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ABSTRACT 

Gliomas are highly fatal and heterogeneous brain tumors. Molecular subtyping is critical for accurate 
diagnosis and prediction of patient outcomes, with isocitrate dehydrogenase (IDH) mutations being the 
most informative tumor feature. Molecular subtyping currently relies on resected tumor samples, 
highlighting the need for non-invasive, preoperative biomarkers. We investigated the integration of glioma 
polygenic risk scores (PRS) and radiomic features for prediction of IDH mutation status. The elastic net 
classifier was trained on a panel of 256 radiomic features from preoperative MRI scans, a germline PRS 
for IDH mutation and demographic information from 159 glioma cases in The Cancer Genome Atlas. 
Combining radiomics features with the PRS increased the area under the receiver operating characteristic 
curve (AUC) for distinguishing IDH-wildtype vs. IDH-mutant glioma from 0.824 to 0.890 (PDAUC=0.0016). 
Incorporating age at diagnosis and sex further improved the classifier (AUC=0.920). Our multimodal 
classifier also predicted survival. Patients predicted to have IDH-mutant vs. IDH-wildtype tumors had 
significantly lower mortality risk (hazard ratio (HR)=0.27, 95% CI: 0.14-0.51, P=6.3´10-5), comparable to 
prognostic trajectories observed for biopsy-confirmed IDH mutation status. In conclusion, our study shows 
that augmenting imaging-based classifiers with genetic risk profiles may help delineate molecular subtypes 
and improve the timely, non-invasive clinical assessment of glioma patients. 
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INTRODUCTION 

Gliomas are the most common primary malignant brain tumors in adults1. These neoplasms encompass 
multiple subtypes with distinct somatic mutations that delineate different clinical trajectories2. Although 
glioma classifications continue to evolve, several key features have been used to define molecular subtypes 
since 2016: isocitrate dehydrogenase 1 and 2 mutations (collectively referred to as IDH mutations), 
chromosome 1p and 19q co-deletion, and TERT promoter mutations2–4. The 2021 World Health 
Organization (WHO) glioma classification guidelines use these tumor molecular features to define three 
glioma subtypes5: tumors without IDH mutation (IDH-wildtype glioblastomas), tumors with IDH mutation 
and an unbalanced translocation between chromosomes 1 and 19 (IDH-mutant 1p19q co-deleted 
oligodendrogliomas), and IDH-mutant tumors without 1p19q co-deletion (IDH-mutant astrocytomas). IDH-
wildtype glioblastomas (GBM) are more aggressive, have fewer treatment options and are associated with 
significantly shorter overall survival than IDH-mutant gliomas2,6. The early establishment of a molecular 
diagnosis for gliomas is important to predict tumor behavior and guide treatment of individual patients7–9.  

Currently, the classification of gliomas into prognostically significant subtypes is based on histopathological 
and molecular assessment of tissue samples obtained from biopsy or resection. Therefore, the evaluation 
of treatment options and prognostication are often delayed until after surgery, which carries the risk of 
permanent operative complications or may not be readily accessible in low-resource settings. Recent efforts 
have been aimed at using noninvasive procedures such as imaging10–13 and germline genotyping14,15 to 
provide insight into the presence or absence of clinically relevant somatic mutations (e.g. IDH mutation) 
prior to surgical interventions. By providing timely insight into the tumor molecular profile, these noninvasive 
tools may complement the standard histopathological assessment of surgical specimens to expedite 
treatment decisions and better inform patient management.  

Major advances have been made in the use of tumor radiographic features obtained from preoperative 
imaging data to classify gliomas into molecular subtypes. Earlier applications of machine learning (ML) to 
imaging data for tumor classification used textural analysis approaches or rule-based systems such as 
VASARI16,17. Since these approaches rely on manual feature selection, research efforts have since focused 
on the development of deep learning models such as convolutional neural networks (CNNs) that 
automatically extract features from complex images11–13. Recent CNN-based models for glioma 
classification have shown promising results, with model predictions recapitulating prognostic outcomes 
expected for different molecular subtypes. However, previous studies of imaging features have not 
accounted for other known clinical and genetic indicators of subtype-specific glioma risk.   

