep 84 

learning-based analysis enabled the quantification of CVBs and the establishment of age- and sex-85 

specific normal ranges for both Korea and the USA. These normal ranges facilitated the 86 

standardization of individual CVBs into simple z-scores for newly inputted CXRs (Figure 2). The 87 

clinical utility of the z-score mapping was evaluated across various disease groups, including valvular 88 

heart disease (VHD), coronary artery disease (CAD), congenital heart disease (CHD), aortic aneurysm, 89 

and mediastinal mass.  90 

 91 

Study cohorts 92 

The normal cohorts used to establish reference ranges of CVBs encompassed data from Asan Medical 93 

Center (Seoul, Korea) labeled as “Normal Korean” (n=71,493) and three American datasets 94 

collectively labeled as “Normal American” (n=24,636). The dataset from Asan Medical Center 95 

spanned from 2002 to 2016, including 428,000 individuals who underwent both CXR and 96 

transthoracic echocardiography within a six-month period, with 71,493 meeting the criteria for 97 

normality in both tests (eTable 1 and eFigure 1 in Supplement) . Data extraction and analysis were 98 

performed by the Big Data Research Center at Asan Medical Center utilizing the CardioNet database, 99 

a meticulously curated database integrated within the electronic health records.15 The selection criteria 100 

for normal CXRs involved a comprehensive review of structured echocardiography records, 101 

radiological reports, and international classification of disease codes, carefully excluding any cases 102 

indicative of cardiac, pleuropulmonary diseases, or skeletal anomalies such as scoliosis. The Normal 103 
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American dataset was derived from two publicly accessible datasets—one from the National Institutes 104 

of Health Clinical Center (NIH subgroup)13 and another from Stanford University Hospital (CheXpert 105 

Subgroup)14—as well as a dataset from Emory University Medical Center, Atlanta, USA (Emory 106 

Subgroup) (eTable 2 in Supplement). For these datasets, CXRs without lung lesions and cardiomegaly 107 

were chosen after evaluations of structured radiological reports and labels. Individuals in the Emory 108 

subgroup were selected based on having normal results in both CXR and echocardiography.  109 

The study enrolled five disease groups including the VHD group (n=9964), patients evaluated for 110 

CAD with coronary computed tomography angiography (CCTA) (CAD group, n=32,900),16 111 

individuals who had undergone surgery for atrial or ventricular septal defects (CHD group, n=1299), 112 

patients confirmed with thoracic aortic aneurysms by computed tomography (Aneurysm group, 113 

n=294), and patients with biopsy-proven mediastinal masses (Mass group, n=110). The VHD group 114 

was recruited from three institutions: Asan Medical Center, Severance Hospital, and Emory University 115 

Medical Center, while the rest were from Asan Medical Center. Further details about each disease 116 

subgroup are provided in the Supplement (eTable 3-5 and eFigure 2) and summarized in Table 1. The 117 

VHD group was further categorized into the aortic stenosis (AS), aortic regurgitation (AR), mitral 118 

stenosis (MS), mitral regurgitation (MR), and tricuspid valve (TV) subgroups. The CAD group data, 119 

which was used for the prognostication testing in this study, included a median follow-up of 2.9 years 120 

(interquartile range, 1.0–4.5) and was segmented into significant CAD subgroups based on >50% 121 

stenosis observed in CCTA.16 The primary long-term clinical outcome was the composite of death 122 

from any cause or myocardial infarction at 5 years after CCTA.16 The Aneurysm group was composed 123 

of patients with an ascending aorta greater than 4.5 cm or a descending aorta/arch larger than 4 cm as 124 

confirmed by CT. The Mass group retrospectively enrolled patients with mediastinal masses 125 

confirmed by CT-guided biopsy. 126 

 127 

AI model  128 

The CVB analysis software has been previously validated against multi-institutional datasets.12 This 129 

AI software automatically delineates each CVB when a CXR is inputted. The width of each CVB was 130 

calculated by measuring the distance from the midline of the CXR to the centerpoint of the height 131 
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(Figure 2). Each CVB was named based on its normal anatomical location as follows: superior vena 132 

cava/ascending aorta (SVC/AO), right atrium (RA), aortic arch (Arch), pulmonary trunk (PT), left 133 

atrial appendage (LAA), left ventricle (LV), descending aorta (DAO), and the carinal angle (the angle 134 

between the lower borders of the right and left main bronchi). The definitions of each CVB are 135 

detailed in eTable 6. For CVB analysis, only CXRs taken in the postero-anterior direction with the 136 

patient standing and with proper lung inflation were analyzed. Therefore, a separate imaging filter was 137 

developed to exclude inappropriate CXRs. Detailed information on the deep learning algorithm and 138 

imaging analysis workflow is provided in the eMethods (eFigure 3 in Supplement). This AI model is 139 

available for external validation and public use via our non-commercial research website 140 

