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Abstract 30 

Although genome-wide association studies have provided valuable insights into the genetic 31 
basis of complex traits and diseases, translating these findings to causal genes and their 32 
downstream mechanisms remains challenging. We performed trans expression quantitative trait 33 
locus (trans-eQTL) meta-analysis in 3,734 lymphoblastoid cell line samples, identifying four 34 
robust loci that replicated in an independent multi-ethnic dataset of 682 individuals. One of 35 
these loci was a missense variant in the ubiquitin specific peptidase 18 (USP18) gene that is a 36 
known negative regulator of interferon signalling and has previously been associated with 37 
increased risk of systemic lupus erythematosus (SLE). In our analysis, the SLE risk allele 38 
increased the expression of 50 interferon-inducible genes, suggesting that the risk allele impairs 39 
USP18’s ability to effectively limit the interferon response. Intriguingly, most trans-eQTL targets 40 
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of USP18 lacked independent cis associations with SLE, cautioning against the use of trans-41 
eQTL evidence alone for causal gene prioritisation. 42 

Introduction 43 

Genome-wide association studies (GWAS) have provided valuable insights into the genetic 44 
basis of complex traits and diseases. However, translating GWAS findings to actionable drug 45 
targets has remained challenging, particularly when the functions of the associated genes are 46 
unknown. A promising technique to identify the effector genes of GWAS variants as well as their 47 
downstream regulatory consequences is trans gene expression and protein quantitative trait loci 48 
(trans-QTL) analysis. Trans-QTL studies test for association between genetic variants across 49 
the genome and expression levels of all measured genes or proteins1. In a prominent example, 50 
an erythrocyte-specific regulatory element first identified as a trans protein QTL (trans-pQTL) for 51 
foetal haemoglobin (HbF) was used to design the first ever gene editing therapy for sickle-cell 52 
disease2,3.  53 
 54 
Trans-QTLs are especially promising, because 60%-90% of gene and protein expression 55 
heritability is located in trans4, most associations detected in large-scale pQTL studies are 56 
located in trans5, and cis-QTL discovery is starting to saturate after 10,000 samples5. 57 
Furthermore, most complex trait heritability has been proposed to be mediated by trans-QTL 58 
effects4. However, current large-scale trans-eQTL and trans-pQTL studies have been limited to 59 
easily accessible bulk tissues such as whole blood6,7 or plasma5,8–10. Bulk tissue studies are 60 
subject to cell type composition effects which can be difficult to distinguish from true intracellular 61 
trans-QTLs1,6. The whole blood and plasma studies are also likely to miss cell type and context 62 
specific regulatory effects. In contrast, trans-eQTL studies in other tissues and purified cell types 63 
have had limited statistical power due to small sample sizes (typically less than one thousand 64 
samples), enabling the discovery of only very large effects and potentially underestimating 65 
pleiotropic effects on multiple target genes11–18. 66 
 67 
A key limitation in our understanding of how trans-eQTLs contribute to complex traits and how 68 
they interact with cis-eQTL is the lack of well-characterised disease-associated trans-eQTL 69 
signals4. Two most prominent examples include the adipose-specific KLF14 locus associated 70 
with type 2 diabetes16,19 and the IRX3/5 locus associated with obesity20,21. At the KLF14 locus, 71 
the lead variant (rs4731702) is a cis-eQTL for the KLF14 transcription factor and was 72 
associated with the expression of 385 target genes in trans, 18 of which also had independent 73 
cis associations for other metabolic traits19. The simultaneous regulation of multiple target genes 74 
in trans-eQTL regulatory networks seems to be a general property of many known trans-eQTL 75 
signals6,12,14. However, what proportion of trans-eQTL target genes directly mediate the disease 76 
or trait associations as opposed to being independent ‘bystanders’ with minimal direct causal 77 
effect has remained unclear. 78 
 79 
We performed the largest trans-eQTL meta-analysis in a single cell type, comprising 3,734 80 
lymphoblastoid cell line (LCL) samples across nine cohorts (MetaLCL). LCLs are obtained by 81 
transforming primary B-cells with Epstein-Barr virus22. LCLs have been widely used as a 82 
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resource for human genetics, from banking cells from rare genetic disorders, through control 83 
material in laboratories to prevent repetitive blood sampling, to the study of tumorigenesis, 84 
mechanisms of viral latency and immune evasion22. Furthermore, Epstein-Barr virus has been 85 
epidemiologically linked to several autoimmune diseases in which B cells are implicated to play 86 
a pathogenic role, such as multiple sclerosis (MS)23,24 and systemic lupus erythematosus 87 
(SLE)25 with recent studies starting to elucidate the potential molecular mechanisms underlying 88 
these associations26–28. Thus, trans-eQTLs discovered in LCLs might provide insights into the 89 
pathogenesis of these autoimmune diseases. 90 
 91 
After stringent quality control, we identify four highly robust trans-eQTL associations that 92 
replicate in an independent cohort (n=682) and are associated with multiple target genes. One 93 
of these signals corresponds to a missense variant in the USP18 gene and is also associated 94 
with increased risk of SLE. The SLE risk allele is associated with increased activity of the type I 95 
interferon signalling pathway and increased expression of several classical interferon response 96 
genes. While there is robust evidence for the potential causal role of increased interferon 97 
signalling in SLE pathogenesis, we find that the expression of most individual interferon 98 
response genes is unlikely to have a direct causal effect on SLE. Our results caution against 99 
blindly using trans-QTL associations for target gene prioritisation without clear understanding of 100 
the trans-QTL mechanism and robust genetic evidence from cis-acting variants implicating the 101 
same gene. To support secondary use of our data, we have made the complete MetaLCL trans-102 
eQTL summary statistics for 18,792 genes publicly available via the eQTL Catalogue FTP 103 
server. 104 

Results 105 

Large-scale trans-eQTL meta-analysis in a single cell type 106 

We performed a large-scale trans-eQTL meta-analysis, utilising data from LCLs collected from 107 
3,734 donors across nine cohorts of European ancestries (Table S1). After excluding cis 108 
associations located within 5 Mb of the target gene, we identified 79 suggestive independent 109 
trans-eQTL loci at p-value < 1x10-11 threshold (Figure 1). To identify robust signals associated 110 
with multiple target genes and reduce the risk of false positives caused by cross-mappability29, 111 
we further required each locus to be associated with at least five independent target genes (p < 112 
5x10-8) with low cross-mappability scores (see Methods). This filtering reduced the number of 113 
candidate loci to six (Figure 1), four of which replicated in an independent multi-ethnic cohort of 114 
682 individuals30. These four replicating trans-eQTL loci were located near the BATF3, MYBL2, 115 
USP18, HNF4G genes (Table S2, Figure S2). While the strong trans-eQTL signal near the 116 
BATF3 transcription factor (2294 targets at FDR 5%) has been previously reported31, the other 117 
three seem to be novel. Remarkably, the trans-eQTL targets at the MYBL2 locus were 118 
consistent with direct activation by the MYBL2 transcription factor (Supplementary Note), 119 
indicating that our analysis is identifying biologically interpretable signals. 120 
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 121 
Figure 1. Overview of MetaLCL trans-eQTL results. The upper scatter plot shows the number 122 
of trans associations detected at each trans-eQTL locus with p-values < 5x10��. Six largest 123 
trans-eQTL loci have been labelled with the name of the closest cis gene. The lower scatter plot 124 
shows all significant loci for each tested gene at the more stringent p < 1x10�¹¹ threshold. Cis 125 
associations are located on the diagonal while putative trans associations are located off 126 
diagonal. 127 

