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ABSTRACT  36 

Despite advancements in methodologies, immunohistochemistry (IHC) remains the most 37 

utilized ancillary test for histopathologic and companion diagnostics in targeted therapies. 38 

However, objective IHC assessment poses challenges. Artificial intelligence (AI) has emerged 39 

as a potential solution, yet its development requires extensive training for each cancer and IHC 40 

type, limiting versatility. We developed a Universal IHC (UIHC) analyzer, an AI model for 41 

interpreting IHC images regardless of tumor or IHC types, using training datasets from various 42 

cancers stained for PD-L1 and/or HER2. This multi-cohort trained model outperforms 43 

conventional single-cohort models in interpreting unseen IHCs (Kappa score 0.578 vs. up to 44 

0.509) and consistently shows superior performance across different positive staining cutoff 45 

values. Qualitative analysis reveals that UIHC effectively clusters patches based on expression 46 

levels. The UIHC model also quantitatively assesses c-MET expression with MET mutations, 47 

representing a significant advancement in AI application in the era of personalized medicine 48 

and accumulating novel biomarkers.  49 

  50 
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Introduction  51 

Immunohistochemistry (IHC) is an antibody-based methodology that can reveal the 52 

expression and distribution of proteins in formalin-fixed paraffin-embedded (FFPE) tissues and 53 

is well established as a decision support tool for oncology diagnosis1,2. IHC results are now 54 

increasingly used to guide decision making for systemic therapy for disseminated malignancy 55 

such as for the monoclonal antibody pembrolizumab in non-small cell lung cancer (NSCLC) as 56 

based on Programmed Death-Ligand 1 (PD-L1) expression3,4. Moreover, multiple emerging 57 

classes of therapies based on monoclonal antibodies (antibody-drug conjugates [ADC], bi-58 

specific antibodies) directly target proteins on the tumor cell surface5,6. The efficacy of these cell 59 

surface-targeting therapeutics is consistently linked with the expression of the targeted protein. 60 

Therefore, quantifying IHC assessments of these targets may facilitate the development of 61 

predictive biomarkers that are valuable in clinical practice7. 62 

Recently, artificial intelligence (AI) models have been developed to quantify IHC images 63 

by tissue segmentation, cell delineation, and quantification of all relevant cells in a whole slide 64 

image (WSI)8,9. However, the development of these AI models is heavily constrained by their 65 

reliance on single training cohorts that typically contain at least several hundred or often more 66 

WSI cases of a cancer type and immunostains matched to the desired indication. Moreover, these 67 

training sets are manually labeled on a cellular/subcellular basis by pathologists with each slide 68 

taking several hours for annotation depending on complexity10,11.  69 

Importantly, there is an additional limitation of ‘domain-shift’, where current deep-70 

learning models for IHC cannot recognize elements - either immunostain for cancer type - that 71 

are not present in the training set. This limitation indicates for each immunostain-cancer type 72 

combination, an IHC training set must be created and annotated with accompanying significant 73 
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time and resource cost, which is particularly relevant when evaluating new antibodies for 74 

development12,13. Both the requirement for expert annotated training sets specific to each desired 75 

permutation of immunostain and cancer type and the domain shift problem intertwine to create 76 

an imperative for a universally applicable AI model that is proficient in interpreting IHC results 77 

without antecedent manually annotated matching training sets14.  78 

Here, we developed a Universal IHC (UIHC) analyzer, which can assess IHC images, 79 

irrespective of the specific immunostain or cancer type. Eight models trained on WSI patches 80 

from three cancer types, immunostained for PD-L1 or human epidermal growth factor receptor 2 81 

(HER2), were defined by exposure to varying single or multiple cohorts for training. Models 82 

trained on single cohorts served as the benchmark, whereas models trained with multiple cohorts 83 

were an innovation10,15,16. All models were evaluated using a diverse test set including eight 84 

'novel' IHC stained cohorts covering twenty additional cancer types, along with two 'training' 85 

IHC (PD-L1 and HER2) stained cohorts to identify the best model for further development. 86 

 87 

Results  88 

Patch-level tumor cell detection and IHC-positivity classification  89 

We trained both single-cohort-derived models (SC-models) with one dataset and 90 

multiple-cohort-derived models (MC-models) with multiple datasets based on NSCLC, 91 

urothelial carcinoma, and breast cancer datasets stained with PD-L1 22C3 and breast cancer 92 

datasets stained with HER2 (Fig. 1). Fig. 2a shows the combination of different datasets to 93 

develop the eight AI models utilized in this study. SC-models exhibit favorable performance 94 

within test sets matched for the immunostain and cancer type used for training as evidenced by 95 
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the cell detection (negatively stained Tumor Cell [TC-] or positively stained Tumor Cell [TC+]) 96 

performance (median F1-score [min, max]) of P-L (PD-L1 22C3 of lung) on the PD-L1 22C3 97 

Lung test set (0.693 [0.686, 0.705], Fig. 2b), P-Bl (PD-L1 22C3 of bladder) on the PD-L1 22C3 98 

Bladder test set (0.725 [0.719, 0.731], Fig. 2c), P-Br (PD-L1 22C3 of breast) on the PD-L1 22C3 99 

Breast test set (0.599 [0.590, 0.607], Fig. 2d), and H-Br (HER2 of breast) on the HER2 test set 100 

(0.759 [0.753, 0.766], Fig. 2e). Notably, MC-models with broader exposure beyond the matched 101 

training set (P-LBlBr [PD-L1 22C3 for lung, bladder, and breast], PH-Br [PD-L1 22C3 and 102 

HER2 for breast], PH-LBr [PD-L1 22C3 and HER2 for lung and breast], PH-LBlBr [PD-L1 103 