(www.adcstudy.com), which provides real-time CXR analysis capabilities (eFigure 4 in Supplement).  141 

 142 

Analysis of AI measurements 143 

While most of the extracted CVB metrics approximated a symmetrical distribution, some variations in 144 

kurtosis across different metrics as well as skewness in DAO were noted (eFigure 5 and 6 in 145 

Supplement). To account for these discrepancies, each CVB metric underwent a transformation to a 146 

Box-Cox normal distribution using Generalized Additive Models for Location, Scale, and Shape.17 147 

Percentile curves were plotted for individual measurements, and z-scores were computed.17 18 Then, 148 

the dimensions of each CVBs were standardized into z-scores.  149 

 150 

Statistical analysis 151 

Continuous variables are presented as means and standard deviations, while categorical variables are 152 

presented as counts and percentages. Z-scores for each disease group are shown along with their 153 

means and 95% confidence intervals (CIs). The diagnostic performance of CVB metrics in detecting 154 

specific diseases was evaluated using the area under the receiver operating characteristic (AUC), 155 

calculated with the pROC package (version 1.18.5) and included sensitivity, specificity, accuracy, 156 

positive predictive value (PPV), and negative predictive value (NPV) with cut-off point determined by 157 

the maximum Youden index. Diagnostic performance was assessed for the VHD, CAD, and CHD 158 

groups, as well as for subgroups within VHD. For each disease category, a control group three times 159 
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the size of the disease group was randomly selected from the Normal Korean cohort. Multivariate 160 

logistic regression analysis was used to identify CVBs significantly associated with the presence of 161 

disease. Only CVB metrics that demonstrated a p-value <0.01 in univariate analysis and had low inter-162 

correlations (r<0.2) were included in the multivariate analysis. The multivariate model was developed 163 

using 60% of the randomly divided data and validated using the remaining 40%.  164 

For the CAD group, Kaplan–Meier survival analyses were conducted using the survival package 165 

(version 3.5.5), and Cox proportional-hazards regression models were used to examine the relationship 166 

between CVB z-scores and patient outcomes, independent of known cardiovascular risk factors. These 167 

analyses focused on the composite outcome of death from any cause or myocardial infarction 168 

following CCTA. The Framingham Risk Score, body mass index (BMI), the presence of diabetes 169 

mellitus, estimated glomerular filtration rate, symptoms at CCTA, and obstructed CAD (defined as 170 

≥50% diameter stenosis) on CCTA were incorporated into the multivariate regression models, 171 

consistent with previously published results.16 The CVB z-scores were categorized as follows: z-score 172 

< -1, -1 ≤ z-score < 0, 0 ≤ z-score < 1, 1 ≤ z-score < 2, and z-score ≥ 2.  173 

  174 
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RESULTS 175 

Study population 176 

The study population comprised 96,129 individuals in the normal cohorts and 44,567 patients in the 177 

disease cohorts (Table 1, Figure 1). The mean age ranged from 46.5 years in the CHD group to 59.4 178 

years in the Aneurysm group. The VHD group included 1432 AS (14.4%), 1756 AR (17.6%), 2897 179 

MS (29.1%), 2971 MR (29.8%), 785 TV disease (7.9%), 72 PV disease (0.7%), and 51 multi-valve 180 

disease (0.5%) cases (eTable 7 in Supplement). Echocardiography results show LV ejection fraction 181 

and other cardiac dimensions, with disease groups often showing enlarged measurements compared to 182 

normal.  183 

 184 

Normal range of CVBs 185 

eTable 8 in Supplement summarizes the normal ranges for CVBs on postero-anterior CXR for 186 

different age groups in both Korean and American populations according to sex. Figure 3 presents a 187 

set of graphs depicting age-related percentile curves for various CVBs in normal individuals; detailed 188 

graphs for Normal American and Korean cohorts were provided in the eFigure 7-10 in Supplement. 189 

