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Abstract
Although genome-wide association studies have provided valuable insights into the genetic
basis of complex traits and diseases, translating these findings to causal genes and their
downstream mechanisms remains challenging. We performed trans expression quantitative trait
locus (trans-eQTL) meta-analysis in 3,734 lymphoblastoid cell line samples, identifying four
robust loci that replicated in an independent multi-ethnic dataset of 682 individuals. One of
these loci was a missense variant in the ubiquitin specific peptidase 18 (USP18) gene that is a
known negative regulator of interferon signalling and has previously been associated with
increased risk of systemic lupus erythematosus (SLE). In our analysis, the SLE risk allele
increased the expression of 50 interferon-inducible genes, suggesting that the risk allele impairs
USP18’s ability to effectively limit the interferon response. Intriguingly, most trans-eQTL targets
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of USP18 lacked independent cis associations with SLE, cautioning against the use of
trans-eQTL evidence alone for causal gene prioritisation.

Introduction
Genome-wide association studies (GWAS) have provided valuable insights into the genetic
basis of complex traits and diseases. However, translating GWAS findings to actionable drug
targets has remained challenging, particularly when the functions of the associated genes are
unknown. A promising technique to identify the effector genes of GWAS variants as well as their
downstream regulatory consequences is trans gene expression and protein quantitative trait loci
(trans-QTL) analysis. Trans-QTL studies test for association between genetic variants across
the genome and expression levels of all measured genes or proteins1. In a prominent example,
an erythrocyte-specific regulatory element first identified as a trans protein QTL (trans-pQTL) for
foetal haemoglobin (HbF) was used to design the first ever gene editing therapy for sickle-cell
disease2,3.

Trans-QTLs are especially promising, because 60%-90% of gene and protein expression
heritability is located in trans4, most associations detected in large-scale pQTL studies are
located in trans5, and cis-QTL discovery is starting to saturate after 10,000 samples5.
Furthermore, most complex trait heritability has been proposed to be mediated by trans-QTL
effects4. However, current large-scale trans-eQTL and trans-pQTL studies have been limited to
easily accessible bulk tissues such as whole blood6,7 or plasma5,8–10. Bulk tissue studies are
subject to cell type composition effects which can be difficult to distinguish from true intracellular
trans-QTLs1,6. The whole blood and plasma studies are also likely to miss cell type and context
specific regulatory effects. In contrast, trans-eQTL studies in other tissues and purified cell types
have had limited statistical power due to small sample sizes (typically less than one thousand
samples), enabling the discovery of only very large effects and potentially underestimating
pleiotropic effects on multiple target genes11–18.

A key limitation in our understanding of how trans-eQTLs contribute to complex traits and how
they interact with cis-eQTL is the lack of well-characterised disease-associated trans-eQTL
signals4. Two most prominent examples include the adipose-specific KLF14 locus associated
with type 2 diabetes16,19 and the IRX3/5 locus associated with obesity20,21. At the KLF14 locus,
the lead variant (rs4731702) is a cis-eQTL for the KLF14 transcription factor and was
associated with the expression of 385 target genes in trans, 18 of which also had independent
cis associations for other metabolic traits19. The simultaneous regulation of multiple target genes
in trans-eQTL regulatory networks seems to be a general property of many known trans-eQTL
signals6,12,14. However, what proportion of trans-eQTL target genes directly mediate the disease
or trait associations as opposed to being independent ‘bystanders’ with minimal direct causal
effect has remained unclear.

We performed the largest trans-eQTL meta-analysis in a single cell type, comprising 3,734
lymphoblastoid cell line (LCL) samples across nine cohorts (MetaLCL). LCLs are obtained by
transforming primary B-cells with Epstein-Barr virus22. LCLs have been widely used as a
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resource for human genetics, from banking cells from rare genetic disorders, through control
material in laboratories to prevent repetitive blood sampling, to the study of tumorigenesis,
mechanisms of viral latency and immune evasion22. Furthermore, Epstein-Barr virus has been
epidemiologically linked to several autoimmune diseases in which B cells are implicated to play
a pathogenic role, such as multiple sclerosis (MS)23,24 and systemic lupus erythematosus
(SLE)25 with recent studies starting to elucidate the potential molecular mechanisms underlying
these associations26–28. Thus, trans-eQTLs discovered in LCLs might provide insights into the
pathogenesis of these autoimmune diseases.

After stringent quality control, we identify four highly robust trans-eQTL associations that
replicate in an independent cohort (n=682) and are associated with multiple target genes. One
of these signals corresponds to a missense variant in the USP18 gene and is also associated
with increased risk of SLE. The SLE risk allele is associated with increased activity of the type I
interferon signalling pathway and increased expression of several classical interferon response
genes. While there is robust evidence for the potential causal role of increased interferon
signalling in SLE pathogenesis, we find that the expression of most individual interferon
response genes is unlikely to have a direct causal effect on SLE. Our results caution against
blindly using trans-QTL associations for target gene prioritisation without clear understanding of
the trans-QTL mechanism and robust genetic evidence from cis-acting variants implicating the
same gene. To support secondary use of our data, we have made the complete MetaLCL
trans-eQTL summary statistics for 18,792 genes publicly available via the eQTL Catalogue FTP
server.

Results

Large-scale trans-eQTL meta-analysis in a single cell type
We performed a large-scale trans-eQTL meta-analysis, utilising data from LCLs collected from
3,734 donors across nine cohorts of European ancestries (Table S1). After excluding cis
associations located within 5 Mb of the target gene, we identified 79 suggestive independent
trans-eQTL loci at p-value < 1x10-11 threshold (Figure 1). To identify robust signals associated
with multiple target genes and reduce the risk of false positives caused by cross-mappability29,
we further required each locus to be associated with at least five independent target genes (p <
5x10-8) with low cross-mappability scores (see Methods). This filtering reduced the number of
candidate loci to six (Figure 1), four of which replicated in an independent multi-ethnic cohort of
682 individuals30. These four replicating trans-eQTL loci were located near the BATF3, MYBL2,
USP18, HNF4G genes (Table S2, Figure S2). While the strong trans-eQTL signal near the
BATF3 transcription factor (2294 targets at FDR 5%) has been previously reported31, the other
three seem to be novel. Remarkably, the trans-eQTL targets at the MYBL2 locus were
consistent with direct activation by the MYBL2 transcription factor (Supplementary Note),
indicating that our analysis is identifying biologically interpretable signals.
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Figure 1. Overview of MetaLCL trans-eQTL results. The upper scatter plot shows the number
of trans associations detected at each trans-eQTL locus with p-values < 5x10⁻⁸. Six largest
trans-eQTL loci have been labelled with the name of the closest cis gene. The lower scatter plot
shows all significant loci for each tested gene at the more stringent p < 1x10⁻¹¹ threshold. Cis
associations are located on the diagonal while putative trans associations are located off
diagonal.