Missense variant in USP18 affects lupus risk via negative regulation of 128 

interferon response 129 

For the four high-confidence loci, we performed GWAS lookup using the Open Targets Genetics 130 
Portal32. We found that our trans-eQTL lead variant in the USP18 locus (chr22_18166589_T_C, 131 
rs4819670) was shared with a GWAS lead variant identified for SLE in East Asians33. Using the 132 
point estimation of colocalisation (POEMColoc) method, we also confirmed that the two signals 133 
colocalised (PP4 = 0.97) (Figure 2A)34. At this locus, we identified 40 trans target genes at FDR 134 
5% that were all strongly enriched for Reactome interferon signalling (R-HSA-913531, p = 135 
1.1x10-26) and interferon alpha/beta signalling (R-HSA-909733, p = 1.7x10-21) pathways. The 136 
rs4819670-C allele was associated with decreased expression of multiple canonical type I 137 
interferon response genes (e.g. ISG15, IFI44, OAS1-3) (Figure 2B). Reassuringly, we observed 138 
consistent effect sizes across nine sub-cohorts in our meta-analysis (I2 heterogeneity statistic = 139 
0.46, Figure S2). USP18 is a known negative regulator of interferon signalling and a rare loss-140 
of-function mutation in USP18 causes severe type I interferonopathy (Figure 2C)35,36. The 141 
rs4819670-C was also associated with decreased risk of systemic lupus erythematosus (SLE) in 142 
East Asians33. Furthermore, the rs4819670 lead variant is in perfect linkage disequilibrium (LD) 143 
(r2 = 1, 1000 Genomes EAS superpopulation) with a USP18 missense variant rs3180408 144 
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(chr22_18167915_C_T, ENSP00000215794.7:p.Thr169Met). While the GWAS association was 145 
previously known, it remained uncertain which allele of the missense variant rs3180408 was 146 
more likely to decrease USP18 protein function, especially because the variant was predicted to 147 
be benign by all tested variant effect prediction tools available from Ensembl VEP37. Our results 148 
suggest that the rs3180408-T SLE risk allele decreases USP18 protein function as USP18 is a 149 
negative regulator of type I interferon response genes.  150 
 151 

 152 
Figure 2. SLE GWAS association at the USP18 locus is a trans-eQTL for interferon 153 
response genes. (A) Regional association plot for the SLE GWAS with POEMColoc imputed 154 
summary statistics and regional association plot for the lead trans-eQTL gene (HERC5) at the 155 
USP18 locus. The trans-eQTL lead and GWAS lead variants (rs4819670, shown in blue) are 156 
identical and in perfect LD with a missense variant (rs3180408, shown in red) in the USP18 157 
gene. The original regional association plot for the SLE GWAS is shown on Figure S4. (B) 158 
Volcano plot of the trans-eQTL target genes. (C) Schematic illustration of the role of USP18 in 159 
the regulation of interferon response genes, adapted from Alsohime et al36.  160 
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Role of aberrant interferon signalling in lupus pathogenesis 161 

Several studies have suggested that causal GWAS genes are enriched in shared pathways or 162 
biological processes38–40. To further characterise the potential role of USP18 target genes in 163 
lupus, we performed additional trans-eQTL meta-analysis across the nine discovery cohorts and 164 
one replication cohort (total n = 4,416). This increased the number of significant USP18 target 165 
genes to 50 (FDR < 5%). Notably, 18/50 target genes overlapped the Reactome interferon 166 
alpha/beta signalling (R-HSA-909733) pathway (hypergeometric test, p = 4.14x10-24) and 26/50 167 
genes overlapped a consensus set of interferon response genes (n = 124) identified by 168 
Mostafavi et al41 (p = 1.44x10-39, Table S4). Reassuringly, 39/50 genes were also more highly 169 
expressed in peripheral blood mononuclear cells from SLE cases compared to controls42 (Table 170 
S4), consistent with the established role of increased interferon signalling in SLE43.   171 
 172 
To better understand the role of the USP18 target genes in the interferon alpha/beta signalling 173 
pathway, we focussed on the 60 genes belonging to the Reactome R-HSA-909733 interferon 174 
alpha/beta signalling pathway and divided them into three categories - category I: proteins 175 
involved in signal transduction via IFNAR1/2 receptor (n = 13 genes, including the multi-gene 176 
interferon-alpha gene cluster, Figure 3A); category II: downstream transcriptional targets of the 177 
interferon signalling (38 genes from the Reactome R-HSA-1015702 sub-pathway, Figure 3B) 178 
and 3) and category III: other pathway genes (n = 9) not belonging to the first two categories 179 
(Figure S5). We found that 16/50 USP18 targets overlapped with the 38 category II genes 180 
(transcriptional targets of interferon response) (p = 1.18x10-29). In contrast, only 2/50 USP18 181 
trans-eQTL target genes (STAT1 and ISG15) overlapped the 13 category I genes (IFNAR1/2 182 
receptor signal transduction proteins) and none overlapped the 9 category III genes. This 183 
suggests that the USP18 trans-eQTLs are primarily capturing the transcriptional targets of 184 
interferon response (category II), consistent with the established role of USP18 in regulating 185 
these genes (Figure 2C)36. 186 
 187 
Next, we assessed if there were additional lupus GWAS signals overlapping the three 188 
categories of interferon response genes defined above. We first used the Open Targets 189 
Genetics portal to extract the prioritised target genes for 108 lupus GWAS loci from Yin et al33. 190 
This revealed that three prioritised genes (USP18, STAT1, IFNA1-17) overlapped with the 13 191 
category I genes (IFNAR1/2 signal transduction proteins, Figure 3A) and four prioritised genes 192 
(IRF1/5/8 and OAS1) overlapped with the 38 category II genes (transcriptional targets of 193 
interferon response, Figure 3B). Out of these, IRF1/5/8 are themselves transcription factors 194 
involved in the regulation of interferon production44,45, and stronger IRF1 binding across many 195 
GWAS loci has been associated with higher Crohn's disease risk46. Only OAS1 represents a 196 
classical antiviral gene and here the GWAS lead variant is in perfect LD with a fine-mapped 197 
splice QTL for OAS1 in the eQTL Catalogue (Figure S6)47. Interestingly, while the USP18 trans-198 
eQTL risk allele increased OAS1 expression (Figure 3B), the cis splice QTL risk allele 199 
(rs10774671-A) increased the expression of a transcript with an alternative 3’ end that was 200 
associated with lower OAS1 protein abundance (Figure S6)48,49, suggesting that cis and trans 201 
effects on the OAS1 gene have opposite direction of effect on lupus risk. 202 
 203 
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We also overlapped interferon alpha/beta signalling pathway genes with ongoing or completed 204 
phase III clinical trials for SLE extracted from the ChEMBL database50. We identified three 205 
category I (interferon signal transduction) genes (IFNAR1, JAK1 and TYK2) that have been 206 
targeted by a clinical trial for SLE (Figure 3A). While the trials targeting JAK1 and TYK2 are 207 
currently ongoing, a randomised control trial of anifrolumab, a human monoclonal antibody to 208 
type I interferon receptor subunit 1 (IFNAR1), found it to be an effective treatment for SLE51. 209 
None of the category II genes (transcriptional targets of interferon signalling, Figure 3B) and 210 
category III genes (Figure S5) are currently in a phase III clinical trial for SLE (Figure 3B).  211 
 212 
There is an emerging consensus that rare mutations in genes prioritised for autoimmune 213 
diseases from GWAS studies can often also cause primary immunodeficiencies (PIDs)52,53. For 214 
example, loss-of-function mutations in USP18 cause rare type I interferonopathy35,36. At the 215 
same time, GWAS studies for SLE and other autoimmune diseases are still only powered to 216 
detect variants with large effects. Thus, knowing if a gene causes PID might be a useful (if 217 
noisy) indicator that the same gene might be discovered in a future larger autoimmune GWAS 218 
study. Thus, we obtained the list of genes causing either PID or monogenic inflammatory bowel 219 
disease from Genomics England54 and overlapped those with the three categories of interferon 220 
response genes defined above. We found that 10/13 category I genes (interferon signal 221 
transduction) have previously been implicated in causing PID, including USP18 and all three 222 
phase III drug candidates for SLE (Figure 3A). In contrast, only 8 of the 38 category II genes 223 
(transcriptional targets of interferon response) have been implicated in PIDs (Figure 3B), 224 
including OAS1 and IRF8 also detected by SLE GWAS. Finally, none of the category III genes 225 
have been implicated in PIDs (Figure S5). 226 
 227 
Triangulation of evidence from prioritised lupus GWAS target genes, phase III clinical trial 228 
information and overlap with primary immunodeficiency genes highlights modulation of aberrant 229 
interferon alpha/beta signalling in B-cells as an emerging therapeutic opportunity for SLE 230 
(category I, Figure 3A). This is further supported by recent studies demonstrating that depleting 231 
autoreactive B-cells via anti-CD19 CAR T cell therapy is an effective therapy for SLE and other 232 
autoimmune diseases55,56. In contrast, most trans-eQTL targets of USP18 overlap 233 
transcriptional targets of interferon response (category II, Figure 3B) and it is far less clear what 234 
is the potential causal roles of these genes in SLE pathogenesis.  235 
 236 
 237 
 238 
 239 
 240 
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 241 
Figure 3. Role of interferon signalling in SLE pathogenesis. (A) Upstream regulators of 242 
interferon response genes (IFNA* contains multi-gene interferon-alpha gene cluster). (B) 243 
Downstream transcriptional targets of the interferon signalling (HLA* marks the HLA region). 244 
The increased gene expression is marked in red, while reduced gene expression is marked in 245 
blue. The visualisation illustrates the effect on USP18 target genes in relation to the SLE risk 246 
allele. DE - differential gene expression in SLE cases versus controls42; GWAS - GWAS hits for 247 
SLE33, ChEMBL, phase III - SLE phase III clinical trials from ChEMBL50, PID - genes causing 248 
primary immunodeficiency from Genomics England. 249 
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Replication of the USP18 trans-eQTL signal in whole blood 250 