22C3 and HER2 for lung, bladder, and breast]) performed as well as or better than the best 104 

performing SC-model for each test set matched to a training set, regardless of immunostain or 105 

cancer type. (Fig. 2b-e). 106 

For test sets containing novel elements that were not seen in training, MC-models 107 

significantly outperformed SC-models. Notably, for the test set with an experienced 108 

immunostain but unseen cancer types, such as PD-L1 22C3 Pan-cancer set in Fig. 2f, MC-109 

models trained with more cancer types (P-LBlBr) and/or an additional stain (PH-LBr and PH-110 

LBlBr) outperformed the SC-models P-L (P-LBlBr, 0.722 [0.716, 0.730], p<0.001; PH-LBr, 111 

0.745 [0.735, 0.753], p<0.001; PH-LBlBr, 0.743 [0.735, 0.752], p<0.001), which were the best 112 

performing SC-models.  113 

In the other novel cohorts with unseen immunostains such as PD-L1 SP142, Claudin 114 

18.2, Delta-like 3 (DLL3), fibroblast growth factor receptor 2 (FGFR2), human epidermal 115 

growth factor receptor 3 (HER3), mesenchymal-epithelial transition factor (MET), MUC16, and 116 

trophoblast cell-surface antigen 2 (TROP2), MC-models generally performed better than SC-117 

models Fig. 2g-n). Most representatively identified in MET Pan-cancer, all the MC-models 118 
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outperformed the single best performing SC-model H-Br (P-LBlBr, 0.795 [0.773, 0.810], 119 

p<0.001; PH-Br, 0.762 [0.725, 0.776], p<0.001; PH-LBr, 0.783 [0.767, 0.799], p<0.001; PH-120 

LBlBr, 0.792 [0.776, 0.815], p<0.001) (Fig. 2l). This tendency for MC-models to outperform 121 

SC-models was also observed when the data was categorized by cancer type (lung, breast, 122 

bladder, pan-ovary, esophagus, colorectum, and stomach) rather than IHC type (Supplementary 123 

Fig. 1).  124 

 125 

WSI-level IHC quantification of MC- and SC-models 126 

The performances of the AI models at the WSI level were subsequently assessed using 127 

the test sets outlined in Supplementary Table 1. The ground truth images were categorized and 128 

annotated based on the tumor proportion score (TPS), and the models' performance was 129 

evaluated by accurately assigning the WSIs to the corresponding ground truth group (TPS <1%; 130 

1-49%; ≥50%). Among the eight models, the PH-LBlBr model was the top performer for this set 131 

of test WSI cohorts, achieving a Cohen’s kappa score of 0.578 and an accuracy of 0.751 (Fig. 3a, 132 

Supplementary Fig. 2a). The best SC-model overall was H-Br, but it still had significantly lower 133 

performance, with a Cohen’s kappa score of 0.509 and an accuracy of 0.703. In assessing 134 

performance on the PD-L1 22C3 Lung WSI test set, PH-LBlBr was the only model to 135 

outperform the SC-model P-L, with a Cohen’s kappa score of 0.652 compared to 0.638 for P-L, 136 

and an accuracy of 0.793 compared to 0.785 for P-L (Fig. 3b, Supplementary Fig. 2b). For the 137 

PD-L1 22C3 Pan-cancer WSI test set and the PD-L1 SP142 Lung WSI test set, P-LBlBr also 138 

outperformed all SC-models, including P-L (Fig. 3c-d, Supplementary Fig. 2c-d). Notably, in the 139 

multi-stain pan-cancer test set, the PH-LBlBr model consistently outperformed all SC-models 140 
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(P-L, P-Bl, P-Br, H-Br) and MC-models with less diversity in training cohorts (PH-Br, P-LBlBr, 141 

and PH-LBr), achieving a Cohen's kappa score of 0.610 and an accuracy of 0.757 (Fig. 3e, 142 

Supplementary Fig. 2e). Confusion matrices indicated that the PH-LBlBr model performed 143 

evenly across different TPS levels, with the highest number of concordance cases and 144 

mispredictions predominantly falling into adjacent categories (e.g., fewer mispredictions of 145 

TPS<1% as TPS≥50%) (Fig. 4a-b). Due to its consistently high performance across test sets, PH-146 

LBlBr is designated as the UIHC model.  147 

 148 

Performance analysis of UIHC on novel immunostains for different cutoffs 149 

For certain immunostains commonly utilized in clinical practice, such as MET, TROP2, 150 

and MUC6, the absence of consensus scoring systems poses a challenge. To evaluate the false 151 

and true positive rates for these immunostains in our analysis, we initially established a cutoff at 152 

1% to maintain a standardized ground truth (GT)-TPS, similar to the approach used for PD-L1 153 

staining, while varying the AI model-predicted TPS cutoff. In this binary classification 154 

framework, the area under the receiver operating characteristics (AUROC) curve demonstrates 155 

that the selected UIHC model (92.1%) outperforms SC-Models (Fig. 5a). Additionally, we 156 

compared our AI models across a range of cutoffs from 1% to a second value within the range of 157 

[2%, 75%], illustrating a three-way classification accuracy of 78.7% (Fig. 5b). In both analyses, 158 

the UIHC model consistently exhibits superior performance, irrespective of the specific cutoff 159 

applied for novel stain types. 160 

 161 
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Histopathologic validation of inference examples of UIHC model 162 

Representative discrepancy cases between the UIHC model and SC-models were 163 

subjected to WSI-level histopathological validation by pathologists (T.L., W.J., S.C., and S.K) 164 

to assess the accuracy of the models in detecting IHC-positive cells. In a case involving MET-165 

stained NSCLC, the SC model P-L incorrectly classified the majority of tumor cells as negative 166 

(TPS 36%) (Fig. 6a). Conversely, the UIHC model accurately identified tumor cells based on 167 

positivity (TPS 61%), yielding results similar to the average TPS assessment of 75% by 168 

pathologists. In another instance concerning FGFR2-stained gastric cancer (Fig. 6b), the P-L 169 

model encountered difficulties, often failing to recognize numerous tumor cells and distinguish 170 

between FGFR2-positive and negative cells. In contrast, the UIHC model demonstrated an 171 

ability to discern IHC positivity even amidst this intricate staining pattern. 172 