Genome-wide association studies (GWAS) for glioma have shown that inherited genetic variation influences 
disease risk and that different molecular subtypes are associated with distinct genetic risk loci18,19. 
Polygenic risk scores (PRS), which aggregate the effects of risk alleles across the genome to provide a 
personalized genetic susceptibility profile20, have been shown to predict subtype-specific glioma risk and 
accurately distinguish among molecular subtypes14,15. Since gliomas sometimes present with non-
characteristic radiographic features (e.g. IDH-wildtype non-enhancing tumors)13, inherited genetic variation 
could offer an additional indicator of malignancy risk independent of radiomic features that might improve 
the performance of imaging-based classification models.  

In this study, we integrated radiomic features extracted from pre-operative multimodal magnetic resonance 
imaging (MRI) scans with germline PRS profiles to classify gliomas according to IDH mutation status. Using 
the developed classification model, we also identify predictive features in subtype discrimination and assess 
their clinical significance.  

MATERIALS AND METHODS 
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Study population 

The analysis group consisted of 768 glioma cases (384 IDH-wildtype, 384 IDH-mutant) with available tumor 
molecular data from The Cancer Genome Atlas (TCGA). Cases were genotyped on the Affymetrix 6.0 array 
and imputed with the TOPMed reference panel, with standard quality control procedures as previously 
described14,21. Briefly, SNPs with a call rate <95% were excluded along with those at a low minor allele 
frequency (MAF<0.005) or showing significant deviation from the Hardy-Weinberg equilibrium (P<10-6). 
Analyses were also restricted to individuals of predominantly European ancestry. Among the 768 glioma 
cases with genotyping data, 159 cases (82 IDH-wildtype, 77 IDH-mutant) also had available radiomic data 
extracted from pre-operative multimodal MRI scans provided by The Cancer Imaging Archive22–24. As 
described in Bakas et al22, T1-weighted pre-contrast (T1), T1-weighted post-contrast (T1-Gd), T2 and T2-
FLAIR scans of each patient underwent standard pre-processing including registration, resampling and 
skull stripping, followed by computer-aided assignment of segmentation labels to tumor sub-regions (e.g. 
peritumoral edema). Computer-aided segmentation labels were then manually-revised by a 
neuroradiologist. Based on the assigned labels of each tumor sub-region, a panel of radiomic features were 
extracted, which included intensity, volumetric, morphologic, histogram, textural, spatial and tumor diffusion 
parameters.  

Genetic data preprocessing and feature extraction 

An overview of the study design and analysis is provided in Figure 1. Using individual-level genotyping 
data, we fit four previously developed subtype-specific PRS for each patient in TCGA, as described in 
Nakase et al14. Briefly, the GBM PRS and the non-GBM PRS were trained using summary statistics from a 
GWAS of 10346 cases (5395 GBM, 4466 non-GBM) and 14,687 controls, while PRS for molecular subtypes 
were developed using GWAS results from 2632 cases (1115 IDH-wildtype, 699 IDH-mutant) and 2445 
controls14,18,19. 

For each individual, each subtype-specific PRS was converted to a standardized z-score based on the in-
sample TCGA distribution. To adjust for population stratification, we regressed out the effects of the first 10 
genetic ancestry principal components and used the residualized z-scores for each PRS in subsequent 
processing. Next, we fit a logistic regression model with IDH mutation status as the outcome and the four 
residualized PRS features as the explanatory variables on the subset of 609 patients without radiomic data. 
This model was then applied to the 159 patients with both radiomic and germline genetic data to extract a 
new composite PRS feature based on the weighted effect of each subtype-specific PRS.  