To understand the context-specificity of the USP18 trans-eQTL signal, we performed additional 251 
replication in the eQTLGen Phase 2 trans-eQTL meta-analysis of up to 43,301 whole blood 252 
samples. We observed that the USP18 missense variant rs3180408 was nominally associated 253 
(p < 0.05) with the expression of 7/50 USP18 target genes, including our lead target gene 254 
HERC5 (p = 0.037) as well as canonical interferon response genes IFI44 and ISG15 (Table S5). 255 
For 6/7 nominally significant associations, the effect direction was concordant between the LCL 256 
and whole blood meta-analyses, but the effect size was an order of magnitude smaller in whole 257 
blood (Table S5). Thus, even at this very large sample size, the USP18 trans-eQTL signal 258 
would not have been discovered in whole blood. 259 
 260 
To understand the potential reasons for the attenuated effect in whole blood, we compared the 261 
expression level of the USP18 gene across 49 GTEx tissues. We found that USP18 had the 262 
highest expression in LCLs (median transcripts per million (TPM) = 45.3) and one of the lowest 263 
in whole blood (median TPM = 0.46). Since USP18 is itself an interferon response gene and 264 
LCLs are characterised by a strong interferon signature driven by active infection with the 265 
Epstein-Barr virus, we characterised the expression of USP18 in naive B-cells as well as B-cells 266 
stimulated with interferon-alpha and TLR7/8 agonist R848 for 16, 40 and 64 hours. We found 267 
that the expression level of USP18 in B-cells was upregulated by ~3.5-fold after 16 hours of 268 
stimulation and stayed elevated for at least 64 hours (Figure S7). This suggests that the very 269 
strong active interferon signalling and associated upregulation of USP18 transcription in LCLs is 270 
required for the trans-eQTL signal to be detected.  271 