For both populations, the CT ratio tends to increase with age; similarly, the diameters for SVC/AO, 190 

RA, Arch, LV, and DAO also increased with age, reflecting physiological changes in the 191 

cardiovascular system as age advances. Inter-cohort comparisons revealed slightly larger CVBs in the 192 

American group, differences that were mitigated after adjusting for CT ratio.  193 

 194 

Z-scores of CVBs in disease groups 195 

In the analysis of disease groups, z-scores for CVB were generally elevated, with the VHD and CHD 196 

groups displaying significantly higher z-scores compared to the CAD group (Figure 4 and eTable 9 in 197 

Supplement). Specifically, the mean z-scores for the CT ratio were 0.39 in CAD, 1.27 in CHD, and 198 

1.40 in VHD. Figure 4 highlights the variations in z-scores across diseases, showcasing the disease-199 

specific changes in CVB parameters. MS, often accompanied by left atrial enlargement, showed 200 

marked increases in the LAA (z-score=1.54) and carinal angle (z-score=1.10) as a result of the left 201 

atrial pushing upwards; this was in marked contrast to AS where the increase in the SVC/AO (z-202 
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score=1.02) indicated dilation of the ascending aorta. In CHD, including atrial or ventricular septal 203 

defects, the z-score of the aortic arch (0.01) was relatively low, reflecting the reduced cardiac output 204 

of the left heart due to left-to-right shunt disease. The aortic aneurysm group showed significant 205 

increases in the arch (1.95) and DAO (2.65) z-scores, indicating aneurysmal changes. Mediastinal 206 

mass conditions also demonstrated elevated z-scores, especially for the SVC/AO (1.04) and the 207 

pulmonary trunk (1.03), which may indicate a mass shadow or compression caused by the tumor.  208 

 209 

Diagnostic performance 210 

The diagnostic evaluation of CVBs highlighted the CT ratio z-score as a robust metric across VHD, 211 

CAD, and CHD groups (Figure 5). The AUC for detecting VHD using the CT ratio reached 0.79 (95% 212 

CI, 0.78–0.80), which was increased to 0.82 (95% CI, 0.82–0.83) when combined with RA and LV 213 

metrics. CHD detection benefited from a CT ratio AUC of 0.77 (95% CI, 0.74–0.79), which improved 214 

to 0.81 (95% CI, 0.79–0.84) when PT and carinal angle were added. Among the subgroups of VHD, 215 

TV disease detection had the highest AUC of 0.87 (95% CI, 0.84–0.89) using the CT ratio. Detailed 216 

information on demographics, AUC, sensitivity, specificity, cut-off, PPV, and NPV is provided in 217 

eTable 10-17 in Supplement.   218 

 219 

Prognostic value 220 

In the cohort of 32,900 CAD patients, there were 390 (1.18%) instances of all-cause death or 221 

myocardial infarctions. CT ratio z-scores indicated an increasing risk with higher scores (Figure 6). 222 

Patients with a CT ratio z-score of 2 or higher were at a significantly elevated risk (adjusted HR 3.73, 223 

95% CI, 2.09–6.64), showing a higher percentage of cumulative events (4.6% vs. 0.6%, p<0.001) over 224 

5 years compared to the reference group with a z-score less than -1 (HR 1.00). Elevated risks were 225 

also observed with higher z-scores (≥2) for SVC/AO, RA, DAO, and carinal angle, while the Arch, PT, 226 

LAA, and LV z-scores not reaching statistical significance (eTable 18 and eFigure 11-18 in 227 

Supplement).  228 

 229 

Case examples 230 
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We presented eight CXR case examples (eFigure 19-26 in Supplement), illustrating the application of 231 

z-score mapping in diagnosing various cardiomediastinal diseases. The cases span a range of 232 

conditions, including AS, MS, AR, atrial septal defect, aortic aneurysms, and mediastinal masses.  233 