Missense variant in USP18 affects lupus risk via negative regulation of
interferon response
For the four high-confidence loci, we performed GWAS lookup using the Open Targets Genetics
Portal32. We found that our trans-eQTL lead variant in the USP18 locus (chr22_18166589_T_C,
rs4819670) was shared with a GWAS lead variant identified for SLE in East Asians33. Using the
point estimation of colocalisation (POEMColoc) method, we also confirmed that the two signals
colocalised (PP4 = 0.97) (Figure 2A)34. At this locus, we identified 40 trans target genes at FDR
5% that were all strongly enriched for Reactome interferon signalling (R-HSA-913531, p =
1.1x10-26) and interferon alpha/beta signalling (R-HSA-909733, p = 1.7x10-21) pathways. The
rs4819670-C allele was associated with decreased expression of multiple canonical type I
interferon response genes (e.g. ISG15, IFI44, OAS1-3) (Figure 2B). Reassuringly, we observed
consistent effect sizes across nine sub-cohorts in our meta-analysis (I2 heterogeneity statistic =
0.46, Figure S2). USP18 is a known negative regulator of interferon signalling and a rare
loss-of-function mutation in USP18 causes severe type I interferonopathy (Figure 2C)35,36. The
rs4819670-C was also associated with decreased risk of systemic lupus erythematosus (SLE) in
East Asians33. Furthermore, the rs4819670 lead variant is in perfect linkage disequilibrium (LD)
(r2 = 1, 1000 Genomes EAS superpopulation) with a USP18 missense variant rs3180408
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(chr22_18167915_C_T, ENSP00000215794.7:p.Thr169Met). While the GWAS association was
previously known, it remained uncertain which allele of the missense variant rs3180408 was
more likely to decrease USP18 protein function, especially because the variant was predicted to
be benign by all tested variant effect prediction tools available from Ensembl VEP37. Our results
suggest that the rs3180408-T SLE risk allele decreases USP18 protein function as USP18 is a
negative regulator of type I interferon response genes.

Figure 2. SLE GWAS association at the USP18 locus is a trans-eQTL for interferon
response genes. (A) Regional association plot for the SLE GWAS with POEMColoc imputed
summary statistics and regional association plot for the lead trans-eQTL gene (HERC5) at the
USP18 locus. The trans-eQTL lead and GWAS lead variants (rs4819670, shown in blue) are
identical and in perfect LD with a missense variant (rs3180408, shown in red) in the USP18
gene. The original regional association plot for the SLE GWAS is shown on Figure S4. (B)
Volcano plot of the trans-eQTL target genes. (C) Schematic illustration of the role of USP18 in
the regulation of interferon response genes, adapted from Alsohime et al36.
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Role of aberrant interferon signalling in lupus pathogenesis
Several studies have suggested that causal GWAS genes are enriched in shared pathways or
biological processes38–40. To further characterise the potential role of USP18 target genes in
lupus, we performed additional trans-eQTL meta-analysis across the nine discovery cohorts and
one replication cohort (total n = 4,416). This increased the number of significant USP18 target
genes to 50 (FDR < 5%). Notably, 18/50 target genes overlapped the Reactome interferon
alpha/beta signalling (R-HSA-909733) pathway (hypergeometric test, p = 4.14x10-24) and 26/50
genes overlapped a consensus set of interferon response genes (n = 124) identified by
Mostafavi et al41 (p = 1.44x10-39, Table S4). Reassuringly, 39/50 genes were also more highly
expressed in peripheral blood mononuclear cells from SLE cases compared to controls42 (Table
S4), consistent with the established role of increased interferon signalling in SLE43.

To better understand the role of the USP18 target genes in the interferon alpha/beta signalling
pathway, we focussed on the 60 genes belonging to the Reactome R-HSA-909733 interferon
alpha/beta signalling pathway and divided them into three categories - category I: proteins
involved in signal transduction via IFNAR1/2 receptor (n = 13 genes, including the multi-gene
interferon-alpha gene cluster, Figure 3A); category II: downstream transcriptional targets of the
interferon signalling (38 genes from the Reactome R-HSA-1015702 sub-pathway, Figure 3B)
and 3) and category III: other pathway genes (n = 9) not belonging to the first two categories
(Figure S5). We found that 16/50 USP18 targets overlapped with the 38 category II genes
(transcriptional targets of interferon response) (p = 1.18x10-29). In contrast, only 2/50 USP18
trans-eQTL target genes (STAT1 and ISG15) overlapped the 13 category I genes (IFNAR1/2
receptor signal transduction proteins) and none overlapped the 9 category III genes. This
suggests that the USP18 trans-eQTLs are primarily capturing the transcriptional targets of
interferon response (category II), consistent with the established role of USP18 in regulating
these genes (Figure 2C)36.

Next, we assessed if there were additional lupus GWAS signals overlapping the three
categories of interferon response genes defined above. We first used the Open Targets
Genetics portal to extract the prioritised target genes for 108 lupus GWAS loci from Yin et al33.
This revealed that three prioritised genes (USP18, STAT1, IFNA1-17) overlapped with the 13
category I genes (IFNAR1/2 signal transduction proteins, Figure 3A) and four prioritised genes
(IRF1/5/8 and OAS1) overlapped with the 38 category II genes (transcriptional targets of
interferon response, Figure 3B). Out of these, IRF1/5/8 are themselves transcription factors
involved in the regulation of interferon production44,45, and stronger IRF1 binding across many
GWAS loci has been associated with higher Crohn's disease risk46. Only OAS1 represents a
classical antiviral gene and here the GWAS lead variant is in perfect LD with a fine-mapped
splice QTL for OAS1 in the eQTL Catalogue (Figure S6)47. Interestingly, while the USP18
trans-eQTL risk allele increased OAS1 expression (Figure 3B), the cis splice QTL risk allele
(rs10774671-A) increased the expression of a transcript with an alternative 3’ end that was
associated with lower OAS1 protein abundance (Figure S6)48,49, suggesting that cis and trans
effects on the OAS1 gene have opposite direction of effect on lupus risk.
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We also overlapped interferon alpha/beta signalling pathway genes with ongoing or completed
phase III clinical trials for SLE extracted from the ChEMBL database50. We identified three
category I (interferon signal transduction) genes (IFNAR1, JAK1 and TYK2) that have been
targeted by a clinical trial for SLE (Figure 3A). While the trials targeting JAK1 and TYK2 are
currently ongoing, a randomised control trial of anifrolumab, a human monoclonal antibody to
type I interferon receptor subunit 1 (IFNAR1), found it to be an effective treatment for SLE51.
None of the category II genes (transcriptional targets of interferon signalling, Figure 3B) and
category III genes (Figure S5) are currently in a phase III clinical trial for SLE (Figure 3B).