Radiomic data preprocessing and feature extraction 

Of the 723 radiomic features, 467 were not available for all cases and were excluded from the analysis. For 
each of the remaining 256 radiomic features, we calculated its standardized z-score. We assessed for 
potential confounding by age, sex and brain volume (excluding skeletal structures) by calculating the 
Pearson correlation between the standardized z-score of each radiomic feature and each factor. For each 
feature that was significantly correlated with age, sex or brain volume (P<0.05), residualization was 
performed to omit the effect of these factors25.  

Model development and evaluation 

We used an elastic net to classify glioma cases according to IDH mutation status in the subset of the TCGA 
dataset with both radiomic and germline genetic information. In addition to the single composite PRS feature 
and the 256 radiomic features, age at diagnosis and sex were used as model inputs. We performed 5-fold 
cross-validation with 80% of the data used for training the model and 20% of the data used for independent 
testing in each experimental iteration. We used standard logistic regression for the demographics only (age 
at diagnosis and sex) and PRS only models. Classification performance was quantified using accuracy, 
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precision, recall, F1-score and area under the receiver operating characteristic curve (AUC). The difference 
in AUC between models was assessed using DeLong’s test. Feature importance was quantified using the 
distribution of weights across the 5 folds of the training/testing split. Features whose mean weights were 
significantly different from zero based on a one-sample t-test (P<0.05) were regarded as predictive features.  

Survival analysis 

We examined how well the integrated genetic and radiomic IDH classifier predicted overall survival. Follow-
up time was calculated from date of diagnosis to death or end of follow-up. Kaplan-Meier curves were used 
to visually compare survival trajectories based on predicted IDH status. Differences in event time 
distributions were assessed using the log rank test. To incorporate covariates, hazard ratios (HR) for 
predicted IDH status were estimated using Cox proportional hazards models with adjustment for age at 
diagnosis and sex, and stratification by disease grade. In addition to prognostic associations for predicted 
IDH status, we also evaluated the association of each feature that was included in the classifier with overall 
survival.  

RESULTS 

Characteristics of study population 

Basic summary information of study participants overall and stratified by available genotyping and radiomic 
data is provided in Table 1. The median age of included cases was 52 years, with more males (58.5%) than 
females (41.5%). Overall, we included 384 subjects diagnosed with IDH-wildtype GBM, 235 with IDH-
mutant astrocytoma and 147 with IDH-mutant 1p19q-codeleted oligodendroglioma.  

IDH classification 

We examined the classification performance of different combinations of features for predicting IDH 
mutation status (Table 2). In models limited to features of a single category (i.e. demographics, genetics or 
radiomics), we found that the radiomics-based model was the most predictive for IDH status classification. 
The radiomics-based model yielded higher AUC (0.824, 95% confidence interval (CI): 0.755-0.894) than 
the composite PRS model (0.702, 95% CI: 0.622-0.782, PDAUC=0.039) and the demographics only model 
(0.751, 95% CI: 0.673-0.827, PDAUC=0.19). Radiomics features also exhibited improved accuracy (0.774), 
recall (0.779) and F1-score (0.769) compared to the other single-category models.  

Next, we assessed whether germline genetics, demographics, and radiomics might contribute orthogonal 
information towards IDH status classification (Table 2). The elastic net model that included both PRS and 
radiomic features achieved significantly improved performance compared to the radiomics-based model, 
with an AUC of 0.890 (95% CI: 0.837-0.943, PDAUC=0.0016). Model performance was further improved by 
adding age at diagnosis and sex to the radiomics features (AUC=0.906, 95% CI: 0.856-0.955). Overall, the 
integrated model that included demographics, radiomics, and PRS features achieved the highest AUC 
(0.920, 95% CI: 0.876-0.964), accuracy (0.849), recall (0.844) and F1-score (0.844). Repeating the 5-fold 
cross-validation procedure for 500 random training/testing splits showed that the inclusion of genetic and 
demographic features in the radiomics-based model increased classification performance (Figure 2). The 
AUC distribution of the full integrated model achieved a median of 0.937 (interquartile range (IQR)=0.920-
0.937) compared to a median of 0.882 (IQR=0.871-0.893) for the combined radiomics and genetics model 
and a median of 0.838 (IQR=0.824-0.851) for the radiomics-only model.  