 234 

DISCUSSION 235 

In the ADC study, we established normal values for CVBs and introduced a new methodology for 236 

utilizing CXRs in cardiovascular disease diagnosis. Our main findings are as follows. First, z-score 237 

mapping for CVBs was feasible in disease diagnosis. In certain cases, combining different CVBs 238 

enhanced diagnostic accuracy beyond the CT ratio. Second, variations in z-scores, reflecting the 239 

underlying disease pathophysiology, indicate that CXRs could be useful in classifying diseases, such 240 

as distinguishing between aortic and mitral valve diseases. As demonstrated through our case 241 

presentations, the changes in individual CVB z-scores may be correlated with the pathophysiological 242 

changes observed in patients' echocardiograms or CT scans. The z-score mapping allows for a more 243 

objective and quantifiable method of interpretation compared to traditional approaches to CXR 244 

analysis. Lastly, measures of CVB, including the CT ratio, showed potential in predicting clinical 245 

outcomes, adding value to traditional risk scoring systems.  246 

Regarding the quantitative analysis of CXR, previous studies have focused on automatically 247 

extracting the CT ratio19-22 and biological age23 from CXRs using AI. As demonstrated in the ADC 248 

study, the variability of the CT ratio's normal values based on age and sex indicates limitations in 249 

applying a single cutoff 0.5. Moreover, conditions such as pulmonary trunk and ascending aortic 250 

dilatation cannot be adequately assessed by the CT ratio alone. The significance of this ADC study lies 251 

in standardizing various CVBs into a single parameter of z-score, not just the CT ratio, particularly 252 

showing some success in making differential diagnoses that were not previously possible with the CT 253 

ratio. Extracting biological age from CXR has shown promising prognostic value when added to 254 

existing cardiovascular risk matrices, offering a potential new utility for CXR.23  Since, CXR-derived 255 

biological age and CVB z-scores are numerical data and likely independent, combining them could 256 

offer potential for clinical practice and research applications. 257 
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The use of “end-to-end” supervised learning, where AI directly learns from CXRs with 258 

abnormalities compared to a control group, is a widely adopted approach in current AI research. This 259 

method has been extensively applied in the field of cardiovascular disease to predict conditions such 260 

as acute chest pain syndrome24, aortic dissection25, LV systolic dysfunction6, structural LV disease7, 261 

valvular heart disease5, aortic stenosis26, and atrial fibrillation27 using CXRs. Other studies have also 262 

tried to predict the 10-year risk for major adverse cardiovascular events using CXRs.8 These studies 263 

often employ saliency maps to improve the explainability of AI, indicating the specific areas of the 264 

image that the AI prioritized to reach its decision. However, saliency maps can struggle with the 265 

precise localization of abnormalities and may pose interpretative challenges when applied to diseases 266 

not included in the algorithm's training.9 Z-score mapping, by providing interpretable numerical values 267 

independent of specific diseases, can help overcome these limitations, offering broader applicability 268 

across various cardiomediastinal conditions. This advancement may offer a modernized approach to 269 

interpreting CXRs, aligning with clinicians' preference for quantifiable metrics, such as blood tests and 270 

echocardiographic parameters. Moreover, this numerical approach facilitates a more objective 271 

comparison during the follow-up of CXRs, making it easier to interpret changes over time in a 272 

patient's condition. 273 

For the utilization of z-score mapping of CXR in real-world clinical practice, it is crucial to 274 

establish the most appropriate clinical application scenarios. For example, z-score mapping of CXRs 275 

could serve as a gatekeeper before proceeding to more costly and complex tests such as 276 

echocardiography. Another promising scenario could involve using z-score mapping of CXRs as a 277 

screening tool to detect left-to-right shunt diseases before they progress to irreversible pulmonary 278 

hypertension. Such applications could significantly enhance the utility of CXR, providing a cost-279 

effective, accessible, and non-invasive method. Particularly, using CXRs for VHD or CHD in 280 

screening scenarios could be a viable alternative in underdeveloped countries where healthcare 281 

infrastructure is insufficient.28 282 

This study has the following limitations: First, the CVB analysis is subject to limitations of the 283 

CXR modality compared to echocardiography or CT. As demonstrated in Case 4 (ASD) and Cases 6 284 

and 7 (mediastinal mass), CVBs can be influenced by adjacent structures. Therefore, the interpretation 285 
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of CVB analysis must be based on understanding of the specific disease's pathophysiology and 286 

topographical anatomical knowledge in CXR. Second, although this study presents diagnostic 287 

performance, z-score pattern analysis, and prognostic value, it has not provided definitive cut-off 288 

values refined enough for application in actual practice. This is because, although the normal ranges 289 

and disease cohorts included data from multiple institutions, they did not encompass a wide variety of 290 

ethnicities and real-world conditions, including disease groups. Future research should conduct more 291 

extensive studies across a wide range of clinical application scenarios. 292 

The ADC study has introduced a fully automated, deep learning-derived z-score analysis of CXR 293 

showed potential in detecting, classifying, and stratifying the risk of cardiovascular abnormalities. 294 