 173 

Interpreting the representations of UMAP learned by the UIHC model 174 

To ensure the absence of inadvertent biases acquired during training, we evaluated the 175 

learned representations of the UIHC model using standard UMAP (uniform manifold and 176 

projection) for visualization. Two-dimensional internal representations of various AI models 177 

were presented in two formats: the 2D projection across training and novel cohorts (Fig. 7a), and 178 

a mosaic of image patches organized based on their respective projections (Fig. 7b).  179 

In Fig. 7a, ground-truth TPS values were color-coded, transitioning from blue (0%) to 180 

brown (100%). For comparison, scatter plots were presented for three different sources: raw 181 

pixels as the baseline (Fig. 7a, left), features from a self-supervised learning (SSL) model trained 182 

with the same UIHC details but on larger, unannotated datasets (Fig. 7a, center), and the UIHC 183 
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model (Fig. 7a, right). The pixel model (Fig. 7a, left) exhibited weak clustering signal, with high 184 

TPS patches clustered towards the bottom-right. In the SSL model (Fig. 7a, center), clustering 185 

based on TPS was not observed, but rather clustering based on cohort. The 2D projection 186 

depicted in Fig. 7a, right illustrated that the UIHC model effectively separated and clustered 187 

patches based on TPS expression level. Our visual inspections of UMAP mitigated the Clever 188 

Hans effect (skewing of results by external biases) commonly observed in machine learning17. 189 

This analysis effectively demonstrates that our approach facilitated the development of an AI-190 

powered analyzer capable of generalizing to novel immunostains and cancer types, even in IHCs 191 

with cytoplasmic staining not included in the training data, indicating superior feature extraction 192 

through exposure to multiple cohorts. 193 

Fig. 7b presents a mosaic of original image patches arranged according to their internal 194 

representation as observed in Fig. 7a. In contrast to raw pixels, the features of the UIHC model 195 

were centered around tumor cell detection and classification rather than visual attributes derived 196 

from varying source characteristics such as color contrast or brightness. Thus, the pixel 197 

representation prioritizes sorting by color, while the UIHC model remains unbiased by 198 

appearance, focusing instead on tumor type. Cohort similarity results further indicate that only 199 

the UIHC model exhibits reduced sensitivity to cohort-specific traits, indicating its lack of bias 200 

towards IHC type and emphasis on the primary task of detecting and classifying tumor cells (Fig. 201 

7c). 202 

 203 

Performance analysis of UIHC on the real-world dataset  204 

To evaluate the UIHC model's applicability as a real-world assessment tool, we employed 205 

it to quantitatively assess the expression of c-MET, a novel immunostain for the model, in three 206 
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cohorts of NSCLC cases known to harbor oncogenic driver alterations - MET exon 14 skipping 207 

mutations, MET amplifications, and epidermal growth factor receptor (EGFR) exon 20 insertions 208 

18. The UIHC model assigned higher tumor proportion scores (TPS) to the MET amplification 209 

group compared to the other groups (Table 1). The UIHC model yielded a MET TPS of 94.5±2.0 210 

for the three MET amplification cases, 77.1±17.7 for the six exon 14 skipping mutation cases, 211 

and 75.7±23.2 for the seven EGFR exon 20 insertion EGFR cases.  212 

 213 

Discussion  214 

In this study, we demonstrated that UIHC trained with multiple cancer types and IHC, 215 

the MC-model, is not only superior in the domain used for training SC-model trained with a 216 

single cancer type and IHC in its domain but also exhibited the capability to analyze never-217 

before-seen immunostains and cancer types. 218 

Emerging therapeutic agents, meticulously designed to target surface proteins on tumor 219 

cells, have exerted a profound influence on the landscape of oncology care. These therapeutics 220 

can be broadly categorized into targeting tumor-associated antigens (TAA, such as TROP2) and 221 

targeting immune checkpoints (IC, such as PD-L1)19-21. Specific examples include trastuzumab 222 

deruxtecan, an ADC targeting HER2, and tarlatamab, a bispecific molecule targeting DLL3 and 223 

CD322-24.  224 

IHC stands as an essential component in cancer diagnosis, and thus far, the pathologist's 225 

reading remains the gold standard for determining the expression level of a target protein4,25-29. 226 

Nonetheless, discrepancies between pathologists and poor reproducibility can hinder precise 227 

evaluation10,15,16,30-33. Efforts have been made to standardize IHC assays to maintain its role as a 228 
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predictive biomarker, requiring evaluations as quantitative as possible. Recently introduced deep 229 

learning models have exhibited notable advantages over traditional computational methods, 230 

primarily due to their capacity to discern intricate patterns within IHC images where the latter 231 

requires the pathologists to understand the tissue structure and morphology directly per case 232 

before analysis34,35. These models can analyze PD-L1 and HER2 expression but require training 233 

on a large, manually annotated training cohort10,11,15,16,36-38. Moreover, such deep-learning 234 

models have domain shift issues that are effective within the cancer type and immunostain 235 

defined by the training cohort, but not for indications that contain cancer types and 236 

immunostains not within the training set12,13,39.  237 

In the present study, AI models underwent training using either a single cohort (SC) or 238 

multiple cohorts (MC). The MC-models, particularly those exposed to the most diverse range of 239 

cases, demonstrated superior performance compared to the SC-models. This was evident across 240 

test sets similar to the training cohorts, as well as test cohorts composed of previously unexposed 241 

(novel) immunostains and cancer types. The enhanced performance of MC-models in training 242 

cohorts can be attributed to the augmented training data. Compared to the H-Br model, the PH-243 

Br model showed better performance on PD-L1 22C3 breast and HER2 breast, indicating the 244 

impact of increasing the volume of training data. However, the superiority of PH-Br over PH-245 