There is an emerging consensus that rare mutations in genes prioritised for autoimmune
diseases from GWAS studies can often also cause primary immunodeficiencies (PIDs)52,53. For
example, loss-of-function mutations in USP18 cause rare type I interferonopathy35,36. At the
same time, GWAS studies for SLE and other autoimmune diseases are still only powered to
detect variants with large effects. Thus, knowing if a gene causes PID might be a useful (if
noisy) indicator that the same gene might be discovered in a future larger autoimmune GWAS
study. Thus, we obtained the list of genes causing either PID or monogenic inflammatory bowel
disease from Genomics England54 and overlapped those with the three categories of interferon
response genes defined above. We found that 10/13 category I genes (interferon signal
transduction) have previously been implicated in causing PID, including USP18 and all three
phase III drug candidates for SLE (Figure 3A). In contrast, only 8 of the 38 category II genes
(transcriptional targets of interferon response) have been implicated in PIDs (Figure 3B),
including OAS1 and IRF8 also detected by SLE GWAS. Finally, none of the category III genes
have been implicated in PIDs (Figure S5).

Triangulation of evidence from prioritised lupus GWAS target genes, phase III clinical trial
information and overlap with primary immunodeficiency genes highlights modulation of aberrant
interferon alpha/beta signalling in B-cells as an emerging therapeutic opportunity for SLE
(category I, Figure 3A). This is further supported by recent studies demonstrating that depleting
autoreactive B-cells via anti-CD19 CAR T cell therapy is an effective therapy for SLE and other
autoimmune diseases55,56. In contrast, most trans-eQTL targets of USP18 overlap transcriptional
targets of interferon response (category II, Figure 3B) and it is far less clear what is the potential
causal roles of these genes in SLE pathogenesis.
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Figure 3. A Upstream regulators of interferon response genes (IFNA* contains multi-gene
interferon-alpha gene cluster). B Downstream transcriptional targets of the interferon signalling
(HLA* marks the HLA region). The increased gene expression is marked in red, while reduced
gene expression is marked in blue. The visualisation illustrates the effect on USP18 target
genes in relation to the SLE risk allele. DE - differential gene expression in SLE cases versus
controls42; GWAS - GWAS hits for SLE33, ChEMBL, phase III - SLE phase III clinical trials from
ChEMBL50, PID - genes causing primary immunodeficiency from Genomics England.
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Replication of the USP18 trans-eQTL signal in whole blood
To understand the context-specificity of the USP18 trans-eQTL signal, we performed additional
replication in the eQTLGen Phase 2 trans-eQTL meta-analysis of up to 43,301 whole blood
samples. We observed that the USP18 missense variant rs3180408 was nominally associated
(p < 0.05) with the expression of 7/50 USP18 target genes, including our lead target gene
HERC5 (p = 0.037) as well as canonical interferon response genes IFI44 and ISG15 (Table S5).
For 6/7 nominally significant associations, the effect direction was concordant between the LCL
and whole blood meta-analyses, but the effect size was an order of magnitude smaller in whole
blood (Table S5). Thus, even at this very large sample size, the USP18 trans-eQTL signal would
not have been discovered in whole blood.

To understand the potential reasons for the attenuated effect in whole blood, we compared the
expression level of the USP18 gene across 49 GTEx tissues. We found that USP18 had the
highest expression in LCLs (median transcripts per million (TPM) = 45.3) and one of the lowest
in whole blood (median TPM = 0.46). Since USP18 is itself an interferon response gene and
LCLs are characterised by a strong interferon signature driven by active infection with the
Epstein-Barr virus, we characterised the expression of USP18 in naive B-cells as well as B-cells
stimulated with interferon-alpha and TLR7/8 agonist R848 for 16, 40 and 64 hours. We found
that the expression level of USP18 in B-cells was upregulated by ~3.5-fold after 16 hours of
stimulation and stayed elevated for at least 64 hours (Figure S7). This suggests that the very
strong active interferon signalling and associated upregulation of USP18 transcription in LCLs is
required for the trans-eQTL signal to be detected.

Discussion
We performed the largest trans-eQTL study in a single cell type where we profiled the
expression of 18,792 genes in 3,737 individuals from nine cohorts. We then replicated these
findings in an independent multi-ancestry LCL cohort of 682 individuals. After careful quality
control, we identified six independent loci that were associated with five or more target genes,
and that were unlikely to be driven by cross-mappability artefacts. While we primarily focussed
on the SLE-associated rs3180408 missense variant in the USP18 gene in our analysis, we have
publicly released the complete genome-wide summary statistics from our MetaLCL project via
the eQTL Catalogue FTP server. In addition to disease-specific colocalisation applications, we
expect that our summary statistics will motivate the development and application of novel
summary-based aggregative trans-eQTL mapping methods57–59.

Despite the strong evidence for the critical role of type I interferon response in SLE
pathogenesis42,43 and three active clinical trials, we were surprised to see that of the 50 USP18
target genes, only OAS1 had an independent cis-association with SLE. Expanding the analysis
to interferon response genes from Reactome further implicated IRF1/5/8 genes and the HLA
region, but most interferon response genes were not detected in the SLE GWAS. One potential
explanation for this could be the limited statistical power of the SLE GWAS that profiled 13,377
cases and 194,993 controls, identifying a total of 113 loci33. Furthermore, Liu et al demonstrated
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that if multiple effector genes (‘core’ genes) are co-regulated by shared trans factors, with
shared directions of effects (which seems to be the case for the interferon response genes),
then nearly all heritability would be due to trans effects, further reducing the power to detect
cis-acting signals at individual target genes4.