Discussion 272 

We performed the largest trans-eQTL study in a single cell type where we profiled the 273 
expression of 18,792 genes in 3,737 individuals from nine cohorts. We then replicated these 274 
findings in an independent multi-ancestry LCL cohort of 682 individuals. After careful quality 275 
control, we identified six independent loci that were associated with five or more target genes, 276 
and that were unlikely to be driven by cross-mappability artefacts. While we primarily focussed 277 
on the SLE-associated rs3180408 missense variant in the USP18 gene in our analysis, we have 278 
publicly released the complete genome-wide summary statistics from our MetaLCL project via 279 
the eQTL Catalogue FTP server. In addition to disease-specific colocalisation applications, we 280 
expect that our summary statistics will motivate the development and application of novel 281 
summary-based aggregative trans-eQTL mapping methods57–59.  282 
 283 
Despite the strong evidence for the critical role of type I interferon response in SLE 284 
pathogenesis42,43 and three active clinical trials, we were surprised to see that of the 50 USP18 285 
target genes, only OAS1 had an independent cis-association with SLE. Expanding the analysis 286 
to interferon response genes from Reactome further implicated IRF1/5/8 genes and the HLA 287 
region, but most interferon response genes were not detected in the SLE GWAS. One potential 288 
explanation for this could be the limited statistical power of the SLE GWAS that profiled 13,377 289 
cases and 194,993 controls, identifying a total of 113 loci33. Furthermore, Liu et al demonstrated 290 
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that if multiple effector genes (‘core’ genes) are co-regulated by shared trans factors, with 291 
shared directions of effects (which seems to be the case for the interferon response genes), 292 
then nearly all heritability would be due to trans effects, further reducing the power to detect cis-293 
acting signals at individual target genes4.  294 
 295 
However, interferon response involves rapid upregulation of a broad transcriptional regulatory 296 
network of genes with diverse biological functions, only a subset of which might have a direct 297 
causal effect on SLE. This is supported by the fact that among the 38 interferon response genes 298 
(category II), only OAS1, ADAR, PSMB8, SAMHD1 and the IRF transcription factors have been 299 
implicated in causing primary immunodeficiencies (Figure 3B). The remaining interferon 300 
response genes might thus be better thought of as biomarkers of the complex effect of 301 
interferon signalling on multiple parts of the immune system43,60. This could also help to explain 302 
the apparent directionally discordant cis and trans effects for the OAS1 gene, raising an 303 
intriguing possibility that to reduce lupus risk it might be important to have high baseline levels 304 
of OAS1 (to possibly aid with viral clearance49) rather than increase its expression long term 305 
after activation of interferon signalling. Similarly, it has been previously shown that variants in 306 
the IL6R region that are associated with circulating C-reactive protein (CRP) concentrations, are 307 
also associated with coronary artery disease (CAD) risk61, but variants in the CRP region are 308 
not62. Thus, plasma levels of CRP do not seem to have a direct causal effect on CAD risk, but 309 
can still act as a molecular readout (biomarker) of the IL6R-mediated inflammatory response 310 
that does seem to have a causal effect63. These observations suggest that widespread 311 
horizontal pleiotropy in gene regulatory networks could be a general property of trans-QTLs and 312 
could help explain why using trans-pQTL signals in Mendelian randomisation analysis has had 313 
low specificity for identifying known drug targets64,65. Instead, we propose that target genes 314 
identified from large-scale trans-QTL studies could be better thought of as drug response 315 
biomarkers for drugs targeting the cis gene responsible for the trans association8.  316 
 317 
A limitation of our trans-eQTL analysis is its susceptibility to cross-mappability artefacts (Table 318 
S3). While heuristic approaches have been developed to filter such artefacts post hoc, these 319 
approaches are not guaranteed to remove all cross-mappability effects and might be too 320 
conservative at other loci29. Cross-mappability artefacts also tend to replicate well in 321 
independent cohorts29. Furthermore, as the sample size of trans-eQTL studies increases, the 322 
power to detect subtle cross-mappability effects as putative trans-eQTLs also increases. To 323 
avoid these false positives, we used a very conservative strategy of requiring each trans-eQTL 324 
locus to have at least five independent target genes that all pass the cross-mappability filter. As 325 
a result, we likely missed many true trans-eQTLs regulating single or few target genes (e.g. 326 
trans-eQTL effect near the CIITA transcription factor on multiple HLA genes that has been 327 
replicated in several independent studies6,31,66–68, Table S2). Future large-scale trans-eQTL 328 
studies will likely require the development of novel methods to properly adjust for cross-329 
mappability, such as explicit modelling of transcript compatibility read counts between cis and 330 
trans target genes69. 331 
 332 
While large-scale trans-eQTL studies using both bulk and single-cell measurements are likely to 333 
continue for easily accessible tissues such as whole blood (e.g. eQTLGen Phase 270), it seems 334 
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unlikely that we will be able to perform trans-eQTL studies comprising tens of thousands of 335 
individuals for all disease-relevant cell types and contexts. A promising alternative is to use 336 
arrayed CRISPR screens or single-cell approaches to identify downstream gene-regulatory 337 
effects of disease-associated genes or individual genetic variants39,71,72.  338 

Methods 339 

Datasets, samples and ethics 340 

We used genotype and gene expression data from ALSPAC31,73,74, TwinsUK75, CoLaus76,77, 341 
GEUVADIS78, MRCA79, MRCE79, GENCORD80, GTEx v817 and CAP81 studies. For replication, 342 
we used data from the MAGE cohort30. The RNA sequencing and genotype data from the 343 
GEUVADIS and MAGE studies was publicly available as part of the 1000 Genomes project. For 344 
the other studies, we applied for access to individual-level data via relevant data access 345 
committees (DACs), explaining the aim of our project and the intent to publicly share meta-346 
analysis summary statistics. Informed consent was obtained when research participants joined 347 
the ten studies listed above. The use of the CAP data for this project was approved by the 348 
National Heart, Lung and Blood Institute DAC. The use of the GTEx data for this project was 349 
approved by the National Human Genome Research Institute DAC. The use of the GENCORD 350 
data for this project was approved by the GENCORD DAC. The use of the MRCA and MRCE 351 
data for this project was approved by the Gabriel Consortium DAC. The use of TwinsUK data for 352 
this project was approved by the TwinsUK Resource Executive Committee. The use of the 353 
ALSPAC data for this project was approved by the ALSPAC Executive Committee. For the 354 
ALSPAC cohort, ethical approval for the study was obtained from the ALSPAC Ethics and Law 355 
Committee and the Local Research Ethics Committees. Consent for biological samples has 356 
been collected in accordance with the Human Tissue Act (2004). The CoLaus study was 357 
approved by the Institutional Ethics Committee of the University of Lausanne. 358 
Single-cell RNA-seq samples were sourced ethically, and their research use was in accord with 359 
the terms of informed consent under an institutional review board/ethics committee-approved 360 
protocol (UK Regional Ethics Committee approval granted to work at Wellcome Sanger Institute, 361 
protocol reference number 15/NW/0282; project was approved by the Ethics on Research 362 
Committee of the Institute of Neurobiology at Universidad Nacional Autonoma de Mexico 363 
(UNAM), with the approval number 110.H.). 364 

Genotype data quality control and imputation 365 

Pre-imputation quality control. Genotype imputation was performed as described 366 
previously47. Briefly, we lifted coordinates of the genotyped variants to the GRCh38 build with 367 
CrossMap v0.4.182. We aligned the strands of the genotyped variants to the 1000 Genomes 30x 368 
on GRCh38 reference panel83 using Genotype Harmonizer84. We excluded genetic variants with 369 
Hardy-Weinberg p-value < 10-6, missingness > 0.05 and minor allele frequency < 0.01 from 370 
further analysis. We also excluded samples with more than 5% of their genotypes missing. 371 
 372 
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Genotype imputation and quality control. Most of the datasets were imputed using the 1000 373 
Genomes reference panel based on the GRCh38 genome version. CoLaus dataset was 374 
imputed using the TOPMed Imputation Server85–87, while still aligning with the same reference 375 
genome version. Additionally, GEUVADIS, GTEx and MAGE cohorts utilised whole genome 376 
sequencing data aligned to the GRCh38 reference genome. 377 
 378 
We pre-phased and imputed the microarray genotypes to the 1000 Genomes 30x on GRCh38 379 
reference panel83 using Eagle v2.4.188 and Minimac486. We used bcftools v1.9.0 to exclude 380 
variants with minor allele frequency (MAF) < 0.01 and imputation quality score R2 < 0.4 from 381 
downstream analysis. The genotype imputation and quality control steps are implemented in 382 
eQTL-Catalogue/genimpute (v22.01.1) workflow available from GitHub. Subsequently, we used 383 
QCTOOL v2.2.0 to convert imputed genotypes from VCF format to bgen format for trans-eQTL 384 
analysis with regenie.  385 