In sensitivity analyses, we assessed the relative performance of the various models using radiomic features 
that were not adjusted for confounding factors such as age, sex and brain volume (Supplementary Table 
1). The radiomics model showed significantly higher AUC (0.887, 95% CI: 0.833-0.942) than both the 
composite PRS feature model (AUC=0.702, PDAUC=5.7´10-4) and the demographics-only model 
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(AUC=0.751, PDAUC=0.0034). Adding germline genetics to radiomics features increased accuracy (0.843 vs. 
0.830), F1-score (0.832 vs. 0.814) and AUC (0.920, 95% CI: 0.878-0.962, PDAUC=0.018). The full integrated 
model that included age at diagnosis and sex had the best overall classification performance with an 
accuracy of 0.868, F1-score of 0.863, and an AUC=0.920 (95% CI: 0.878-0.963). When we repeated the 
5-fold cross-validation procedure for 500 iterations (Supplementary Figure 1), the full integrated model 
showed a higher median AUC (0.927, IQR=0.927-0.934) than the combined radiomics and genetics model 
(AUC=0.920, IQR=0.911-0.927) and the radiomics-only model (AUC=0.881, IQR=0.891-0.900).    

Feature importance 

Overall, 40 out of the 256 features had non-zero cumulative weights in the elastic net model that included 
all available features (Figure 3A). Of those 40 features, 8 were significantly predictive of IDH mutation 
status: age at diagnosis, germline genetic susceptibility, the ratio of the enhancing tumor (ET) volume to 
whole tumor (WT) volume, heterogeneity of the non-enhancing tumor (NET), the percentage of the tumor 
core (TC) in the frontal lobe, the ratio of the NET volume to the WT volume, the ratio of the ET to the TC 
volume and the ratio of the NET volume to the TC volume (Figure 3B). Various texture-based radiomic 
features calculated from gray-level intensities also had non-zero cumulative weights in the elastic net model, 
although their mean weights were not significantly different from zero (Figure 3A). Compared to IDH-
wildtype tumors, IDH-mutant tumors were generally diagnosed at an earlier age, had minimal areas of 
enhancement and more often developed in the frontal lobe (Figure 3B).  

Survival analysis 

Patients predicted to have IDH-mutant gliomas showed significantly improved survival compared to patients 
predicted to have IDH-wildtype gliomas (HR=0.27, 95% CI: 0.14-0.51, P=6.3´10-5; Table 3). The difference 
in median survival between IDH-mutant and IDH-wildtype predictions was 72.7 months (P=2.1´10-11; 
Figure 4B). Median survival time for patients predicted to have IDH-mutant (87.4 months) vs. IDH-wildtype 
tumors (14.7 months) was similar to patients with biopsy-confirmed IDH-mutant (87.4 months) vs. IDH-
wildtype tumors (14.3 months; Figure 4A). Among grades II or III gliomas, patients predicted to have IDH-
mutant tumors had significantly lower mortality risk than patients predicted to have IDH-wildtype tumors 
(HR=0.28, 95% CI: 0.11-0.69, P=0.0062; Figure 4D), which was comparable to the survival difference 
observed for IDH mutation status based on postoperative molecular profiling (HR=0.19, 95% CI: 0.07-0.53, 
P=0.0015; Figure 4C). For grade IV gliomas, the median survival difference between patients predicted to 
have IDH-mutant tumors compared to patients predicted to have IDH-wildtype tumors was attenuated at 
7.4 months (P=0.30; Figure 4D). Similar differences in median survival were observed when we compared 
patients with grade IV gliomas based on biopsy-confirmed IDH mutation status (10.5 months, P=0.087; 
Figure 4C). 

