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Abstract 

Background: The occurrence of post-traumatic stress disorder (PTSD) following a traumatic 

event is associated with biological differences that can represent the susceptibility to PTSD, the 

impact of trauma, or the sequelae of PTSD itself. These effects include differences in DNA 

methylation (DNAm), an important form of epigenetic gene regulation, at multiple CpG loci 

across the genome. Moreover, these effects can be shared or specific to both central and 

peripheral tissues. Here, we aim to identify blood DNAm differences associated with PTSD and 

characterize the underlying biological mechanisms by examining the extent to which they mirror 

associations across multiple brain regions. 

Methods: As the Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup, we 

conducted the largest cross-sectional meta-analysis of epigenome-wide association studies 

(EWASs) of PTSD to date, involving 5077 participants (2156 PTSD cases and 2921 trauma-

exposed controls) from 23 civilian and military studies. PTSD diagnosis assessments were 

harmonized following the standardized guidelines established by the PGC-PTSD Workgroup. 

DNAm was assayed from blood using either Illumina HumanMethylation450 or MethylationEPIC 

(850K) BeadChips. A common QC pipeline was applied. Within each cohort, DNA methylation 

was regressed on PTSD, sex (if applicable), age, blood cell proportions, and ancestry. An inverse 

variance-weighted meta-analysis was performed. We conducted replication analyses in tissue 

from multiple brain regions, neuronal nuclei, and a cellular model of prolonged stress. 

Results: We identified 11 CpG sites associated with PTSD in the overall meta-analysis (1.44e-09 

< p < 5.30e-08), as well as 14 associated in analyses of specific strata (military vs civilian cohort, 

sex, and ancestry), including CpGs in AHRR and CDC42BPB. Many of these loci exhibit blood-
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brain correlation in methylation levels and cross-tissue associations with PTSD in multiple brain 

regions. Methylation at most CpGs correlated with their annotated gene expression levels. 

Conclusions: This study identifies 11 PTSD-associated CpGs, also leverages data from 

postmortem brain samples, GWAS, and genome-wide expression data to interpret the biology 

underlying these associations and prioritize genes whose regulation differs in those with PTSD.   

 

Keywords: PTSD, trauma, DNA methylation, postmortem brain, GWAS, gene expression  
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Introduction 

Posttraumatic stress disorder (PTSD) is a serious psychiatric disorder characterized by 

intrusive memories of the traumatic event(s), avoidance of or numbing to situations that trigger 

those memories, and hyperarousal symptoms that can disturb mental and physical health (1). 

These symptoms are associated with lower levels of self-care, lower compliance with medical 

treatment, and higher rates of substance use (2, 3). Thus, it is not surprising that PTSD increases 

the risk for chronic medical conditions, such as cardiovascular disorders, independent of 

lifestyle factors (e.g., substance use and sleep quality)(4, 5). Although most individuals 

experience at least one traumatic event, only a small fraction develop PTSD(6). Genetic and 

environmental factors contribute to this differential susceptibility in PTSD development upon 

trauma exposure (7, 8). 

Genome-wide association studies (GWAS) of PTSD demonstrated remarkable success at 

identifying relevant genes, many of which are involved in the stress response or immune 

function (see reviews(9, 10)). The recent Psychiatric Genomics Consortium PTSD Workgroup 

(PGC-PTSD) Freeze 3 GWAS identified 95 genomic loci associated with PTSD, implicating genes 

involved in stress, immune, fear, and threat-related processes (11). Nonetheless, genetic 

differences do not fully account for an individual's susceptibility to PTSD. Trauma exposure has 

been shown to alter epigenetic patterns in both animal and human studies, prompting the need 

to conduct epigenetic studies of PTSD in addition to genetic studies (12, 13). Epigenetic 

mechanisms are chemical modifications that can dictate the timing and magnitude of gene 

expression without altering the DNA sequence (14). The most widely studied epigenetic 

mechanism is DNA methylation (DNAm), which is defined as the addition of a methyl group to 
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cytosine bases, particularly at cytosine-guanine dinucleotides (CpG sites). DNAm patterns 

respond to changes in the environment, are potentially reversible, and can be targeted for 

disease therapies (15, 16). Environmental influences on DNAm are apparent across the life span 

and may provide insight into the biological response to trauma(17). 

Which specific DNAm sites differ across individuals and how they correlate with 

exposures and gene expression can vary across tissues (18). DNAm in human brain tissue, which 

is most relevant to the study of psychiatric disorders, is not easily accessible in living patients 

and hence is not a viable PTSD biomarker for clinical use. However, correlation has been 

observed between peripheral tissues (e.g., blood)  and brain DNAm levels at specific genomic 

loci, and hence blood DNAm can potentially serve as a robust biomarker for implementing early 

intervention and developing improved preventative or therapeutic strategies for PTSD (19, 20). 