LBr in PD-L1 22C3 bladder, which was trained with a larger cohort than PH-Br, suggests that 246 

the influence of expanding the training data volume is not straightforward. Irrespective of the 247 

volume of training data, training models using cohorts from various cancer types or 248 

immunostains together contributed to improve model performance. This phenomenon is 249 

exemplified in PD-L1 22C3 Pan-cancer, where PH-LBr, encompassing variations in both cancer 250 

type and immunostain, outperforms P-LBlBr, which only varies in cancer type, or PH-Br, which 251 
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only varies in immunostain. The impact of variations in cancer type or immunostain within the 252 

training data is underscored by the superior performance of MC-models compared to SC-253 

models, particularly evident for novel cohorts. Conversely, in the case of novel cohorts such as 254 

FGFR2 IHCs, where both membrane and cytoplasmic intensity can be observed, AI models 255 

trained solely on membranous staining IHCs (e.g., PD-L1 22C3 and HER2) may experience 256 

significant performance degradation40,41. Indeed, among the novel cohorts, both SC- and MC-257 

models exhibited the poorest performance on FGFR. The UIHC model, however, demonstrated 258 

superior performance compared to other models, particularly in detecting cytoplasmic stained 259 

TC+, whereas most SC-models struggled to identify cytoplasmic stained TC+.  260 

Recent AI-related research disciplines can be divided into the two main branches of 261 

model-centric and data-centric AI42. The model-centric AI focuses on designing and optimizing 262 

the best AI models with a fixed dataset, while data-centric AI systematically and algorithmically 263 

focuses on providing the best dataset for a fixed AI model. Our study underscores the promising 264 

efficacy of training the AI model with diverse IHC and cancer type data. Notably, this is 265 

clinically meaningful because it was done without additional data work, mostly annotation in a 266 

novel cohort, so it can be applied directly to new targets. Recent trends tend to call approaches 267 

with large training set from different domains ‘foundational models’, therefore, in this sense, our 268 

UIHC could be considered one43-45. However, we reserve this name for a multi-modal system 269 

that goes beyond histopathology and combines multiple medical disciplines46.  270 

To demonstrate the possible clinical utility of the current analyzer, we assessed c-MET 271 

expression in NSCLC to address the long-standing question of targeting c-MET. MET 272 

amplification is strongly believed to be correlated with increased expression of c-MET, however, 273 

so are exon 14 splicing mutations in c-MET (METex14m)47,48.  Specifically, these mutations 274 
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lead to the omission of exon 14 and the Cbl sites which are thought to be recognized by an E3 275 

ubiquitin ligase, and thus thought to increase the amount of c-MET expressed by the tumor cell49. 276 

As theorized, c-MET amplifications lead to high expression of c-MET as seen in previous 277 

studies47,50.  In contrast, tumors with METex14m had similar expression to exon 20 insertion 278 

NSCLC driven tumors. These unripe findings should be replicated in a larger cohort, but are 279 

very relevant to the development and clinical use of large molecular therapeutics targeting c-280 

MET such as amivantanab22.  281 

There are some limitations in this work. The current scope of IHC expression detection is 282 

confined to tumor cells, but not other cell types, i.e. lymphocytes and macrophages. However, 283 

the UIHC model is able to learn to assess these other cell types if given the correct training sets 284 

as consistent with a data-centric approach.  Furthermore, our IHC evaluation was limited to a 285 

binary categorization of positive or negative, but will encompass multi-level protein expression 286 

assessments such as the American Society of Clinical Oncology (ASCO) / College of American 287 

Pathologists (CAP) guidelines for HER2 in the future51. In addition, the model's performance 288 

demonstrated some variability across different staining techniques and cancer types within this 289 

study. This concern could potentially be addressed through the inclusion of additional IHC stain 290 

types within the model's training dataset, in other words exposing the model to more multiple 291 

cohorts in training. 292 

In conclusion, we have successfully developed a UIHC model capable of autonomously 293 

analyzing novel stains across diverse cancer types. In contrast to prevailing literature and 294 

existing image analysis products that often focus on specialized cohorts, our model's versatility 295 

and agility significantly enhance its potential in expediting research related to new IHC 296 

antibodies34. This innovative approach not only facilitates a broad spectrum of novel biomarker 297 
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investigations but also holds the potential to assist in the development of pioneering 298 

therapeutics. 299 

  300 
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Methods  301 

Dataset preparation for AI model development 302 

Histopathology dataset for annotation 303 

The dataset used to develop the model consists of a total of 3,046 WSIs including lung 304 

(NSCLC), urothelial carcinoma, and breast cancer cases stained for PD-L1 22C3 pharmDx IHC 305 

(Agilent Technologies, Santa Clara, CA) and breast cancer WSIs stained for anti-HER2/neu 306 

(4B5) (Ventana Medical Systems, Tucson, AZ), as reported in previous studies (Fig. 1, 307 

Supplementary Table S2)10,15,16. All data for this study were obtained from commercially 308 

available sources from Cureline Inc. (Brisbane, CA, US), Aurora Diagnostics (Greensboro, NC, 309 

US), Neogenomics (Fort Myers, FL, US), Superbiochips (Seoul, Republic of Korea) or were 310 

available by the permission of Institutional Review Board (IRB) from Samsung Medical Center 311 

(IRB no. 2018-06-103), Seoul National University Bundang Hospital (IRB no. B-2101/660-30), 312 

and Ajou University Medical Center (IRB no. AJOUIRB-KS-2023-425). All slide images and 313 

clinical information were de-identified and pseudonymized. 314 

The WSIs were divided into training, tuning (also called validation), and test sets. Since 315 

WSIs are too large for computation, a section of size 0.04mm2 (patch, i.e. tile) is extracted. 316 

To evaluate and compare the models, we collected patch-level test sets from ten different 317 

stain types: PD-L1 22C3 (lung, bladder, breast, liver, prostate, colorectum, stomach, biliary tract, 318 

and pancreas), HER2 (breast), PD-L1 SP142 (lung), various immunostain types including 319 