Of the 40 features that had non-zero cumulative weights in the integrated IDH classifier, age at diagnosis 
and 23 radiomic features were associated with all-cause mortality at P<0.05 (Figure 5, Supplementary 
Table 2). Prognostic radiomic features were primarily related to characteristics of the ET and NET regions. 
For instance, higher relative enhancing tumor volume (i.e. ET/TC) was associated with a 51% increase in 
overall mortality risk (HR=1.51, 95% CI: 1.22-1.86, P=1.2´10-4), while tumors with greater solidity of the 
NET had lower mortality risk (HR=0.61, 95% CI: 0.49-0.77, P=3.1´10-5).  

DISCUSSION 

In this case study, we integrated radiomic features extracted from pre-operative MRI scans, a composite 
PRS for IDH-mutant glioma and demographic features such as age at diagnosis and sex to classify gliomas 
according to IDH mutation status. Previous models used to classify gliomas into clinically-relevant molecular 
subtypes have relied on either radiomic11–13 or germline genetic features14,15 and have not assessed 
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whether inherited glioma susceptibility may assist in the classification of gliomas that present with non-
characteristic radiographic properties. With larger glioma GWAS yielding greater insight into subtype-
specific glioma risk, we sought to leverage the unique germline genetic signatures of glioma subtypes18,19 
in integrative classification models to potentially improve preoperative prognostication and treatment 
algorithms. We found that the inclusion of diverse features extracted from multiple complementary sources 
may improve model accuracy. The elastic net model that included all available features achieved the best 
overall classification performance, with an AUC of 0.920 and accuracy of 0.849 on 5-fold cross-validation. 
These results are consistent with observations for other cancers such as thyroid cancer, where polygenic 
risk scores improved imaging-based classifiers of malignancy risk26. We also found that age at diagnosis 
and germline genetic susceptibility were among the most predictive features along with volume of ET and 
NET, and the percentage of the TC in the frontal lobe. Critically, our predicted subtype labels were clinically 
significant such that patients predicted to have IDH-wildtype glioma showed significantly higher mortality 
risk than patients predicted to have IDH-mutant glioma.   

Tumor molecular markers, especially IDH mutation status, have critical implications for prognosis7,8 and 
treatment response9. Currently, the classification of gliomas into clinically-relevant subtypes relies on 
molecular profiling of surgical tumor specimens. This often delays the evaluation of non-surgical treatment 
options until after invasive surgery, thereby forgoing the opportunity for neoadjuvant therapy and postponing 
the future use of adjuvant chemoradiotherapy. While combined temozolomide and radiotherapy remains 
the standard of care for IDH-wildtype glioblastoma27, Vorasenib, an inhibitor of IDH1 and IDH2 enzymes, 
was recently shown to improve progression-free survival in patients with IDH-mutant glioma28. Although the 
optimal timing of Vorasenib treatment has not been studied, when provided earlier in the disease course, it 
might delay subsequent interventions in patients with low-grade glioma and improve quality of life. Our 
study provides further support for the use of noninvasive tools such as genotyping and imaging to accurately 
predict IDH mutation status in gliomas prior to surgical intervention, and thus potentially identify those 
patients suitable for neoadjuvant therapy with IDH inhibitors. However, the added value of these ML 
approaches in patient management will require careful evaluation of their potential risks and 
contextualization in different clinical settings.  

This work has several limitations. First, statistical power for model comparisons and survival analyses was 
limited since only 21% of TCGA participants had both radiomic and genotyping data available. Second, 
while cross-validation provides some robustness by evaluating performance based on in-sample hold-out 
subsets, external populations from different clinical centers are required for an unbiased and more 
informative evaluation. Lastly, our analyses focused on IDH mutation status, and we did not consider more 
refined molecular subtypes based on additional features, such as 1p19q codeletion, TERT promoter 
mutations and EGFR amplification due to limited sample size. However, of the currently used somatic 
mutations, IDH status is the most prognostically significant2,4.  