Gene expression data 386 

Studies. We used gene expression data from seven RNA-seq studies (TwinsUK75, CoLaus76,77, 387 
GEUVADIS78, GENCORD80, GTEx v817, CAP81, MAGE30) and three microarray studies 388 
(ALSPAC31,73,74, MRCA79 and MRCE79). 389 
 390 
RNA-seq quantification and normalisation. RNA-seq data were pre-processed as described 391 
previously89. Briefly, quantification of the RNA-seq data was performed using the eQTL-392 
Catalogue/rnaseq workflow (v22.05.1) implemented in Nextflow. Before quantification, we used 393 
Trim Galore v0.5.0 to remove sequencing adapters from the fastq files. For gene expression 394 
quantification, we used HISAT290 v2.2.1 to align reads to the GRCh38 reference genome 395 
(Homo_sapiens.GRCh38.dna.primary_assembly.fa file downloaded from Ensembl). We counted 396 
the number of reads overlapping the genes in the GENCODE V30 reference transcriptome 397 
annotations with featureCounts v1.6.4.  398 
 399 
We excluded all samples that failed the quality control steps as described previously89. We 400 
normalised the gene counts using the conditional quantile normalisation (cqn) R package 401 
v1.30.0 with gene GC nucleotide content as a covariate. We downloaded the gene GC content 402 
estimates from Ensembl biomaRt and calculated the exon-level GC content using bedtools 403 
v2.19.091. We also excluded lowly expressed genes, where 95 per cent of the samples within a 404 
dataset had transcripts per million (TPM)-normalised expression less than 1. Subsequently, we 405 
used the inverse normal transformation to standardise quantification estimates. Normalisation 406 
scripts together with containerised software are publicly available at https://github.com/eQTL-407 
Catalogue/qcnorm. 408 
 409 
Microarray data processing. Gene expression from 877 individuals in the ALSPAC cohort was 410 
profiled using Illumina Human HT-12 V3 BeadChips microarray. We used the normalised gene 411 
expression matrix from the original publication31. In the MRCA cohort, gene expression from 327 412 
individuals was profiled using the Human Genome U133 Plus 2.0 microarray. We downloaded 413 
the raw CEL files from ArrayExpress (E-MTAB-1425) and normalised the data using the Robust 414 
Multi-Array Average (RMA) method from the affy Bioconductor package92. In the MRCE cohort, 415 
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gene expression from 484 individuals was profiled using the Illumina Human-6 v1 Expression 416 
BeadChip. As raw data was unavailable, we downloaded the processed gene expression matrix 417 
from ArrayExpress (E-MTAB-1428). In all three microarray datasets, we applied inverse normal 418 
transformation to each probe before performing trans-eQTL analysis. If there were multiple 419 
probes mapping to the same gene, the probe with the highest average expression was used. 420 

Trans-eQTL mapping and meta-analysis 421 

We performed independent quality control and normalisation on all datasets and only included 422 
18,792 protein coding genes in the analysis. Trans-eQTL analysis was conducted separately on 423 
each dataset with regenie93. For studies containing related samples (TwinsUK, MRCA and 424 
MRCE) and ALSPAC, both step 1 and step 2 commands were employed, while for other 425 
datasets with a smaller number of unrelated samples (Table S1), regenie was run in the linear 426 
regression mode (step 2 only). We used sex and six principal components of the normalised 427 
gene expression matrix and six principal components of genotype data as covariates in the 428 
trans-eQTL analysis. All scripts used to run trans-eQTL are publicly available at 429 
https://github.com/freimannk/regenie_analysis. Subsequently, we performed an inverse-430 
variance weighted meta-analysis across studies. Meta-analysis workflow is available at 431 
https://github.com/freimannk/regenie_metaanalyse. 432 
 433 
We used a cis window of ± 5Mb to assign identified eQTLs into cis and trans eQTLs. To 434 
determine significant loci, we excluded variants proximal (±1.5Mb) to the most highly associated 435 
variant per gene. This approach allowed us to identify distinct and robust signals while 436 
mitigating potential confounding effects from nearby variants. By applying these filters, we found 437 
79 trans-eQTLs loci at a suggestive p-value threshold of 1x10-11. 438 

Accounting for cross-mappability 439 

A major source of false positives in trans-eQTL analysis is cross-mappability, whereby RNA-seq 440 
reads from gene A erroneously align to gene B, leading to very strong apparent trans-eQTL 441 
signals11,29. To exclude potential cross-mappability artefacts, we excluded all trans-eQTLs 442 
where there was high cross-mappability (cross-mappability score from Saha et al29 > 1) between 443 
the trans-eQTL target gene and at least one protein coding gene in the cis region (±1.5Mb) of 444 
the trans eQTL lead variant. Since some of the strongest cross-mappability artefacts affected 445 
one or few target genes (Table S3), we further restricted our analysis to trans-eQTL loci that 446 
had five or more target genes with p < 5x10-8 and cross-mappability score < 1. 447 