Claudin 18.2, DLL3, FGFR2, HER3, MET, MUC16, and TROP2 (pan-cancer). The test sets of 320 

PD-L1 22C3 lung, bladder, and breast originated from the same cohort of training and tuning 321 

sets mentioned above (internal test set in Supplementary Table 2), which could be referred to as 322 
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training domain. Patches of PD-L1 22C3 other than lung, bladder, and breast were from WSIs of 323 

colorectum (n = 19), liver (n = 20), stomach (n = 18), prostate (n = 18), pancreas (n = 19), and 324 

biliary tract (n = 20). For the novel domain test set, which is never shown to the AI model during 325 

training, we collect patches from novel cancer types and novel immunostain types. Additionally, 326 

patches of various immunostain types were from pan-cancer (more than 25 cancer types) tissue 327 

microarray (TMA) cores (Superbiochips, Seoul, Republic of Korea)52-55. Detailed information on 328 

antibodies for various immunostain types is provided in Supplementary Table 3. All slides were 329 

scanned by P1000 scanner (3DHistech, Budapest, Hungary) or Aperio AT2 scanner (Leica 330 

Biosystems Imaging, Buffalo Grove, IL, US). Within a WSI, up to three patches are selected and 331 

then resized to 1024x1024 pixels, at a normalized Microns-Per Pixel (MPP) of 0.19 µm. Such 332 

MPP normalization is required to unify the resolution of the patches since WSIs scanned from 333 

different scanners can have different MPP values. The patches are extracted manually to avoid 334 

uninteresting areas, such as the white background. No patches of the same WSI can be found in 335 

different sets, to prevent information leakage between the training and test sets. 336 

 337 

Patch-level annotation for AI model development 338 

We define two general cell classes for IHC by TC- or TC+ (Fig. 8a). In most of the IHC 339 

staining, except HER2, the expression was described as either positive or negative. Patches 340 

stained with HER2 are traditionally annotated with four levels of IHC quantification as follows; 341 

H0 (negative),  H1+ (faint/barely perceptible and incomplete membrane staining), H2+ (weak to 342 

moderate complete membrane staining), and H3+ (complete, intense circumferential membrane 343 

staining)56. To unify the categories across stains, we remapped H0 to negatively stained Tumor 344 

Cell (TC−) and the remaining H1∼H3 to positively stained Tumor Cell (TC+).  345 
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All annotations were performed by board-certified pathologists. The interpretation of 346 

tumor cell positivity by pathologists was determined by following the guidelines for PD-L1 or 347 

HER251,57. The training set was composed of 574,620 TC+ and 1,415,033 TC−, while the tuning 348 

set contained 138,429 TC+ and 316,808 TC− (Supplementary Table 4, Fig. 8b). The tuning set 349 

was used to select the best checkpoint during the model training phase. The total TC+ and TC- 350 

annotated from the patches of the test set are described in Supplementary Table 5.  351 

 352 

WSI-level test sets for AI model performance validation 353 

Given that a single patch is a tiny fraction (<1%) of a WSI, performance of any model on 354 

the WSI-level can significantly deviate from patch-level assessment58. Therefore, a 355 

comprehensive comparison of our model performance on WSI was conducted with the key 356 

output of WSI-level TPS59,60.  357 

We collected four WSI-level test sets: PD-L1 22C3 lung (n = 479), PD-L1 22C3 pan-358 

cancer (n = 135), PD-L1 SP142 lung (n = 178) and a novel, multi-stain test set (n = 140) as 359 

presented in Fig. 8c and Supplementary Table 1. The test set containing PD-L1 22C3 lung 360 

cancer was used in previous publications.(10) The PD-L1 22C3 Pan-cancer contains cancer 361 

types of biliary tract (n = 23), colorectum (n = 23), liver (n = 23), stomach (n = 23), prostate (n = 362 

22), and pancreas (n = 21). The test set containing PD-L1 SP142 lung (n = 178) was derived 363 

from the same cohort of PD-L1 22C lung cancer. IHC in the multi-stain test set included MET, 364 

MUC16, HER3, TROP2, DLL3, FGFR2, Claudin 18.2, SP142, and E-Cadherin across ten 365 

cancer types. Except for PD-L1 22C3 lung cancer, they all corresponded to novel domains. 366 

Representative image samples from both training and novel groups are illustrated in 367 
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Supplementary Fig. 4 and 5. 368 

The multi-stain test set contains following stains: Claudin18.2 (n = 18), DLL3 (n = 16), 369 

E-Cadherin (n = 10), FGFR2 (n = 18), HER3 (n = 15), MET (n = 25), MUC16 (n = 16), PD-L1 370 

SP142 (n = 10), and TROP2 (n = 12) across ten cancer types (lung, breast, bladder, cervix, 371 

colorectum, esophagus, liver, lung, melanoma, stomach). Within the multi-stain test set, except 372 

for PD-L1 SP142 which is applied only on lung cancer, other staining antibodies (n = 130) are 373 

used for: stomach (n = 39), bladder (n = 28), breast (n = 23), lung (n = 19), cervix (n = 5), 374 

esophagus (n = 5), melanoma (n = 4), colorectum (n = 3), head and neck (n = 3), liver (n = 1). 375 

TPS evaluation for all datasets was performed by three independent board-certified 376 

pathologists (S.C., H.K., and S.K. for PD-L1 22C3 lung, S.C., W.J., and S.K. for PD-L1 SP142 377 

lung, and T.L., S.C., and S.K. for PD-L1 22C3 pan-cancer and multi-stain set). 378 