In this analysis, we used a predefined set of radiomic features from imaging data with manually-revised 
segmentation labels22. Several recent studies have developed end-to-end CNN-based models that 
automatically learn imaging features and perform both tumor segmentation and classification within a single 
framework11–13. These multi-task deep learning approaches do not rely on manual delineation of tumor 
regions, reduce computational burden and require minimal input from health care providers once trained, 
thereby facilitating their integration into existing neuro-oncology workflows. However, CNN approaches are 
mostly image-intensity based and do not account for other types of features that might be informative for 
subtype discrimination, which may limit their performance, especially in patients with non-characteristic 
radiographic findings. As individual-level genotyping on larger cohorts of glioma patients become available, 
CNN-based models that incorporate germline genetic and demographic features can be trained using a 
late-fusion strategy13,29.  
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This work has several important strengths. Our study applies genome-wide PRS for glioma that were 
previously developed using the largest available collection of glioma GWAS data and have been shown to 
accurately estimate subtype-specific glioma risk in multiple independent populations14. We also leverage 
genetic data without corresponding radiomic data in TCGA to generate a composite PRS feature that 
reflects the joint effects of multiple subtype-specific PRS on the risk of IDH-mutant glioma. In addition to 
evaluating classification of IDH mutation status, we also assessed the degree to which our predicted 
molecular subtypes delineated survival trajectories, which is informative for evaluating the potential utility 
of preoperative glioma classification models in clinical practice.  

In summary, this the first study to demonstrate that integration of genetic risk profiles with MRI-based 
radiomic features significantly improves IDH status classification of glioma cases in TCGA. Given the 
available data, our case study helps motivate future research on multimodal glioma classification models.  
Although this work underscores the potential added value of multiple complementary features in glioma 
subtype classification, an assessment of the clinical utility of this integrated approach will require further 
testing in larger cohorts using different imaging-based ML algorithms.   
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Figure 1: Overview of the study design.  
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Figure 2: Distribution of AUC for classification of IDH mutation status from repeated 5-fold cross-
validation. AUC estimates from 500 random iterations of 5-fold cross validation were obtained from IDH 
classification models using different combinations of features.  
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Figure 3: Predictive features for IDH status classification. (A) Cumulative absolute value of feature 
weight in elastic net model that included all available features. Feature weights are normalized by the 
maximum value. Only features with normalized cumulative weights greater than 0.01 are shown. (B) 
Distribution of the significantly predictive features stratified by tumor subtype. Features were defined as 
predictive if the mean weight across the folds was significantly different from zero based on a one-sample 
t-test (P<0.05). Features are ordered (from left to right) in decreasing importance.  
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Figure 4: Kaplan-Meier curves for adult glioma cases with predicted or biopsy-confirmed IDH 
mutation status. Percent survival distributions for adults with glioma stratified by predicted or biopsy-
confirmed IDH mutation status and tumor grade. Differences in event time distributions were assessed 
using the log rank test. (A) IDH mutation status confirmed by molecular profiling of tumor samples. (B) 
IDH mutation status predicted based on integrated elastic net model (“predicted”). (C) Biopsy-confirmed 
IDH mutation status and tumor grade. (D) Predicted IDH mutation status and tumor grade.  
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Figure 5: Feature associations with overall survival. Features used for IDH status classification are 
examined for association with overall survival using univariate Cox proportional hazards regression. 
Hazard ratio (HR) and 95% confidence interval (CI) for each feature is presented.  
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Table 1: Characteristics of glioma cases in The Cancer Genome Atlas (TCGA). Characteristics of 
glioma cases in TCGA are stratified by available germline genetic and radiomic data. For categorical 
variables, percentage (%) is reported. For quantitative variables, interquartile range (IQR) is reported. 