However, interferon response involves rapid upregulation of a broad transcriptional regulatory
network of genes with diverse biological functions, only a subset of which might have a direct
causal effect on SLE. This is supported by the fact that among the 38 interferon response genes
(category II), only OAS1, ADAR, PSMB8, SAMHD1 and the IRF transcription factors have been
implicated in causing primary immunodeficiencies (Figure 3B). The remaining interferon
response genes might thus be better thought of as biomarkers of the complex effect of
interferon signalling on multiple parts of the immune system43,60. This could also help to explain
the apparent directionally discordant cis and trans effects for the OAS1 gene, raising an
intriguing possibility that to reduce lupus risk it might be important to have high baseline levels
of OAS1 (to possibly aid with viral clearance49) rather than increase its expression long term
after activation of interferon signalling. Similarly, it has been previously shown that variants in
the IL6R region that are associated with circulating C-reactive protein (CRP) concentrations, are
also associated with coronary artery disease (CAD) risk61, but variants in the CRP region are
not62. Thus, plasma levels of CRP do not seem to have a direct causal effect on CAD risk, but
can still act as a molecular readout (biomarker) of the IL6R-mediated inflammatory response
that does seem to have a causal effect63. These observations suggest that widespread
horizontal pleiotropy in gene regulatory networks could be a general property of trans-QTLs and
could help explain why using trans-pQTL signals in Mendelian randomisation analysis has had
low specificity for identifying known drug targets64,65. Instead, we propose that target genes
identified from large-scale trans-QTL studies could be better thought of as drug response
biomarkers for drugs targeting the cis gene responsible for the trans association8.

A limitation of our trans-eQTL analysis is its susceptibility to cross-mappability artefacts (Table
S3). While heuristic approaches have been developed to filter such artefacts post hoc, these
approaches are not guaranteed to remove all cross-mappability effects and might be too
conservative at other loci29. Cross-mappability artefacts also tend to replicate well in
independent cohorts29. Furthermore, as the sample size of trans-eQTL studies increases, the
power to detect subtle cross-mappability effects as putative trans-eQTLs also increases. To
avoid these false positives, we used a very conservative strategy of requiring each trans-eQTL
locus to have at least five independent target genes that all pass the cross-mappability filter. As
a result, we likely missed many true trans-eQTLs regulating single or few target genes (e.g.
trans-eQTL effect near the CIITA transcription factor on multiple HLA genes that has been
replicated in several independent studies6,31,66–68, Table S2). Future large-scale trans-eQTL
studies will likely require the development of novel methods to properly adjust for
cross-mappability, such as explicit modelling of transcript compatibility read counts between cis
and trans target genes69.

While large-scale trans-eQTL studies using both bulk and single-cell measurements are likely to
continue for easily accessible tissues such as whole blood (e.g. eQTLGen Phase 270), it seems
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unlikely that we will be able to perform trans-eQTL studies comprising tens of thousands of
individuals for all disease-relevant cell types and contexts. A promising alternative is to use
arrayed CRISPR screens or single-cell approaches to identify downstream gene-regulatory
effects of disease-associated genes or individual genetic variants39,71,72.

Methods

Datasets, samples and ethics
We used genotype and gene expression data from ALSPAC31,73,74, TwinsUK75, CoLaus76,77,
GEUVADIS78, MRCA79, MRCE79, GENCORD80, GTEx v817 and CAP81 studies. For replication,
we used data from the MAGE cohort30. The RNA sequencing and genotype data from the
GEUVADIS and MAGE studies was publicly available as part of the 1000 Genomes project. For
the other studies, we applied for access to individual-level data via relevant data access
committees (DACs), explaining the aim of our project and the intent to publicly share
meta-analysis summary statistics. Informed consent was obtained when research participants
joined the ten studies listed above. The use of the CAP data for this project was approved by
the National Heart, Lung and Blood Institute DAC. The use of the GTEx data for this project was
approved by the National Human Genome Research Institute DAC. The use of the GENCORD
data for this project was approved by the GENCORD DAC. The use of the MRCA and MRCE
data for this project was approved by the Gabriel Consortium DAC. The use of TwinsUK data for
this project was approved by the TwinsUK Resource Executive Committee. The use of the
ALSPAC data for this project was approved by the ALSPAC Executive Committee. For the
ALSPAC cohort, ethical approval for the study was obtained from the ALSPAC Ethics and Law
Committee and the Local Research Ethics Committees. Consent for biological samples has
been collected in accordance with the Human Tissue Act (2004). The CoLaus study was
approved by the Institutional Ethics Committee of the University of Lausanne.
Single-cell RNA-seq samples were sourced ethically, and their research use was in accord with
the terms of informed consent under an institutional review board/ethics committee-approved
protocol (UK Regional Ethics Committee approval granted to work at Wellcome Sanger Institute,
protocol reference number 15/NW/0282; project was approved by the Ethics on Research
Committee of the Institute of Neurobiology at Universidad Nacional Autonoma de Mexico
(UNAM), with the approval number 110.H.).

Genotype data quality control and imputation
Pre-imputation quality control. Genotype imputation was performed as described previously47.
Briefly, we lifted coordinates of the genotyped variants to the GRCh38 build with CrossMap
v0.4.182. We aligned the strands of the genotyped variants to the 1000 Genomes 30x on
GRCh38 reference panel83 using Genotype Harmonizer84. We excluded genetic variants with
Hardy-Weinberg p-value < 10-6, missingness > 0.05 and minor allele frequency < 0.01 from
further analysis. We also excluded samples with more than 5% of their genotypes missing.

Genotype imputation and quality control.
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Most of the datasets were imputed using the 1000 Genomes reference panel based on the
GRCh38 genome version. CoLaus dataset was imputed using the TOPMed Imputation
Server85–87, while still aligning with the same reference genome version. Additionally,
GEUVADIS, GTEx and MAGE cohorts utilised whole genome sequencing data aligned to the
GRCh38 reference genome.

We pre-phased and imputed the microarray genotypes to the 1000 Genomes 30x on GRCh38
reference panel83 using Eagle v2.4.188 and Minimac486. We used bcftools v1.9.0 to exclude
variants with minor allele frequency (MAF) < 0.01 and imputation quality score R2 < 0.4 from
downstream analysis. The genotype imputation and quality control steps are implemented in
eQTL-Catalogue/genimpute (v22.01.1) workflow available from GitHub. Subsequently, we used
QCTOOL v2.2.0 to convert imputed genotypes from VCF format to bgen format for trans-eQTL
analysis with regenie.