 379 

AI Model development process 380 

Development of Universal IHC algorithm 381 

Our approach’s inference pipeline consists of training dataset preparation, AI model 382 

development, and performance validation with diverse cohorts (Fig. 1). Specifically, after 383 

extracting patches and annotating cells from designated training cohorts, several AI models are 384 

trained with single-cohort (standard approach) or multiple-cohort data (innovation). Each 385 

model’s parameters have been tuned using their domain-specific tuning (validation) set. Using 386 

combinations of the above cohorts, we produce eight models as described in Fig. 2a. While SC-387 

models (H-Br, P-L, P-Bl, and P-Br) are trained on a single cohort10,15,16. MC-models such as P-388 

LBlBr, PH-Br, PH-LBr, and PH-LBlBr are trained on multiple cohorts. Among these candidate 389 
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models, we aim to identify the model that exhibits the highest degree of generalization for 390 

designation as a UIHC model. 391 

Models are then tested on patches or WSIs exclusively held out from the training dataset. 392 

Our testing encompassed multiple cohorts, including ‘training cohorts’ and ‘novel cohorts’. 393 

Most patches posed greater challenges as the staining proteins or cancer types were not part of 394 

the training data for any AI models presented in this study.  395 

 396 

Label pre-processing 397 

Inspired by the previous work that trains the cell detection model with point annotations, 398 

we define cell detection as a segmentation task13,61. At training time, we provide the cell labels 399 

as a segmentation map by drawing a disk centered on each cell point annotation. We use a fixed 400 

radius of ∼ 1.3µm, corresponding to 7 pixels at a resolution of 0.19 MPP. Finally, we assign the 401 

value of pixels within each disk based on the class of a cell, ‘1’ for TC-, ‘2’ for TC+. ‘0’ is 402 

assigned for the remaining pixels.  403 

 404 

Inference post-processing 405 

Given that we treat cell detection as a segmentation task, a post-processing phase is 406 

needed to extract 2D coordinates and classes of predicted cells from the probability map output 407 

by the network. We apply skim-age.feature.peak_local_max on the model’s output, which finds 408 

the locations of local maximums of the probability map to get the set of predicted cell points62. 409 

Lastly, we obtain each cell’s class and probability value in the cell segmentation map through 410 

argmax. This probability is used as the confidence score.  411 
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 412 

Network architecture and training details 413 

For all of our models, we use DeepLabV3+ as our base architecture with a ResNet34 414 

encoder, which is a popular architecture specifically designed for the segmentation task63,64. 415 

During training, we augment the patches with a set of standard data augmentation methods for 416 

computer vision. In particular, we utilize center crop, horizontal and vertical flip, rotation, 417 

gaussian noise, color jittering, and gray scaling. Random values are sampled for each 418 

augmentation every time an image is loaded. Network parameters are initialized by Kaiming 419 

initialization65. The model is optimized using the Adam optimizer66. Dice loss is used to train the 420 

model67. The initial learning rate is set to 1e−4, adapted using the cosine learning rate 421 

scheduler68. All the models have been trained for 150 epochs and evaluated at every 10 epochs to 422 

choose the best checkpoint on a hold-out tuning set. An epoch that shows the highest mF1 score 423 

on the tuning set is chosen as the best epoch and used for all evaluation purposes. All of the 424 

models are trained and evaluated with the same machine specifications as follows: 4 NVIDIA 425 

Tesla T4 GPUs each with 16GB of GPU memory and 216GB of RAM.  426 

 427 

Inference details on whole slide images (WSIs) 428 

For WSI inference we use the full WSI for tumor proportion score (TPS) calculation, 429 

excluding white background and in-house control tissue regions. The WSI is divided into 430 

1024×1024 pixels of non-overlapping patches with an MPP of normalized 0.19 (following the 431 

training data), which are fed to our network, producing a prediction map with the same size as 432 

the input. All outputs are then combined to obtain a prediction map for the full WSI. 433 
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 434 

AI Model evaluation 435 

Metrics for AI model performance 436 

 The performance evaluation of the AI model was analyzed at the patch-level and WSI-437 

level. At the patch-level, performance was measured by F1 score, which compares the results of 438 

pathologists' annotation of each cell with the results of the AI model. At the slide-level, TPS by 439 

pathologists or UIHC was divided into categories based on a given cutoff threshold (1%/50% [3 440 

classes]). Then performance was evaluated by comparing the TPS categories from pathologists 441 

to the AI model using Cohen’s Kappa. The details of F1 score and TPS are described in the 442 

Supplementary methods.  443 

 444 

Model interpretation by visualization of data distribution 445 

To gain deeper insights into the learned patterns of the UIHC model, we delved into its 446 

inference process by extracting internal representations of the network for each image patch in 447 

the test set. We visualized these representations in 2D using UMAP, a widely used method for 448 

dimensionality reduction method for visualization69. We utilized a 2D projection where each 449 

point is a patch and the Euclidean distance between two points indicates the similarity within the 450 

network’s internal representation. For this experiment, we developed two baselines to provide 451 

context for our UIHC:  452 

1. Raw pixel representation, by simply downsizing the image from 1024×1024×3 to 453 

32×32×3 and flattening the pixels, producing a 1×3072 vector. RGB-channel is kept since 454 

the color is important for IHC quantification. For the same reason this is a valid baseline, in 455 
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fact, simply looking at the intensity of the brown color is a good indicator for TC-/+.  456 

2. We developed a second network for comparing two deep learning models. Since patches 457 

with a manual annotation are a small fraction of all slides, we trained a ResNet34 using a 458 

state-of-the-art SSL method called Barlow Twins instead70. This allowed us to train the 459 

model on a large number of histopathology patches from different types of stains (PD-L1 460 

22C3, and HER2) and cancer types without the need for any manual annotations.  461 

3. The best UIHC model is used as the representative UIHC model for the qualitative analysis.  462 

To extract the internal representation from the deep learning models (UIHC and SSL), 463 

each patch runs through the ResNet34 encoder producing a 16×16×512 tensor of shape 464 