Replication of trans-eQTL associations 448 

MAGE. Since we used somewhat arbitrary thresholds to define the initial set of 10 loci (lead p-449 
value < 1x10-11, five or more targets with p < 5x10-8), we sought to replicate our findings in an 450 
independent Multi-ancestry Analysis of Gene Expression (MAGE)30 cohort. MAGE consisted of 451 
data from 731 lymphoblastoid cell lines from the 1000 Genomes project, 682 of which also had 452 
whole genome sequencing data available. We used two strategies to assess replication. First, 453 
we assessed if the lead variant-gene pair was nominally significant (p < 0.05) in the replication 454 
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dataset with concordant direction of effect. Based on this criterion, 7/10 loci replicated (Table 455 
S2). Secondly, since all of our loci had multiple target genes, we used the pi1 statistic to 456 
estimate the proportion of FDR < 5% target gene at each locus that had a non-null p-value in 457 
the replication dataset94. We used the qvalue R package95 to calculate pi1 = 1-qvalue(5% FDR 458 
trans gene p-values)$pi0. For 3/10 loci, the proportion of non-null p-values was > 0.5 (Table 459 
S2). Note that replication in an independent cohort does not help to reduce false positives due 460 
to cross-mappability, as cross-mappability artefacts tend to be highly replicable29. 461 
 462 
eQTLGen Consortium. The eQTLGen Consortium is an initiative to investigate the genetic 463 
architecture of blood gene expression and to understand the genetic basis of complex traits. We 464 
used interim summary statistics from eQTLGen phase 2, wherein a genome-wide eQTL 465 
analysis has been performed in 52 cohorts, representing 43,301 individuals. 466 
 467 
All 52 cohorts performed cohort-specific analyses as outlined in the eQTLGen analysis 468 
cookbook (https://eqtlgen.github.io/eqtlgen-web-site/eQTLGen-p2-cookbook.html). Genotype 469 
quality control was performed according to standard bioinformatics practices and included 470 
quality metric-based variant and sample filtering, removing related samples, ethnic outliers and 471 
population outliers. Genotype data was converted to genome build hg38 if not done so already 472 
and the autosomes were imputed using the 1000 Genomes 30x on GRCh38 reference panel83 473 
(all ancestries) using the eQTLGen imputation pipeline (eQTLGen/eQTLGenImpute).  474 
 475 
Like the genotype data, gene expression data was processed using the eQTLGen data QC 476 
pipeline (eQTLGen/DataQC). For array-based datasets, we used the results from the empirical 477 
probe mapping approach from our previous study6 to connect the most suitable probe to each 478 
gene which has previously been to show expression in the combined BIOS whole blood 479 
expression dataset. Raw expression data was further normalized in accordance with the 480 
expression platform used (quantile normalization for Illumina expression arrays and TMM96 for 481 
RNA-seq) and inverse normal transformation was performed. Gene expression outlier samples 482 
were removed and gene summary information was collected for filtering at the central site. 483 
Samples for whom there were mismatches in genetically inferred sex, reported sex, or the 484 
expression of genes encoded from sex chromosomes were removed. Similarly, samples with 485 
unclear sex, based on genetics or gene expression were removed. 486 
 487 
An adaptation of the HASE framework97 was used to perform genome-wide meta-analysis. For 488 
genome-wide eQTLs analysis, this limits the data transfer size while ensuring participant 489 
privacy. At each of the cohorts, the quality controlled and imputed data was processed and 490 
encoded so that the individual level data can no longer be extracted, but while still allowing 491 
effect sizes to be calculated for the linear relationship between variants and gene expression 492 
(eQTLGen/ConvertVcf2Hdf5 and eQTLGen/PerCohortDataPreparations). 493 
Centrally, the meta-analysis pipeline was run on the 52 cohorts. The pipeline which performs 494 
per cohort calculations of effect sizes and standard errors and the inverse variance meta-495 
analysis is available at eQTLGen/MetaAnalysis. We included 4 genetic principal components, 496 
20 gene expression principal components and other technical covariates (e.g. RNA integrity 497 
number) where available. Per every dataset, genes were included if the fraction of unique 498 
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expression values was equal or greater than 0.8, Variants were included based on imputation 499 
quality, Hardy-Weinberg equilibrium (HWE) and minor allele frequency (MAF) (Mach R2 ≥ 0.4, 500 
HWE p ≥ 1×10-6 and MAF ≥ 0.01). In an additional step, genes were filtered to include only 501 
those genes that were available in at least 50% of the cohorts and 50% of the samples. 502 

Differential gene expression in SLE cases versus controls 503 

We re-analysed the microarray gene expression data from Banchereau et al. 201642 to explore 504 
differential gene expression between SLE cases and controls. After downloading the processed 505 
data from GEO (GSE65391), we selected one sample from each individual for our analysis 506 
based on their earliest recorded visits. The filtered dataset comprised a total of 204 samples, 507 
including 46 samples from healthy individuals and 158 samples from individuals diagnosed with 508 
SLE. We also applied the inverse normal transformation to standardise the gene expression 509 
values. Subsequently, we used the Python statsmodels98 module to fit a linear model to identify 510 
genes that were differentially expressed between SLE cases and controls. We included gender, 511 
age and batch as covariates in all models. 512 

Overlap between USP18 target genes and GWAS hits for SLE 513 

We download the list of prioritised target genes for the Yin et al GWAS study (GCST011956) 514 
from the Open Targets Genetics Portal. We combined the list of genes prioritised by either the 515 
L2G or the closest gene approach, yielding n = 109 target genes. We then overlapped these 516 
target lists with the list of 50 trans-eQTL targets for the USP18 locus (FDR < 5%). 517 

Single-cell differential gene expression in resting and stimulated B-cells 518 

Sample collection, cell isolation and cryopreservation. Blood samples were collected from 519 
five healthy Mexican individuals (three males and two females). Peripheral blood mononuclear 520 
cells (PBMCs) were isolated using Vacutainer CPT tubes, according to manufacturer 521 
instructions. Samples were cryopreserved in RPMI 1640 culture media (Sigma), Fetal Bovine 522 
Serum (FBS) and Dimethyl sulfoxide (DMSO) and stored at -80oC for 24h, before being 523 
transferred to liquid nitrogen. 524 
  525 
Thawing and stimulation. Cryopreserved PBMCs were thawed quickly and washed in 14mL of 526 
room temperature complete RPMI 1640 media (10% FBS, 1% Penicillin-Streptomycin, 1% L-527 
Glutamine). Cells were incubated at 37�°C, 5% CO2 for 2h. Cells were then stimulated with 528 
interferon alpha (IFN-�, Bio-techne) and R-848 (Resiquimod, Cambridge Bioscience) at a 529 
working concentration of 1000U/mL and 2µg/ml, respectively. Cells were incubated at 37�°C, 530 
5% CO2 and harvested after 16h, 40h and 64h of stimulation. Unstimulated cells were kept in 531 
culture without any stimuli for 16h (i.e., 0h of activation). 532 
  533 
Multiplexing, CITE-seq staining & scRNA-seq. Upon harvesting, cells were resuspended in a 534 
cell staining buffer (Biolegend) and cell hashing and genotype-based multiplexing was 535 
performed. Donors of the same stimulation condition were mixed at equal ratios (each pool 536 
corresponded to a mix of cells from four to five different individuals). These pools were stained 537 
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with the TotalSeq-C Human Universal Cocktail, V1.0 (137 cell surface proteins (CSP), 538 
Biolegend), in addition to a unique hashtag antibody oligonucleotide (HTO, Biolegend) which 539 
corresponds to the stimulation condition pool. After staining and washing, all stimuli condition 540 
pools were pooled together at equal ratios. This pool was then stained with live/dead dye 4,6-541 
diamidino-2-phenylindole (DAPI, Biolegend) and dead cells were removed using fluorescence-542 
activated cell sorting. 543 
  544 
Cells were next processed using the 10X Genomics Immune Profiling 5’ high-throughput (HT) 545 
v2 kit, as specified by the manufacturer’s instructions. 1.15x105 cells were loaded into each inlet 546 
of a 10X Chromium X to create Gel Bead-in-emulsions (GEMs). Two 10X HT reactions were 547 
loaded per time point of sample processing (targeted recovery was 40,000 cells per 10X 548 
reaction). Reverse transcription was performed on the emulsion, after which cDNA and CITEseq 549 
supernatant were purified, amplified and used to construct RNA-sequencing and CSP 550 
sequencing libraries, respectively. These RNA and CSP libraries were sequenced at a 5:1 ratio, 551 
respectively, using the Illumina NoveSeq 6000 S4, with 100-bp paired-end reads and all 10X 552 
reactions were mixed at equal ratios and sequenced across two lanes. 553 
 554 
Deconvolution of single cells by genotype. Each 10X reaction comprised a mix of cells from 555 
unrelated individuals. Thus, natural genetic variation was used to assign cells to their respective 556 
individuals. First, a list of common exonic variants was compiled from the 1000 Genomes 557 
Project phase 3 exome-sequencing data (MAF> 0.05). Next, cellSNP (v1.2.1) was used to 558 
generate pileups at the genomic location of these variants. These pileups, in combination with 559 
the variants called from genotyping in each individual, were used as an input for Vireo99 (v0.5.7). 560 
If any cell had less than 0.9 posterior probability of belonging to any individual or were of mixed 561 
genotypes they were labelled as ‘unassigned’ and ‘doublets’, respectively, and removed from 562 
downstream analysis. 563 
  564 
Data processing and quality controls. Raw scRNA-seq and CITE-seq data were processed 565 
using the Cell Ranger Multi pipeline (v7.0.0, 10x Genomics). In brief, RNA and CSP library 566 
reads were first assigned to cells. RNA reads were then aligned to the GRCh38 human 567 
reference genome and CSP antibody reads were matched to the provided list of known 568 
barcodes. Ensembl version 93 was used as a reference for gene annotation, and gene 569 
expression was quantified using reads assigned to cells and confidently mapped to the genome. 570 
Additionally, Cell Ranger multi was used to deconvolute samples based on HTOs. It uses an 571 
algorithm which employs a latent variable model over a state space composed of each HTO 572 
used in the experiment to assign each cell to a stimulation condition or as a doublet. 573 
 574 
Results from RNA and CSP quantification in Cell Ranger were imported into RStudio (v4.3.1) 575 
and analysed using Seurat (v5.0.1). Any cell identified as doublet or unassigned by Vireo and or 576 
antibody hashtag deconvolution method were excluded. 10X reactions were split by time point 577 
and stimuli condition. Cells with 1.5 - 2.5 median absolute deviations below the median of genes 578 
and counts detected were discarded. Additionally, cells with 3 - 4 median absolute deviation 579 
above the median for the percentage of mitochondrial reads detected were discarded. The 580 
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resulting cells were then annotated by Azimuth100 (v0.5.0), using the Azimuth PBMC reference 581 
dataset that was generated as part of the Hao and Hao et al, 2021 paper100. 582 
  583 
Pseudobulk and normalisation. Raw counts were pseudobulked by Azimuth annotated level 1 584 
cell types (CD4, CD8, B, Mono, DC, NK, Other and Other T) per donor, per time point and per 585 
stimulation condition, via edgeR101 (v4.0.16). Pseudobulked raw counts were then counts per 586 
million (CPM) normalised and log2 transformed with edgeR. 587 
 588 