Gene expression data
Studies. We used gene expression data from seven RNA-seq studies (TwinsUK75, CoLaus76,77,
GEUVADIS78, GENCORD80, GTEx v817, CAP81, MAGE30) and three microarray studies
(ALSPAC31,73,74, MRCA79 and MRCE79).

RNA-seq quantification and normalisation. RNA-seq data were pre-processed as described
previously89. Briefly, quantification of the RNA-seq data was performed using the
eQTL-Catalogue/rnaseq workflow (v22.05.1) implemented in Nextflow. Before quantification, we
used Trim Galore v0.5.0 to remove sequencing adapters from the fastq files. For gene
expression quantification, we used HISAT290 v2.2.1 to align reads to the GRCh38 reference
genome (Homo_sapiens.GRCh38.dna.primary_assembly.fa file downloaded from Ensembl). We
counted the number of reads overlapping the genes in the GENCODE V30 reference
transcriptome annotations with featureCounts v1.6.4.

We excluded all samples that failed the quality control steps as described previously89. We
normalised the gene counts using the conditional quantile normalisation (cqn) R package
v1.30.0 with gene GC nucleotide content as a covariate. We downloaded the gene GC content
estimates from Ensembl biomaRt and calculated the exon-level GC content using bedtools
v2.19.091. We also excluded lowly expressed genes, where 95 per cent of the samples within a
dataset had transcripts per million (TPM)-normalised expression less than 1. Subsequently, we
used the inverse normal transformation to standardise quantification estimates. Normalisation
scripts together with containerised software are publicly available at
https://github.com/eQTL-Catalogue/qcnorm.

Microarray data processing. Gene expression from 877 individuals in the ALSPAC cohort was
profiled using Illumina Human HT-12 V3 BeadChips microarray. We used the normalised gene
expression matrix from the original publication31. In the MRCA cohort, gene expression from 327
individuals was profiled using the Human Genome U133 Plus 2.0 microarray. We downloaded
the raw CEL files from ArrayExpress (E-MTAB-1425) and normalised the data using the Robust
Multi-Array Average (RMA) method from the affy Bioconductor package92. In the MRCE cohort,
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gene expression from 484 individuals was profiled using the Illumina Human-6 v1 Expression
BeadChip. As raw data was unavailable, we downloaded the processed gene expression matrix
from ArrayExpress (E-MTAB-1428). In all three microarray datasets, we applied inverse normal
transformation to each probe before performing trans-eQTL analysis. If there were multiple
probes mapping to the same gene, the probe with the highest average expression was used.

Trans-eQTL mapping and meta-analysis
We performed independent quality control and normalisation on all datasets and only included
18,792 protein coding genes in the analysis. Trans-eQTL analysis was conducted separately on
each dataset with regenie93. For studies containing related samples (TwinsUK, MRCA and
MRCE) and ALSPAC, both step 1 and step 2 commands were employed, while for other
datasets with a smaller number of unrelated samples (Table S1), regenie was run in the linear
regression mode (step 2 only). We used sex and six principal components of the normalised
gene expression matrix and six principal components of genotype data as covariates in the
trans-eQTL analysis. All scripts used to run trans-eQTL are publicly available at
https://github.com/freimannk/regenie_analysis. Subsequently, we performed an inverse-variance
weighted meta-analysis across studies. Meta-analysis workflow is available at
https://github.com/freimannk/regenie_metaanalyse.

We used a cis window of ± 5Mb to assign identified eQTLs into cis and trans eQTLs. To
determine significant loci, we excluded variants in close proximity (±1.5Mb) to the most highly
associated variant per gene. This approach allowed us to identify distinct and robust signals
while mitigating potential confounding effects from nearby variants. By applying these filters we
found 79 trans-eQTLs loci at a suggestive p-value threshold of 1x10⁻¹¹.

Accounting for cross-mappability
A major source of false positives in trans-eQTL analysis is cross-mappability, whereby RNA-seq
reads from gene A erroneously align to gene B, leading to very strong apparent trans-eQTL
signals11,29. To exclude potential cross-mappability artefacts, we excluded all trans-eQTLs where
there was high cross-mappability (cross-mappability score from Saha et al29 > 1) between the
trans-eQTL target gene and at least one protein coding gene in the cis region (±1.5Mb) of the
trans eQTL lead variant. Since some of the strongest cross-mappability artefacts affected one or
few target genes (Table S3), we further restricted our analysis to trans-eQTL loci that had five or
more target genes with p < 5x10-8 and cross-mappability score < 1.

Replication of trans-eQTL associations
MAGE. Since we used somewhat arbitrary thresholds to define the initial set of 10 loci (lead
p-value < 1x10-11, five or more targets with p < 5x10-8), we sought to replicate our findings in an
independent Multi-ancestry Analysis of Gene Expression (MAGE)30 cohort. MAGE consisted of
data from 731 lymphoblastoid cell lines from the 1000 Genomes project, 682 of which also had
whole genome sequencing data available. We used two strategies to assess replication. First,
we assessed if the lead variant-gene pair was nominally significant (p < 0.05) in the replication

13

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2024. ; https://doi.org/10.1101/2024.07.15.24310442doi: medRxiv preprint 

https://paperpile.com/c/Upml9c/sAxf
https://github.com/freimannk/regenie_analysis
https://github.com/freimannk/regenie_metaanalyse
https://paperpile.com/c/Upml9c/visQ+tAIl
https://paperpile.com/c/Upml9c/visQ
https://paperpile.com/c/Upml9c/kek6
https://doi.org/10.1101/2024.07.15.24310442
http://creativecommons.org/licenses/by/4.0/


dataset with concordant direction of effect. Based on this criterion, 7/10 loci replicated (Table
S2). Secondly, since all of our loci had multiple target genes, we used the pi1 statistic to
estimate the proportion of FDR < 5% target gene at each locus that had a non-null p-value in
the replication dataset94. We used the qvalue R package95 to calculate pi1 = 1-qvalue(5% FDR
trans gene p-values)$pi0. For 3/10 loci, the proportion of non-null p-values was > 0.5 (Table S2).
Note that replication in an independent cohort does not help to reduce false positives due to
cross-mappability, as cross-mappability artefacts tend to be highly replicable29.

eQTLGen Consortium. The eQTLGen Consortium is an initiative to investigate the genetic
architecture of blood gene expression and to understand the genetic basis of complex traits. We
used interim summary statistics from eQTLGen phase 2, wherein a genome-wide eQTL analysis
has been performed in 52 cohorts, representing 43,301 individuals.