Further research is needed to determine the most beneficial clinical scenarios for this method. 295 
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FIGURE LEGENDS 405 

Figure 1. Study workflow 406 

 407 

AI=artificial intelligence. AMC=Asan Medical Center. CAD=coronary artery disease. 408 

CHD=congenital heart disease. CheXpert=Chest eXpert (public dataset from Stanford University 409 

Hospital). CV=cardiovascular. CXR=chest X-ray. Emory=Emory University Hospital. KUMH=Korea 410 

university Ansan Hospital. NIH=National Institute of Health Clinical Center. SNUBH=Seoul National 411 

University Bundang Hospital. Yonsei=Yonsei University Severance Hospital.  412 
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Figure 2. Z-score mapping process for cardiovascular borders in chest X-rays 413 

 414 

1. A standard postero-anterior chest X-ray is used as the input for the AI analysis. 415 

2. AI algorithms automatically identify and delineate the CVBs on the chest X-ray. 416 

3. The software measures the dimensions from the midline to key points on the CVBs to calculate the 417 

cardiothoracic (CT) ratio and the dimensions of individual CVBs. The width of each CVB is defined 418 

as the distance between the center points of each CVB and the midline of the CXR. The CT ratio was 419 

calculated by dividing the maximum width of the right lower CVB (corresponding to the right atrium) 420 

and the left lower cardiovascular border (corresponding to the left ventricle) by the maximal horizontal 421 

thoracic diameter. 422 

4. The measurements are then standardized into z-scores based on the normal range, allowing for 423 

comparison according to age and sex.  424 

LAA=left atrial appendage. SVC/AO=superior vena cava/ascending aorta.  425 

 426 
 427 

  428 
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Figure 3. Age-related percentile curves for cardiovascular borders in normal chest X-ray.  429 
 430 

 431 

(A) 432 

  433 
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 434 

(B) 435 

Percentile graphs of cardiovascular borders according to age for normal men (A) and women (B). The 436 

data in red or blue represents Normal Korean individuals, and the data overlapped in gray represents 437 

that of Normal Americans.  438 

 439 
  440 
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Figure 4. Comparative z-score forest plot for disease classification 441 
 442 

 443 

Each parameter is represented by a horizontal line, with data points indicating the mean z-score and 444 

error bars showing 95% confidence intervals.  445 

(A) Comparison across different disease groups: coronary artery disease, congenital heart disease, and 446 

valvular heart disease.  447 

(B) Comparison across specific valvular heart disease: aortic stenosis, mitral stenosis, and tricuspid 448 

valve disease.  449 

 450 

  451 
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Figure 5. Performance of the z-score mapping of cardiovascular borders for the detection of 452 
cardiovascular disease  453 
 454 

 455 

AUC=area under the receiver operating characteristic curve. CA=carinal angle. CT=cardiothoracic. 456 

DAO=descending aorta. LAA=left atrial appendage. LV=left ventricle. PT=pulmonary trunk. 457 

RA=right atrium. SVC=superior vena cava (SVC/aorta).  458 

 459 
  460 
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Figure 6. All-cause death or myocardial infarction stratified by cardiothoracic ratio z-score 461 
 462 

 463 

In the coronary artery disease group, all-cause death or myocardial infarction were stratified by z-464 

score categories of the CT ratio. Adjusted HRs were compared with the lowest z-score group (<-1).  465 

(A) Percent of death or myocardial infarction and adjusted HR increased across ascending z-score 466 

categories.  467 

(B) Cumulative event rate for each z-score category of the CT ratio during a follow-up duration of 5 468 

years.  469 

CT=cardiothoracic. HR=hazard ratio.  470 
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Table 1. Baseline characteristics and measurements of echocardiography and chest X-ray 471 
 