Moreover, PTSD symptoms have been linked to the components of the peripheral immune 

system (21, 22) that can be readily assessed in blood DNAm. Multiple peripheral epigenome-

wide association studies (EWASs) of PTSD identified CpGs in genes related to the immune 

system and neurotransmission(23-28). While prior EWASs of PTSD have reported promising 

results, the small sample sizes and variability of analysis methods across studies make it difficult 

to combine and interpret the findings effectively. Recent meta-analyses led by the PGC-PTSD 

Epigenetics Workgroup minimized these issues by increasing sample size, increasing sample 

diversity, and using a common quality control and analysis pipeline(29-33). These meta-analyses 

identified multiple new loci associated with PTSD, including NRG1, AHRR, MAD1L1, and TBXAS1, 

implicating immune dysregulation in those with PTSD (30-33).  
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Building on the prior work by Smith et al. (31), which conducted an EWAS meta-analysis 

in 1896 participants from 10 cohorts, this study includes 13 additional cohorts with a denser 

and more comprehensive DNAm array, bringing the sample up to 5077 participants from 23 

civilian and military cohorts. Our current investigation replicated the findings of the initial PGC-

PTSD epigenome-wide meta-analysis, reporting lower AHRR methylation in those with PTSD, 

and identified 8 new (11 total) PTSD-associated loci. We also leveraged data from postmortem 

brain samples, a cellular model of prolonged stress, GWAS, and genome-wide gene expression 

studies to interpret the biology underlying these associations and prioritize genes whose 

regulation differs in those with PTSD.   

 

Methods 

Cohorts and post-traumatic stress disorder assessments 

The study includes 2156 current PTSD cases and 2921 trauma-exposed controls from 9 

civilian cohorts: BEAR, DNHS, DCHS, GTP, NIU, Shared Roots, AURORA, H3A_Rwanda, WTC; and 

9 military cohorts: GMRFQUT, MRS, PRISMO, Army STARRS, PROGrESS, NCPTSD/TRACTS, 

INTRuST, and VA cohorts (VA-M-AA & VA-M-EA). For DNHS, GTP, MRS, PRISMO, and Army 

STARRS, two different datasets were available based on the DNAm array. Two different datasets 

for these five cohorts did not have any overlapping samples and were treated as independent 

studies. Sample characteristics for the 23 studies that participated in the meta-analysis are 

summarized in Table 1.  

The sample is heterogeneous in terms of sex (41% female), ancestry (46% European, 

43% African, and 11% of other ancestries), and cohort type (56% military cohort). Civilian 
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cohorts skew towards being more female (67%) and African (70%), whereas military cohorts are 

predominantly male (80%) and European (64%).  

All participants were exposed to a traumatic event and 42% met the criteria for current 

PTSD. The current PTSD diagnosis was assessed by each study following the standardized 

guidelines established by the PGC-PTSD Workgroup (7). Briefly, current PTSD diagnosis was 

determined based on the specific criteria set by the principal investigator of each study. All 

control subjects had experienced trauma. Subjects without a current PTSD but with a prior 

history of PTSD (i.e., remitted PTSD), were excluded. Detailed descriptions of cohorts and PTSD 

assessments are provided in the Supplement. All participants in these studies gave informed 

consent. The institutional review boards of each respective institution approved these studies. 

 

DNA methylation  

Whole blood DNAm was measured using the Illumina MethylationEPIC BeadChip in 14 

studies, and the HumanMethylation450 BeadChip in 9 studies (Table 1). All studies used a 

standardized consortium-developed quality control (QC) pipeline that differed somewhat 

depending on which chip was used. The 450K array pipeline (29, 31) is described in eMethods in 

the Supplement. 

The EPIC pipeline (available at https://github.com/PGC-PTSD-EWAS/EPIC_QC) was 

similar to the 450K array pipeline. Samples with probe detection call rates lower than 90% and 

average intensity values that were either less than 50% of the overall sample mean or below 

2000 arbitrary units (AU) were excluded. Probes with detection p-values > 0.01 were considered 

low quality and treated as missing. Probes that were missing in > 10% of the samples within the 
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studies and were cross-hybridizing were removed (34). Data was normalized using single-sample 

Noob (ssNoob) implemented in R package minfi (35). ComBat was used to account for batch 

effects of chip and position while preserving PTSD, age, and sex effects (if applicable) (36). 