Data availability 589 

The whole genome sequencing data for the GEUVADIS and MAGE studies was downloaded 590 
from the 1000 Genomes website. The GEUVADIS RNA-seq data was downloaded from the 591 
European Nucleotide Archive (ENA) under accession PRJEB3366. The MAGE RNA-seq data 592 
was downloaded from the ENA (accession PRJNA851328). The genotype and RNA-seq data 593 
from the GENCORD study was downloaded from European Genotype-phenotype Archive 594 
(EGA) under accessions EGAD00001000425 and EGAD00001000428. The microarray gene 595 
expression data from the MRCA and MRCE studies was downloaded from ArrayExpress (E-596 
MTAB-1425 and E-MTAB-1428) and the genotype data was downloaded from EGA 597 
(EGAS00000000137). The gene expression and genotype data from GTEx and CAP studies 598 
was downloaded from dbGaP (accessions phs000424.v8.p2 and phs000481.v3.p2). The RNA-599 
seq data from the TwinsUK study was downloaded from EGA (EGAD00001001086) and 600 
genotype data was obtained from TwinsUK (https://twinsuk.ac.uk/resources-for-601 
researchers/access-our-data/). The informed consent obtained from ALSPAC participants does 602 
not allow the microarray and genotype data to be made freely available through any third party 603 
maintained public repository. However, data used for this study can be made available on 604 
request to the ALSPAC Executive. The ALSPAC data management plan describes in detail the 605 
policy regarding data sharing, which is through a system of managed open access. Full 606 
instructions for applying for data access can be found here: 607 
http://www.bristol.ac.uk/alspac/researchers/access/. The ALSPAC study website contains 608 
details of all the data that are available (http://www.bristol.ac.uk/alspac/researchers/our-data/). 609 
The RNA-seq and genotype data from the CoLaus cohort can be accessed by directly 610 
contacting the cohort (https://www.colaus-psycolaus.ch/professionals/how-to-collaborate/). The 611 
MetaLCL full trans-eQTL meta-analysis summary statistics are available from the eQTL 612 
Catalogue FTP server (https://www.ebi.ac.uk/eqtl/Data_access/) and additional documentation 613 
is available on the project website (https://github.com/AlasooLab/MetaLCL). 614 

URLs 615 

MetaLCL website: https://github.com/AlasooLab/MetaLCL 616 
MetaLCL trans-eQTL analysis workflow: https://github.com/freimannk/regenie_analysis 617 
MetaLCL meta-analysis workflow: https://github.com/freimannk/regenie_metaanalyse 618 
eQTL Catalogue website: https://www.ebi.ac.uk/eqtl/Data_access/ 619 
eQTL Catalogue genotype imputation workflow: https://github.com/eQTL-Catalogue/genimpute 620 
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eQTL Catalogue RNA-seq processing workflow: https://github.com/eQTL-Catalogue/rnaseq 621 
eQTL Catalogue data normalisation workflow: https://github.com/eQTL-Catalogue/qcnorm 622 
eQTLGen analysis cookbook: https://eqtlgen.github.io/eqtlgen-web-site/eQTLGen-p2-623 
cookbook.html 624 
eQTLGen data QC workflow: https://github.com/eQTLGen/DataQC 625 
eQTLGen genotype conversion workflow: https://github.com/eQTLGen/ConvertVcf2Hdf5 626 
eQTLGen per-cohort analysis workflow: 627 
https://github.com/eQTLGen/PerCohortDataPreparations 628 
eQTLGen meta-analysis workflow: https://github.com/eQTLGen/MetaAnalysis 629 
eQTLGen genotype imputation workflow: https://github.com/eQTLGen/eQTLGenImpute 630 
QCTOOL: https://www.chg.ox.ac.uk/~gav/qctool_v2/ 631 
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Supplementary Note 884 