 All Cases Genetics Only Genetics and Radiomics 
Median age (IQR) 52 [37-62] 51 [36-62] 54 [41-62] 
Sex    

Male 449 (58.5) 362 (59.4) 87 (51.6) 
Female 319 (41.5) 247 (40.6) 77 (48.4) 

IDH    
Mutated 384 (50.0) 307 (50.4) 77 (48.4) 
Wildtype 384 (50.0) 302 (49.6) 82 (51.6) 

1p/19q    
Codeleted 147 (19.1) 122 (20.0) 25 (15.7) 
Non-codeleted 612 (79.7) 479 (78.7) 133 (83.6) 
N/A 9 (1.2) 8 (1.3) 1 (0.6) 

Grade    
II 183 (23.8) 144 (23.6) 39 (24.5) 
III 212 (27.6) 160 (26.3) 52 (32.7) 
IV 327 (42.6) 259 (42.5) 68 (42.8) 
N/A 46 (6.0) 46 (7.6) 0 (0.0) 

Total 768 (100) 609 (100) 159 (100) 
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Table 2: Classification performance for IDH mutation status. Performance metrics are based on 
classification models for IDH mutation status in glioma cases. Models with radiomic features were trained 
with an elastic net; otherwise, models were trained with logistic regression. Two-sided p-values (PDAUC) 
testing the differences in AUC between the radiomics-based model and other models are based on 
DeLong’s test. 

Model features Accuracy Precision Recall F1-score AUC (95% CI) PDAUC 
Radiomics 0.774 0.759 0.779 0.769 0.824 (0.755, 0.894) - 
Demographics 0.711 0.844 0.494 0.623 0.751 (0.673, 0.827) 0.19 
Genetics 0.623 0.631 0.532 0.577 0.702 (0.622, 0.782) 0.039 
Genetics + Demographics 0.711 0.804 0.532 0.641 0.775 (0.701, 0.849) 0.38 
Radiomics + Demographics 0.830 0.847 0.792 0.819 0.906 (0.856, 0.955) 5.7´10-4 
Radiomics + Genetics 0.843 0.851 0.818 0.834 0.890 (0.837, 0.943) 0.0016 
Radiomics + Genetics + 
Demographics 0.849 0.844 0.844 0.844 0.920 (0.876, 0.964) 4.0´10-4 
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Table 3: Association between IDH mutation status and survival among glioma cases stratified by 
tumor grade. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox regression 
models adjusted for age at diagnosis and sex with stratification by tumor grade. Predicted subtype labels 
are based on the full elastic net model with radiomic, germline genetic and demographic features, while 
ground truth subtype labels are based on molecular profiling of biopsied tumor samples.  

 Cases 
(Deaths) 

Median Survival 
(Months) HR (95% CI) P value 

Combined     
Predictions     

IDH-wildtype 82 (58) 14.7 1.00  
IDH-mutant 77 (15) 87.4 0.27 (0.14, 0.51) 6.3´10-5 

Ground truth     
IDH-wildtype 82 (59) 14.3 1.00  
IDH-mutant 77 (14) 87.4 0.21 (0.11, 0.40) 2.2´10-6 

Grade II/III     
Predictions     

IDH-wildtype 22 (11) 18.4 1.00  
IDH-mutant 69 (12) 87.4 0.28 (0.11, 0.69) 0.0062 

Ground truth     
IDH-wildtype 19 (10) 18.4 1.00  
IDH-mutant 72 (13) 87.4 0.19 (0.07, 0.53) 0.0015 

Grade IV     
Predictions     

IDH-wildtype 60 (47) 13.3 1.00  
IDH-mutant 8 (3) 20.7 0.96 (0.24, 3.89) 0.95 

Ground truth     
IDH-wildtype 63 (49) 12.2 1.00  
IDH-mutant 5 (1) 22.7 0.29 (0.04, 2.14) 0.22 
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