Blood-cell composition (i.e., the proportion of CD8+T, CD4+T, natural killer (NK), B cells, 

monocytes, and neutrophils) was estimated using the Robust Partial Correlation (RPC) method 

in Epidish (37) with a reference data specific to EPIC array (38). For studies without genome-

wide genotype data (DNHS, NIU, Shared Roots, AURORA, H3A_Rwanda, GMRFQUT, PROGrESS), 

we estimated ancestry principal components (PCs) from DNAm data, using the method 

developed by Barfield et al. (39), as previously described (33). PCs 2 and 3, which were the 

components that correlate most with self-reported ancestry, were included as covariates (33, 

39). In cohorts with available genome-wide genotype data, PCs 1-3 from GWAS were used to 

adjust for ancestry. We used R package bacon to control inflation, only if doing so results in the 

lambda being closer to 1 (40). To predict smoking status, a DNAm-based smoking score was 

calculated, as previously described (27) for cohorts with EPIC array data. A detailed description 

of DNAm-based ancestry PCs and smoking score calculation is provided in eMethods in the 

Supplement.    

 

Epigenome-wide association analysis 

The association between PTSD and DNAm was tested using multivariable linear 

regression models within cohorts with balanced plate designs. For studies in which plate layouts 

were not balanced (Shared Roots, H3A_Rwanda, GMRFQUT), we conducted mixed-effect 

regression models, including chip as a random effect term. R package CpGassoc was used to fit 
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the models (41). The models were adjusted for age, sex (if applicable), blood cell composition 

(i.e., CD8T, CD4T, NK, B cell, and monocyte cell proportions), and ancestry PCs. A post-hoc 

sensitivity analysis was performed by including a covariate for smoking: DNAm-based smoking 

score in studies with EPIC data and current smoking status for studies with 450K data. 

Furthermore, we conducted stratified analyses for both sexes, ancestry (European and African 

ancestry), and cohort type (civilian and military cohorts). 

To combine results across studies, we performed inverse-variance weighting (IVW) meta-

analysis in meta (42). Meta-analysis tested 411,786 CpGs common to 450K and EPIC arrays (23 

studies), and 404,794 EPIC array specific CpGs (14 studies). Epigenome-wide significance 

threshold recommended for the MethylationEPIC BeadChip (p < 9.0E-08) was used to determine 

statistical significance (43). Gene Ontology (GO) enrichment analyses were conducted using the 

top 1000 CpGs in missMethyl (44). An FDR threshold of 5% was used to identify significant GO 

terms. 

 

Cross-tissue association analyses 

Blood – Brain Correlations.  The Blood Brain DNA Methylation Comparison Tool (19) was 

used to assess the correlations between methylation in blood and prefrontal cortex (PFC), 

entorhinal cortex (EC), superior temporal gyrus (STG), and cerebellum. 

Postmortem brain DNAm.  DNAm measured from post-mortem brains was obtained 

from two studies, each of which examined a unique but not necessarily distinct set of brain 

regions and cohorts: the National Center for PTSD Brain Bank cohort (NCPTSD-BB (45)) and the 

PsychENCODE Consortium for PTSD (PEC-PTSD) Brainomics cohort (46) (see eMethods in the 
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Supplement for details), both of which were sourced from the Lieber Institute for Brain 

Development.  

Methylation at PTSD-associated CpGs from the EWAS was tested for association with 

PTSD in DNA extracted from postmortem dorsolateral prefrontal cortex (dlPFC, BA9/46), 

ventromedial prefrontal cortex (vmPFC, BA12/32), amygdala, and dentate gyrus (DG). DNAm in 

the post-mortem tissue was measured using the EPIC array. We examined the associations with 

PTSD in dlPFC and vmPFC of 42 PTSD cases and 30 controls from the NCPTSD-BB. The 

associations between DNAm and PTSD in amygdala and DG were tested in 77 PTSD cases and 77 

controls from the PEC-PTSD. 

Neuronal nuclei.  We examined cross-tissue association from neuronal nuclei isolation 

from the orbitofrontal cortex (OFC) of 25 PTSD cases and 13 healthy controls collected at the 

VA’s NCPTSD-BB (47). Fluorescence-Activated Nuclei Sorting (FANS) protocol was employed to 

isolate NeuN+ cells and the nuclei underwent reduced representation oxidative bisulfite-

sequencing (RRoxBS), as previously described (48). We examined whether there was differential 

methylation and hydroxymethylation within 500 bp of CpGs from the epigenome-wide 

association analyses. Eight CpG sites match between the EPIC array and RRoxBS, two evaluating 

the same position (cg21566642 and cg25691167), and six within 500 bp (cg05575921, 

cg15148933, cg19558029, cg21161138, cg23576855, and cg26599989). 