MYBL2 regulates the expression of many cell cycle genes 885 
At the MYBL2 locus, the lead variant chr20_43721344_C_T was associated with the expression 886 
of 151 target genes at FDR 5% (Figure S8). The target genes were strongly enriched for the 887 
Gene Ontology mitotic cell cycle term (GO:0000278, p=2.607×10-51) and the Reactome mitotic 888 
cell cycle pathway (R-HSA-69278, p=1.216×10-35). Interestingly, 125/151 genes (82%) had 889 
lower expression in carriers of the alternative T allele (Figure S8). The T allele of 890 
chr20_43721344_C_T was also strongly associated (p =8.83x10-218) with the decreased 891 
expression of the MYBL2 transcription factor gene in cis (Figure S8). Since both the MYBL2 892 
transcription factor located in cis and majority of the trans-genes had lower expression in the 893 
carriers of the T allele, we hypothesised that MYBL2 might directly regulate these target genes. 894 
To test this, we download ChIP-seq data for the MYBL2 transcription factor in the human K562 895 
myelogenous leukemia cell line from the ENCODE project (ENCSR162IEM). We then asked 896 
how many of the up- and downregulated genes had a MYBL2 ChIP-seq peak within +/- 2kb 897 
from the annotated promoter of the gene. We found that 99/125 (78.4%) downregulated genes 898 
had a MYBL2 peak in their promoter region (Figure S9). In contrast, only 1/26 upregulated 899 
genes had a MYBL2 peak in their promoter region. As a negative control, we looked at the 404 900 
5% FDR target genes of the SP140 locus (Table S2) and found that only 23/404 (5.6%) of the 901 
target genes had a MYBL2 peak in their promoter region (Figure S9). 902 
 903 
To further understand which cell cycle stage these MYBL2 target genes might be involved in, 904 
we obtained the list of genes specific to G2M and S phases of the cell cycle from Tirosh et al. 905 
2015102 using Seurat R package103. We found that 33/125 genes downregulated by the trans-906 
eQTL variant were markers of the G2M phase which was significantly more than expected (p = 907 
1.23x10-53). In contrast, only 1/125 downregulated genes overlapped with markers of the S 908 
phase (p = 0.36). Of note, 2/26 upregulated genes overlapped S-phase markers (p = 0.004) and 909 
none of the upregulated genes overlapped G2M-phase markers.  910 
 911 
Altogether, this evidence strongly suggests that MYBL2 directly regulates the expression of 912 
G2M genes in trans by binding to their promoter sequences and is directly involved in the 913 
regulation of the expression of these target genes. 914 

  915 
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Table S1. Overview of the LCL eQTL discovery cohorts. The cohorts included in the analysis 916 
used a mixture of RNA-seq and microarray technologies and three cohorts (TwinsUK, MRCE 917 
and MRCA) contained related samples. 918 

Cohort Sample 

size 

Expression data Genotype data Relatedness 

ALSPAC
31,73,74

 877 microarray imputed (1000G 30x on 

GRCh38) 

unrelated 

TwinsUK
75

 735 RNA-seq imputed (1000G 30x on 

GRCh38) 

twins 

CoLaus
76,77

 553 RNA-seq imputed (TOPMed) unrelated 

GEUVADIS
78

 358 RNA-seq WGS (1000G 30x on GRCh38) unrelated 

Liang_2013 

(MRCE)
79

 

484 microarray imputed (1000G 30x on 

GRCh38) 

siblings 

Liang_2013 

(MRCA)
79

 

327 microarray imputed (1000G 30x on 

GRCh38) 

siblings 

GENCORD
80

 187 RNA-seq imputed (1000G 30x on 

GRCh38) 

unrelated 

GTEx
17

 113 RNA-seq WGS (GRCh38) unrelated 

CAP
81

 100 RNA-seq imputed (1000G 30x on 

GRCh38) 

unrelated 

MAGE
30

 

(replication) 

682 RNA-seq WGS (GRCh38) unrelated, 

diverse 

ancestries 
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 919 
 920 

 921 
Figure S1. Overview of trans-eQTL analysis at the relaxed p < 5x10�� threshold. The upper 922 
scatter plot shows the number of trans associations detected at each trans-eQTL locus with p-923 
values < 5x10��. Six largest trans-eQTL loci have been labelled with the name of the closest 924 
cis gene. The lower scatter plot shows all significant loci for each tested gene at the p < 925 
5x10�� threshold. Cis associations are located on the diagonal while putative trans 926 
associations are located off diagonal. 927 
 928 
 929 
 930 
 931 
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 932 
Figure S2. Forest plots showing cohort-specific effect size for the four trans-eQTL loci 933 
that replicated in the MAGE cohort. The points represent the trans-eQTL effect size estimates 934 
from regenie and the error bars represent 95% confidence intervals.  935 
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 936 
 937 
 938 
Figure S3. Forest plots showing cohort-specific effect size for the remaining trans-eQTL 939 
loci that either did not replicate in the MAGE cohort or corresponded to likely cross-940 
mappability artefacts (SENP7, ZNF781 and ZBTB10 loci). The points represent the trans-941 
eQTL effect size estimates from regenie and the error bars represent 95% confidence intervals.  942 
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 943 
Figure S4. Original regional association plot for the USP18 SLE GWAS locus from Yin et 944 
al. 2020 study (top panel) and the summary statistics imputed with POEMColoc for the 945 
same locus (bottom panel).  946 
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 947 
 948 
Figure S5. Category III: other interferon alpha/beta signalling pathway genes that do not 949 
belong to categories I or II (shown in Figure 3). The increased gene expression is marked in 950 
red, while reduced gene expression is marked in blue. The visualisation illustrates the effect on 951 
USP18 targets in relation to the risk allele. DE - differential gene expression in SLE cases 952 
versus controls42; GWAS - GWAS hits for SLE33, ChEMBL, phase III - SLE phase III clinical 953 
trials from ChEMBL50, PID - genes causing primary immunodeficiency from Genomics England. 954 
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 955 
Figure S6. Fine-mapped splicing QTL (sQTL) in the OAS1 gene. (A) RNA-seq read 956 
coverage of the OAS1 gene in the GEUVADIS LCL dataset, stratified by the genotype of the 957 
fine-mapped sQTL variant chr12_112919388_G_A (posterior inclusion probability = 1). (B) 958 
Exon-level effect sizes for the sQTL lead variant. (C) Boxplot of the absolute expression of the 959 
short last intron of the OAS1 gene (highlighted on panel A) stratified by the genotype of the lead 960 
sQTL variant. Interactive version of the plot can be viewed here. 961 
 962 

33 
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 963 

 964 
Figure S7. Expression level of USP18 in resting and stimulated B-cell subset of 965 
peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from healthy donors and 966 
stimulated with interferon-alpha (IFNa) or R848 for 16, 40 and 64 hours.  967 
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 968 

 969 
Figure S8. MYBL2 regulates the expression of many cell cycle genes. The scatter plot 970 
shows all genes associated with the MYBL2 trans-eQTL lead variant (chr20_43721344_C_T). 971 
Light blue points show significantly associated genes (variant-level Benjamini-Hochberg FDR 972 
5%) 973 
 974 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 26, 2024. ; https://doi.org/10.1101/2024.07.15.24310442doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.15.24310442
http://creativecommons.org/licenses/by/4.0/


 

36 

 975 
 976 
Figure S9. Overlap between trans-eQTL target genes and MYBL2 ChIP-seq peaks. The top 977 
panel shows the proportion of the MYBL2 trans-eQTL target genes upregulated (left) or 978 
downregulated (right) by the effect allele that contain a MYBL2 ChIP-seq peak within +/- 2kb 979 
from the annotated promoter. The bottom panel shows the proportion of the SP140 trans-eQTL 980 
target genes upregulated (left) or downregulated (right) by the effect allele that contain a MYBL2 981 
ChIP-seq peak within +/- 2kb from the annotated promoter. Only genes downregulated by the 982 
MYBL2 effect allele show a sizable overlap with MYBL2 ChIP-seq peaks. 983 

  984 
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