All 52 cohorts performed cohort-specific analyses as outlined in the eQTLGen analysis
cookbook (https://eqtlgen.github.io/eqtlgen-web-site/eQTLGen-p2-cookbook.html). Genotype
quality control was performed according to standard bioinformatics practices and included
quality metric-based variant and sample filtering, removing related samples, ethnic outliers and
population outliers. Genotype data was converted to genome build hg38 if not done so already
and the autosomes were imputed using the 1000G 30x WGS reference panel (64) (all
ancestries) using the eQTLGen imputation pipeline (eQTLGen/eQTLGenImpute).

Like the genotype data, gene expression data was processed using the eQTLGen data QC
pipeline (eQTLGen/DataQC). For array-based datasets, we used the results from the empirical
probe mapping approach from our previous study6 to connect the most suitable probe to each
gene which has previously been to show expression in the combined BIOS whole blood
expression dataset. Raw expression data was further normalized in accordance with the
expression platform used (quantile normalization for Illumina expression arrays and TMM96 for
RNA-seq) and inverse normal transformation was performed. Gene expression outlier samples
were removed and gene summary information was collected for filtering at the central site.
Samples for whom there were mismatches in genetically inferred sex, reported sex, or the
expression of genes encoded from sex chromosomes were removed. Similarly, samples with
unclear sex, based on genetics or gene expression were removed.

An adaptation of the HASE framework97 was used to perform genome-wide meta-analysis. For
genome-wide eQTLs analysis, this limits the data transfer size while ensuring participant
privacy. At each of the cohorts, the quality controlled and imputed data was processed and
encoded so that the individual level data can no longer be extracted, but while still allowing
effect sizes to be calculated for the linear relationship between variants and gene expression
(eQTLGen/ConvertVcf2Hdf5 and eQTLGen/PerCohortDataPreparations).
Centrally, the meta-analysis pipeline was run on the 52 cohorts. The pipeline which performs per
cohort calculations of effect sizes and standard errors and the inverse variance meta-analysis is
available at eQTLGen/MetaAnalysis. We included 4 genetic principal components, 20 gene
expression principal components and other technical covariates (e.g. RNA integrity number)
where available. Per every dataset, genes were included if the fraction of unique expression
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values was equal or greater than 0.8, Variants were included based on imputation quality,
Hardy-Weinberg equilibrium (HWE) and minor allele frequency (MAF) (Mach R2 ≥ 0.4, HWE p ≥
1×10-6 and MAF ≥ 0.01). In an additional step, genes were filtered to include only those genes
that were available in at least 50% of the cohorts and 50% of the samples.

Differential gene expression in SLE cases versus controls
We re-analysed the microarray gene expression data from Banchereau et al. 201642 to explore
differential gene expression between SLE cases and controls. After downloading the processed
data from GEO (GSE65391), we selected one sample from each individual for our analysis
based on their earliest recorded visits. The filtered dataset comprised a total of 204 samples,
including 46 samples from healthy individuals and 158 samples from individuals diagnosed with
SLE. We also applied the inverse normal transformation to standardise the gene expression
values. Subsequently, we used the Python statsmodels98 module to fit a linear model to identify
genes that were differentially expressed between SLE cases and controls. We included gender,
age and batch as covariates in all models.

Overlap between USP18 target genes and GWAS hits for SLE
We download the list of prioritised target genes for the Yin et al GWAS study (GCST011956)
from the Open Targets Genetics Portal. We combined the list of genes prioritised by either the
L2G or the closest gene approach, yielding n = 109 target genes. We then overlapped these
target lists with the list of 50 trans-eQTL targets for the USP18 locus (FDR < 5%).

Single-cell differential gene expression in resting and stimulated B-cells
Sample collection, cell isolation and cryopreservation. Blood samples were collected from
five healthy Mexican individuals (three males and two females). Peripheral blood mononuclear
cells (PBMCs) were isolated using Vacutainer CPT tubes, according to manufacturer
instructions. Samples were cryopreserved in RPMI 1640 culture media (Sigma), Fetal Bovine
Serum (FBS) and Dimethyl sulfoxide (DMSO) and stored at -80oC for 24h, before being
transferred to liquid nitrogen.

Thawing and stimulation. Cryopreserved PBMCs were thawed quickly and washed in 14mL of
room temperature complete RPMI 1640 media (10% FBS, 1% Penicillin-Streptomycin, 1%
L-Glutamine). Cells were incubated at 37 °C, 5% CO2 for 2h. Cells were then stimulated with
interferon alpha (IFN-ɑ, Bio-techne) and R-848 (Resiquimod, Cambridge Bioscience) at a
working concentration of 1000U/mL and 2µg/ml, respectively. Cells were incubated at 37 °C, 5%
CO2 and harvested after 16h, 40h and 64h of stimulation. Unstimulated cells were kept in
culture without any stimuli for 16h (i.e., 0h of activation).

Multiplexing, CITE-seq staining & scRNA-seq. Upon harvesting, cells were resuspended in a
cell staining buffer (Biolegend) and cell hashing and genotype-based multiplexing was
performed. Donors of the same stimulation condition were mixed at equal ratios (each pool
corresponded to a mix of cells from four to five different individuals). These pools were stained
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with the TotalSeq-C Human Universal Cocktail, V1.0 (137 cell surface proteins (CSP),
Biolegend), in addition to a unique hashtag antibody oligonucleotide (HTO, Biolegend) which
corresponds to the stimulation condition pool. After staining and washing, all stimuli condition
pools were pooled together at equal ratios. This pool was then stained with live/dead dye
4,6-diamidino-2-phenylindole (DAPI, Biolegend) and dead cells were removed using
fluorescence-activated cell sorting.

Cells were next processed using the 10X Genomics Immune Profiling 5’ high-throughput (HT)
v2 kit, as specified by the manufacturer’s instructions. 1.15x105 cells were loaded into each inlet
of a 10X Chromium X to create Gel Bead-in-emulsions (GEMs). Two 10X HT reactions were
loaded per time point of sample processing (targeted recovery was 40,000 cells per 10X
reaction). Reverse transcription was performed on the emulsion, after which cDNA and CITEseq
supernatant were purified, amplified and used to construct RNA-sequencing and CSP
sequencing libraries, respectively. These RNA and CSP libraries were sequenced at a 5:1 ratio,
respectively, using the Illumina NoveSeq 6000 S4, with 100-bp paired-end reads and all 10X
reactions were mixed at equal ratios and sequenced across two lanes.