Normal Korean 
n=71,493 

Normal 
American 
n=24,636 

VHD 
n=9964 

CAD 
n=32,900 

CHD 
n=1299 

Aneurysm 
n=294 

Mass 
n=110 

Demographics        

Age, years 54.2 (11.4) 46.3 (16.5) 56.9 (15.4) 57.2 (10.0) 46.5 (14.2) 59.4 (13.9) 47.4 (18.4) 
Male sex (%) 42932 (60.1) 13566 (55.1) 4304 (43.2) 20047 (60.9) 482 (37.1) 214 (72.8) 54 (49.1) 
Height, cm 164.1 (8.7) NA 160.5 (9.2) 164.4 (8.7) 161.8 (9.1) 167.2 (10.1) 90.7 (29.4) 
Weight, kg 63.8 (10.7) NA 60.1 (10.9) 66.6 (11.3) 59.5 (11.3) 67.6 (12.4) 65.7 (13.3) 
Body mass index, kg/m2 23.6 (2.9) 29.3 (9.2)* 23.4 (3.4) 24.5 (3.0) 22.6 (3.3) 24.1 (3.7) 24.3 (3.9) 
Body surface area, m2 1.70 (0.18) NA 1.64 (0.18) 1.74 (0.18) 1.63 (0.19) 1.77 (0.20) 1.94 (1.97)  

Echocardiography         
LV EDV index, mL/m2 83.4 (20.8) NA 105.1 (49.7) 89.2 (26.4) 87.4 (29.7) 109.3 (45.9) 90.7 (29.4) 
LV ESV index, mL/m2 30.8 (8.6) NA 45.8 (32.5) 33.5 (13.0) 34.7 (15.5) 47.1 (32.4) 34.2 (16.7) 
LV ejection fraction, % 63.1 (3.7) 61.3 (4.98)* 59.4 (10.1) 62.6 (8.3) 60.9 (7.1) 59.0 (9.4) 62.8 (6.2) 
Ascending aorta, mm 32.1 (3.5) NA 32.9 (7.0) 33.1 (6.7) 31.4 (4.4) 36.9 (5.3) 32.4 (4.5)  

Chest X-ray        
Acceptance rate, % 98.2 

(71,493/72,772) 
96.8 

(24,636/25,444) 
96.2 

(9964/10,357) 
95.5 

(32,900/34,446) 
97.3 

(1299/1335) 
89.9 

(294/327) 
98.2 

(110/112) 
CT ratio 0.48 (0.05) 0.47 (0.06) 0.56 (0.08) 0.49 (0.06) 0.55 (0.08) 0.56 (0.07) 0.49 (0.05) 
SVC/AO, mm 28.4 (6.8) 29.3 (8.5) 32.6 (9.4) 29.7 (7.2) 29.8 (9.2) 37.8 (11.3) 36.3 (12.4) 
Right atrium, mm 39.1 (7.8) 41.4 (9.4) 46.2 (11.3) 40.8 (8.2) 44.1 (12.4) 48.0 (11.9) 40.8 (8.7) 
Aortic arch, mm 38.3 (6.7) 35.3 (8.3) 39.4 (8.2) 39.5 (6.8) 37.2 (8.0) 52.6 (14.0) 40.9 (9.4) 
Pulmonary trunk, mm 38.5 (6.4) 37.8 (7.9) 43.3 (8.6) 39.8 (6.8) 47.0 (9.2) 46.2 (10.4) 45.3 (10.1) 
Left atrial appendage, mm 46.4 (7.3) 46.7 (9.1) 53.9 (10.2) 48.1 (7.8) 58.1 (10.6) 54.1 (10.8) 53.2 (10.0) 
Left ventricle, mm 84.6 (10.5) 85.6 (14.2) 96.6 (14.0) 88.7 (11.3) 98.7 (14.4) 101.9 (14.2) 85.9 (10.9) 
Descending aorta, mm 33.3 (8.6) 29.1 (9.5) 42.2 (11.2) 36.2 (9.4) 35.0 (11.5) 56.3 (16.0) 35.2 (9.5) 
Carinal angle, degree 71.1 (8.7) 72.3 (9.6) 79.3 (11.2) 72.1 (9.6) 77.7 (11.1) 80.7 (12.1) 77.9 (8.9)  

Values are mean (SD) or number (%). CT = cardiothoracic; DAO = descending thoracic aorta; EDV = end-diastolic volume; ESV = end-systolic volume; LV 472 
= left ventricle; NA = not available; SVC/AO = superior vena cava/ascending aorta. Acceptance rate represents the proportion of inputted chest postero-473 
anterior X-rays that were successfully analyzed and found to be free of lung hyper- or hypo-inflation. Body mass index and LV ejection fraction in the Normal 474 
American from Emory University subgroup. 475 
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