Height×Width×Channels. The output tensor is averaged over spatial dimensions, thus producing 465 

a 1×512 vector. After producing a vector for each of the N patches in our test set, we obtain a 466 

matrix of N ×512 (N ×3072 for Pixel). Finally, we can project the 2858×512 matrix to N ×2 by 467 

using UMAP, a popular non-linear dimensionality reduction algorithm69. This 2-dimension 468 

matrix can be easily plotted as a scatter plot using matplotlib and seaborn. To calculate cohort 469 

similarities, we compute the Wilcoxon test between all cohort pairs, producing a similarity 470 

matrix of size [# cohorts × # cohorts] containing p-values. Then we average the upper-triangular 471 

matrix shown in the bar plot. In addition, the mosaic of image patch is drawn by discretizing the 472 

latent representations and replacing each point with the corresponding original patch image71. 473 

For each discretized point in space, the median patch is selected as the representative of that 474 

cluster.  475 

 476 
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Analysis of a genomically defined MET NSCLC dataset with the UIHC model 477 

To further validate the performance of the UIHC model, we ran AI model inference on 478 

MET-stained NSCLC WSIs (n = 15) with gene mutation/amplification profiles. The cases were 479 

all diagnosed with NSCLC at Ajou University Medical Center and confirmed by next-generation 480 

sequencing to have either EGFR exon20ins, MET exon skipping, or MET amplification 481 

alterations. 482 

 483 

 484 

Reporting summary 485 

Further information on research design is available in the Nature Research Reporting 486 

Summary linked to this article. 487 

 488 

Data availability 489 

The processed data can be provided by the corresponding authors after formal requests 490 

and assurances of confidentiality are provided. 491 

 492 

 Code availability  493 

Deep-learning-related code was implemented using pytorch  version 1.12, Python version 494 

3.9 and publicly available neural network architectures, like ResNet (open-source available 495 

online, e.g. https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py) and 496 

DeepLabV3 (open-source available online, e.g. https://github.com/VainF/DeepLabV3Plus-497 

Pytorch). For UMAP we utilize the official, open-source implementation (available at 498 
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https://umap-learn.readthedocs.io/en/latest/clustering.html#using-umap-for-clustering). All plots 499 

were generated with publicly available libraries, matplotlib version 3.5.2 (available at 500 

https://github.com/matplotlib/matplotlib/tree/v3.5.2) and seaborn version 0.12.2 (available at 501 

https://seaborn.pydata.org/whatsnew/v0.12.2.html), using Google Colab (available at 502 

https://colab.google/).  503 

  504 
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Figure legend 703 

Fig. 1. Overview of the universal immunohistochemistry (UIHC) artificial intelligence (AI) 704 

model development. Single-cohort-derived models (SC-models) were trained using one dataset, 705 

while multiple-cohort-derived models (MC-models) were trained using multiple datasets, 706 

including lung, urothelial carcinoma, and breast cancer samples stained with Programmed 707 

Death-Ligand 1 (PD-L1) 22C3, as well as breast cancer samples stained with human epidermal 708 

growth factor receptor 2 (HER2). The AI models' performance was validated on both the 709 

training cohorts and novel cohorts that were not included in the training phase. These novel 710 

cohorts consisted of samples stained for human epidermal growth factor receptor 3 (HER3), 711 

MUC16, mesenchymal-epithelial transition factor (MET), trophoblast cell-surface antigen 2 712 

(TROP2), and fibroblast growth factor receptor 2 (FGFR2). 713 

 714 

Fig. 2. Patch-level quantitative analysis of the artificial intelligence (AI) models. a List of 715 

eight AI models trained on different cohort combinations. H-Br, HER2 of breast; P-L, PD-L1 716 

22C3 of lung; P-Br, PD-L1 22C3 of breast; P-LBlBr, PD-L1 22C3 of lung, bladder, and breast; 717 

PH-B, PD-L1 22C3 and HER2 of breast; PH-LBr, PD-L1 22C3 and HER2 of lung and breast; 718 

PH-LBlBr, PD-L1 22C3 and HER2 of lung, bladder, and breast. The different stain 719 

combinations (e.g. PD-L1 or HER2 is utilized or not), are visualized by color. b-e Performance 720 

of the eight models in training cohorts, where the stain type may be utilized during training – b 721 

PD-L1 22C3 in lung cancer, c PD-L1 22C3 in bladder cancer, d PD-L1 22C3 in breast cancer, e 722 

HER2 in breast cancer, f PD-L1 22C3 in pan-cancer. g-n Performance of the eight models in 723 

novel cohorts - g PD-L1 SP142, h Claudin 18.2, i DLL3, j FGFR2, k HER3, l MET, m MUC16, 724 

n TROP2 - where none of the test immunostain types has ever been utilized during the training 725 
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phase by any of the models. PD-L1, programmed death-ligand 1; HER2, human epidermal 726 

growth factor receptor 2; DLL3, delta-like 3; FGFR2, fibroblast growth factor receptor 2; HER3, 727 

human epidermal growth factor receptor 3; MET, mesenchymal-epithelial transition factor; 728 

TROP, trophoblast cell-surface antigen; mF1, mean F1 score.  729 

 730 

Fig. 3. Whole slide image (WSI)-level quantitative analysis of the artificial intelligence (AI) 731 

models. The quantitative analysis is based on comparing the tumor proportion score (TPS) score 732 

in different training settings. The reported Cohen’s Kappa scores are computed using the 733 

pathologists’ labeled category as ground truth. a Macro-averaged Cohen’s Kappa scores of the 734 

eight AI models over all the stains. b Cohen’s Kappa scores of the AI models in PD-L1 22C3 735 

Lung dataset. c Cohen’s Kappa scores of the AI models in PD-L1 22C3 Pan-cancer dataset. d 736 

Cohen’s Kappa scores of the AI models in PD-L1 SP142 Lung dataset. e Cohen’s Kappa scores 737 

of the AI models in multi-stain Pan-cancer dataset. The X-axis presents the summation of 738 

utilized stain types and the organ types of each cohort when training (e.g. PH-Br [PD-L1 22C3 739 

and HER2 of breast] is 3 as it has 2 stains and 1 cancer type).  H-Br, HER2 of breast; P-L, PD-740 