Deconvolution of single cells by genotype. Each 10X reaction comprised a mix of cells from
unrelated individuals. Thus, natural genetic variation was used to assign cells to their respective
individuals. First, a list of common exonic variants was compiled from the 1000 Genomes
Project phase 3 exome-sequencing data (MAF> 0.05). Next, cellSNP (v1.2.1) was used to
generate pileups at the genomic location of these variants. These pileups, in combination with
the variants called from genotyping in each individual, were used as an input for Vireo99 (v0.5.7).
If any cell had less than 0.9 posterior probability of belonging to any individual or were of mixed
genotypes they were labelled as ‘unassigned’ and ‘doublets’, respectively, and removed from
downstream analysis.

Data processing and quality controls. Raw scRNA-seq and CITE-seq data were processed
using the Cell Ranger Multi pipeline (v7.0.0, 10x Genomics). In brief, RNA and CSP library
reads were first assigned to cells. RNA reads were then aligned to the GRCh38 human
reference genome and CSP antibody reads were matched to the provided list of known
barcodes. Ensembl version 93 was used as a reference for gene annotation, and gene
expression was quantified using reads assigned to cells and confidently mapped to the genome.
Additionally, Cell Ranger multi was used to deconvolute samples based on HTOs. It uses an
algorithm which employs a latent variable model over a state space composed of each HTO
used in the experiment to assign each cell to a stimulation condition or as a doublet.

Results from RNA and CSP quantification in Cell Ranger were imported into RStudio (v4.3.1)
and analysed using Seurat (v5.0.1). Any cell identified as doublet or unassigned by Vireo and or
antibody hashtag deconvolution method were excluded. 10X reactions were split by time point
and stimuli condition. Cells with 1.5 - 2.5 median absolute deviations below the median of genes
and counts detected were discarded. Additionally, cells with 3 - 4 median absolute deviation
above the median for the percentage of mitochondrial reads detected were discarded. The
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resulting cells were then annotated by Azimuth100 (v0.5.0), using the Azimuth PBMC reference
dataset that was generated as part of the Hao and Hao et al, 2021 paper100.

Pseudobulk and normalisation. Raw counts were pseudobulked by Azimuth annotated level 1
cell types (CD4, CD8, B, Mono, DC, NK, Other and Other T) per donor, per time point and per
stimulation condition, via edgeR101 (v4.0.16). Pseudobulked raw counts were then counts per
million (CPM) normalised and log2 transformed with edgeR.

Data availability
The whole genome sequencing data for the GEUVADIS and MAGE studies was downloaded
from the 1000 Genomes website. The GEUVADIS RNA-seq data was downloaded from the
European Nucleotide Archive (ENA) under accession PRJEB3366. The MAGE RNA-seq data
was downloaded from the ENA (accession PRJNA851328). The genotype and RNA-seq data
from the GENCORD study was downloaded from European Genotype-phenotype Archive
(EGA) under accessions EGAD00001000425 and EGAD00001000428. The microarray gene
expression data from the MRCA and MRCE studies was downloaded from ArrayExpress
(E-MTAB-1425 and E-MTAB-1428) and the genotype data was downloaded from EGA
(EGAS00000000137). The gene expression and genotype data from GTEx and CAP studies
was downloaded from dbGaP (accessions phs000424.v8.p2 and phs000481.v3.p2). The
RNA-seq data from the TwinsUK study was downloaded from EGA (EGAD00001001086) and
genotype data was obtained from TwinsUK
(https://twinsuk.ac.uk/resources-for-researchers/access-our-data/). The informed consent
obtained from ALSPAC participants does not allow the microarray and genotype data to be
made freely available through any third party maintained public repository. However, data used
for this study can be made available on request to the ALSPAC Executive. The ALSPAC data
management plan describes in detail the policy regarding data sharing, which is through a
system of managed open access. Full instructions for applying for data access can be found
here: http://www.bristol.ac.uk/alspac/researchers/access/. The ALSPAC study website contains
details of all the data that are available (http://www.bristol.ac.uk/alspac/researchers/our-data/).
The RNA-seq and genotype data from the CoLaus cohort can be accessed by directly
contacting the cohort (https://www.colaus-psycolaus.ch/professionals/how-to-collaborate/). The
MetaLCL full trans-eQTL meta-analysis summary statistics are available from the eQTL
Catalogue FTP server (https://www.ebi.ac.uk/eqtl/Data_access/) and additional documentation
is available on the project website (https://github.com/AlasooLab/MetaLCL).

URLs
MetaLCL website: https://github.com/AlasooLab/MetaLCL
MetaLCL trans-eQTL analysis workflow: https://github.com/freimannk/regenie_analysis
MetaLCL meta-analysis workflow: https://github.com/freimannk/regenie_metaanalyse
eQTL Catalogue website: https://www.ebi.ac.uk/eqtl/Data_access/
eQTL Catalogue genotype imputation workflow: https://github.com/eQTL-Catalogue/genimpute
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eQTL Catalogue RNA-seq processing workflow: https://github.com/eQTL-Catalogue/rnaseq
eQTL Catalogue data normalisation workflow: https://github.com/eQTL-Catalogue/qcnorm
eQTLGen analysis cookbook:
https://eqtlgen.github.io/eqtlgen-web-site/eQTLGen-p2-cookbook.html
eQTLGen data QC workflow: https://github.com/eQTLGen/DataQC
eQTLGen genotype conversion workflow: https://github.com/eQTLGen/ConvertVcf2Hdf5
eQTLGen per-cohort analysis workflow:
https://github.com/eQTLGen/PerCohortDataPreparations
eQTLGen meta-analysis workflow: https://github.com/eQTLGen/MetaAnalysis
eQTLGen genotype imputation workflow: https://github.com/eQTLGen/eQTLGenImpute
QCTOOL: https://www.chg.ox.ac.uk/~gav/qctool_v2/
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Supplementary Note
MYBL2 regulates the expression of many cell cycle genes
At the MYBL2 locus, the lead variant chr20_43721344_C_T was associated with the expression
of 151 target genes at FDR 5% (Figure S8). The target genes were strongly enriched for the
Gene Ontology mitotic cell cycle term (GO:0000278, p=2.607×10-51) and the Reactome mitotic
cell cycle pathway (R-HSA-69278, p=1.216×10-35). Interestingly, 125/151 genes (82%) had
lower expression in carriers of the alternative T allele (Figure S8). The T allele of
chr20_43721344_C_T was also strongly associated (p =8.83x10-218) with the decreased
expression of the MYBL2 transcription factor gene in cis (Figure S8). Since both the MYBL2
transcription factor located in cis and majority of the trans-genes had lower expression in the
carriers of the T allele, we hypothesised that MYBL2 might directly regulate these target genes.
To test this, we download ChIP-seq data for the MYBL2 transcription factor in the human K562
myelogenous leukemia cell line from the ENCODE project (ENCSR162IEM). We then asked
how many of the up- and downregulated genes had a MYBL2 ChIP-seq peak within +/- 2kb from
the annotated promoter of the gene. We found that 99/125 (78.4%) downregulated genes had a
MYBL2 peak in their promoter region (Figure S9). In contrast, only 1/26 upregulated genes had
a MYBL2 peak in their promoter region. As a negative control, we looked at the 404 5% FDR
target genes of the SP140 locus (Table S2) and found that only 23/404 (5.6%) of the target
genes had a MYBL2 peak in their promoter region (Figure S9).

To further understand which cell cycle stage these MYBL2 target genes might be involved in, we
obtained the list of genes specific to G2M and S phases of the cell cycle from Tirosh et al.
2015102 using Seurat R package103. We found that 33/125 genes downregulated by the
trans-eQTL variant were markers of the G2M phase which was significantly more than expected
(p = 1.23x10-53). In contrast, only 1/125 downregulated genes overlapped with markers of the S
phase (p = 0.36). Of note, 2/26 upregulated genes overlapped S-phase markers (p = 0.004) and
none of the upregulated genes overlapped G2M-phase markers.

Altogether, this evidence strongly suggests that MYBL2 directly regulates the expression of
G2M genes in trans by binding to their promoter sequences and is directly involved in the
regulation of the expression of these target genes.
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Table S1. Overview of the LCL eQTL discovery cohorts. The cohorts included in the analysis
used a mixture of RNA-seq and microarray technologies and three cohorts (TwinsUK, MRCE
and MRCA) contained related samples.
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Cohort Sample

size

Expression data Genotype data Relatedness

ALSPAC31,73,74 877 microarray imputed (1000G 30x on

GRCh38)

unrelated

TwinsUK75 735 RNA-seq imputed (1000G 30x on

GRCh38)

twins

CoLaus76,77 553 RNA-seq imputed (TOPMed) unrelated

GEUVADIS78 358 RNA-seq WGS (1000G 30x on GRCh38) unrelated

Liang_2013

(MRCE)79
484 microarray imputed (1000G 30x on

GRCh38)

siblings

Liang_2013

(MRCA)79
327 microarray imputed (1000G 30x on

GRCh38)

siblings

GENCORD80 187 RNA-seq imputed (1000G 30x on

GRCh38)

unrelated

GTEx17 113 RNA-seq WGS (GRCh38) unrelated

CAP81 100 RNA-seq imputed (1000G 30x on

GRCh38)

unrelated

MAGE30

(replication)

682 RNA-seq WGS (GRCh38) unrelated,

diverse

ancestries
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Figure S1. Overview of trans-eQTL analysis at the relaxed p < 5x10⁻⁸ threshold. The upper
scatter plot shows the number of trans associations detected at each trans-eQTL locus with
p-values < 5x10⁻⁸. Six largest trans-eQTL loci have been labelled with the name of the closest
cis gene. The lower scatter plot shows all significant loci for each tested gene at the p < 5x10⁻⁸

threshold. Cis associations are located on the diagonal while putative trans associations are
located off diagonal.
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Figure S2. Forest plots showing cohort-specific effect size for the four trans-eQTL loci
that replicated in the MAGE cohort. The points represent the trans-eQTL effect size estimates
from regenie and the error bars represent 95% confidence intervals.
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Figure S3. Forest plots showing cohort-specific effect size for the remaining trans-eQTL
loci that either did not replicate in the MAGE cohort or corresponded to likely
cross-mappability artefacts (SENP7, ZNF781 and ZBTB10 loci). The points represent the
trans-eQTL effect size estimates from regenie and the error bars represent 95% confidence
intervals.
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Figure S4. Original regional association plot for the USP18 SLE GWAS locus from Yin et
al. 2020 study and the summary statistics imputed with POEMColoc for the same locus.
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Figure S5. Category III: other interferon alpha/beta signalling pathway genes that do not
belong to categories I or II (shown in Figure 3). The increased gene expression is marked in
red, while reduced gene expression is marked in blue. The visualisation illustrates the effect on
USP18 targets in relation to the risk allele. DE - differential gene expression in SLE cases
versus controls42; GWAS - GWAS hits for SLE33, ChEMBL, phase III - SLE phase III clinical trials
from ChEMBL50, PID - genes causing primary immunodeficiency from Genomics England.
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Figure S6. Fine-mapped splicing QTL (sQTL) in the OAS1 gene. (A) RNA-seq read
coverage of the OAS1 gene in the GEUVADIS LCL dataset, stratified by the genotype of the
fine-mapped sQTL variant chr12_112919388_G_A (posterior inclusion probability = 1). (B)
Exon-level effect sizes for the sQTL lead variant. (C) Boxplot of the absolute expression of the
short last intron of the OAS1 gene (highlighted on panel A) stratified by the genotype of the lead
sQTL variant. Interactive version of the plot can be viewed here.
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Figure S7. Expression level of USP18 in resting and stimulated B-cell subset of
peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from healthy donors and
stimulated with interferon-alpha (IFNa) or R848 for 16, 40 and 64 hours.
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Figure S8. MYBL2 regulates the expression of many cell cycle genes. The scatter plot
shows all genes associated with the MYBL2 trans-eQTL lead variant (chr20_43721344_C_T).
Light blue points show significantly associated genes (variant-level Benjamini-Hochberg FDR
5%)
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Figure S9. Overlap between trans-eQTL target genes and MYBL2 ChIP-seq peaks. The top
panel shows the proportion of the MYBL2 trans-eQTL target genes upregulated (left) or
downregulated (right) by the effect allele that contain a MYBL2 ChIP-seq peak within +/- 2kb
from the annotated promoter. The bottom panel shows the proportion of the SP140 trans-eQTL
target genes upregulated (left) or downregulated (right) by the effect allele that contain a MYBL2
ChIP-seq peak within +/- 2kb from the annotated promoter. Only genes downregulated by the
MYBL2 effect allele show a sizable overlap with MYBL2 ChIP-seq peaks.
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