L1 22C3 of lung; P-Br, PD-L1 22C3 of breast; P-LBlBr, PD-L1 22C3 of lung, bladder, and 741 

breast; PH-B, PD-L1 22C3 and HER2 of breast; PH-LBr, PD-L1 22C3 and HER2 of lung and 742 

breast; PH-LBlBr, PD-L1 22C3 and HER2 of lung, bladder, and breast. 743 

 744 

Fig. 4. Performance analysis of the artificial intelligence (AI) models on whole slide image 745 

(WSI) categorized by tumor proportion score (TPS). a Confusion matrices of multiple-746 

cohort-derived models (P-LBlBr [PD-L1 22C3 of lung, bladder, and breast], PH-Br [PD-L1 747 

22C3 and HER2 of breast], PH-LBr [PD-L1 22C3 and HER2 of lung and breast], PH-LBlBr 748 
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[PD-L1 22C3 and HER2 of lung, bladder, and breast]). b Confusion matrices of single-cohort-749 

derived models (H-Br [HER2 of breast], P-Br [PD-L1 22C3 of breast], P-L [PD-L1 22C3 of 750 

lung], and P-Bl [PD-L1 22C3 of bladder]). 1% and 50% were utilized as TPS cutoffs.  751 

 752 

Fig. 5. Performance analysis of the artificial intelligence (AI) models on novel 753 

immunostains with varying interpretation cutoffs. a The receiver operating characteristic 754 

(ROC) curve by changing the cutoff over the predicted TPS and measuring false and true 755 

positive rates. In this experiment, we fixed the ground truth TPS cutoff to 1% since it is the most 756 

common and intuitive. b Comparing UIHC and single-cohort models across a range of 1% and 757 

the second cutoff value within the [2%, 75%] range, illustrating the 3-way classification 758 

accuracy. UIHC, universal immunohistochemistry model; H-Br, HER2 of breast; -Br, PD-L1 759 

22C3 of breast; P-L, PD-L1 22C3 of lung; P-Bl, PD-L1 22C3 of bladder. AVG, average. 760 

 761 

Fig. 6.  Histopathologic validation of the universal immunohistochemistry (UIHC) model. a 762 

Lung cancer whole slide image (WSI) is stained with mesenchymal-epithelial transition factor 763 

(MET). The UIHC model predicts more accurate classes unlike the P-L model which confuses 764 

positively stained Tumor Cell (TC+) with negatively stained Tumor Cell (TC-). b Gastric cancer 765 

WSI is stained with fibroblast growth factor receptor 2 (FGFR2). P-L, PD-L1 22C3 of lung; TC, 766 

tumor cell. 767 

 768 

Fig. 7.  Qualitative analysis of the artificial intelligence (AI)-learned representation. a Two-769 

dimensional (2D) projection of internal representation colored by tumor proportion score (TPS). 770 

Each patch is encoded to a 2D plot using three representations: raw pixels, self-supervised 771 
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learning model (SSL), and the universal immunohistochemistry (UIHC) model. Each dot 772 

represents one image patch from either an observed cohort available during training or from a 773 

novel cohort never seen by the UIHC model. The color represents the TPS within the patch. b A 774 

mosaic of image patches sorted by the internal representation. Using the same 2D representation 775 

as a, actual patches are displayed. c The assessment of cohort similarity through p-values. A 776 

higher p-value in UIHC signifies an inability to differentiate cohorts by UIHC, thus 777 

demonstrating the independence of UIHC from cohort effects. 778 

 779 

Fig. 8. Data pipeline for Universal Immunohistochemistry (UIHC) artificial intelligence (AI) 780 

model. a Example of annotation process; patches extracted from whole slide images (WSIs), 781 

then cells are manually annotated by expert pathologists. WSIs are split into 0.04 mm2 patches 782 

(resized to 1024×1024 pixels at 0.19 microns-per pixel). b Patch-level annotation count by its 783 

positivity (negatively stained Tumor Cell [TC-] or positively stained Tumor Cell [TC+]). c The 784 

number of WSI in the WSI-level dataset only for testing.  785 
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Table 1. Validation of universal immunohistochemistry (UIHC) model on cases with next-786 

generation sequencing results. 787 

Case no. Organ Group Mutation/Amplification detail UIHC 
TPS 

Average UIHC 
TPS according 
to the group 

1 Lung EGFR exon20ins p.Ala763_Tyr764insPheGlnG
luAla 

68.6 75.7±23.2 

2 Lung EGFR exon20ins p.Ala767_Val769dup 85.7 

3 Lung EGFR exon20ins p.Asp770_Asn771insGly 88.4 

4 Lung EGFR exon20ins p.Ser768_Asp770dup 27.1 

5 Lung EGFR exon20ins p.His773_Val774insThrHis 80.0 

6 Lung EGFR exon20ins p.Pro772_His773insProAsnPr
o 

98.0 

7 Lung EGFR exon20ins p.P772_H773dup 82.2 

8 Lung MET exon 14 skipping c.3082+2T>G 74.1 77.1±17.7 

9 Lung MET exon 14 skipping c.2942-28_2944del 88.9 

10 Lung MET exon 14 skipping c.3025C>T 
 

89.9 

11 Lung MET exon 14 skipping c.3082+1G>C 53.1 

12 Lung MET exon 14 skipping c.3082+2T>C 60.0 

13 Lung MET exon 14 skipping c.3082G>T 96.7 

14 Lymph 
node 

MET amplification 8 copies 94.6 94.5±2.0 

15 Lung MET amplification 4 copies 92.5 
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16 Lung MET amplification 5 copies 96.5 

EGFR, epidermal growth factor receptor; MET, mesenchymal-epithelial transition 788 

factor; TPS, tumor proportion score. 789 
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