Cellular model of prolonged stress.  We explored the associations between each of the 

PTSD-associated CpGs resulting from epigenome-wide association analyses and a cellular model 

of prolonged stress in which fibroblasts were subjected to physiological stress hormone 

(cortisol) levels for a prolonged period (51 days) as previously described (49, 50).  
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Gene Regulation   

Correlations between PTSD-associated CpG sites’ DNAm levels and expression levels of 

the corresponding gene (as determined by the EPIC array annotation) were tested in whole-

blood RNA-sequencing (RNA-seq) data from participants in the BEAR (n=127), AURORA (n=173), 

NCPTSD Merit (n=204), and MRS cohorts (n=128 with multiple visits totaling 357 samples). The 

results were meta-analyzed using the IVW method using a Bonferroni correction for the number 

of CpGs examined. Detailed information about cohort-specific RNA-seq data generation is 

described in eMethods in the Supplement.  

 

Genetic effects 

To evaluate the effect of nearby (<1 MB) polymorphisms on DNAm levels of CpGs 

associated with PTSD, we used cis-methylation quantitative trait locus (cis-meQTL) data from 

GoDMC(51) and meQTL EPIC(52) databases. For both databases, their default multiple testing 

adjustment was utilized: an FDR threshold of 5% in meQTL EPIC and p < 1e-08 in GoDMC. We 

checked the associations between the identified cis-SNPs and PTSD in the recent Freeze 3 GWAS 

from PGC-PTSD(11). Finally, we evaluated genetic associations between the genes with PTSD-

associated DNAm changes and PTSD, using the gene-based test results from the recent PGC-

PTSD Freeze 3 GWAS(11) using a Bonferroni correction for the 11 genes examined.  
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Results 

Epigenome-wide association meta-analysis 

We identified 11 PTSD-associated CpGs that passed the epigenome-wide significance 

threshold (p < 9e-08, Table 2, Figure 1, eFigure 1 in the Supplement). All CpG sites, except one 

site (cg21161138) near AHRR, remained nominally significant (1.52e-03 < p < 2.10e-07) with the 

same direction of association in the sensitivity analysis adjusted for smoking score (eTable 1 and 

eFigure 1 in the Supplement).  

 

Stratified analyses for sex, ancestry, and cohort type 

The directions of associations of the 11 significant CpGs were consistent at nominal 

significance (p < 0.05) when stratified by both sex, cohort type (civilian and military), and 

European ancestry. However, in the African ancestry stratified analysis, only 8 CpGs remained 

associated (p < 0.05) with PTSD (eTable 2 in the Supplement). We identified 1 epigenome-wide 

significant CpG site associated with PTSD in the female-stratified analysis, 1 in the male-

stratified analysis, 5 in European ancestry-stratified analysis, 1 in the African ancestry-stratified 

analysis, 1 in the analysis for civilian-cohort analysis, and 5 in the military-cohort analysis (Table 

3, eFigures 2-8 in the Supplement). Of note, some CpGs identified in the stratified analyses were 

specific to their stratum and were not associated with PTSD (p > 0.05) in the other stratum. For 

instance, cg25691167 in FERD3L was associated with PTSD in females (p = 4.24E-08), but not in 

males (p = 0.56) or the primarily male military cohorts (p = 0.13).  
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Gene enrichment analysis 

We identified 3 GO term enrichments in the female-stratified analysis (FDR < 0.05), 

including nervous system development (eTable 3 in the Supplement). We did not identify any 

significant enrichments in the main analysis or other strata. 

 

Cross-tissue associations 

Of the 19 significant CpGs from the primary and stratified analyses, 3 were not available 

in the Blood Brain DNA Methylation Comparison Tool database. Methylation at 9 of the 

remaining 16 CpGs was correlated between blood and at least one brain region (Figure 2, 

eTable4 in the Supplement). The strongest correlation was observed between the blood and 

PFC (r = 0.91) for cg23576855 (AHRR).  

We next evaluated whether the PTSD-associated CpGs from blood were also associated 

with PTSD in the brain regions of dlPFC, vmPFC, amygdala, and DG, as well as neuronal nuclei. 

Out of 19 CpGs from the primary and stratified analyses in bulk tissue, 9 were nominally 

associated with PTSD in at least one brain region or the neuronal nuclei (p < 0.05, Figure 2, 

eTables 5 and 6 in the Supplement). For instance, PTSD cases had higher cg04987734 

(CDC42BPB) methylation both in the blood (p = 3.26e-8) and the dlPFC (p = 3.9e-3). In addition, 

7 CpGs exhibited nominally significant methylation changes (5 CpGs with the same direction of 

association) in fibroblasts when subjected to physiological stress hormone levels in a  cellular 

model of prolonged stress (0.024 < DNAm < 0.225, p < 0.05, Figure 2, eTable 7 in the 

Supplement)(49). Notably, the CpG sites (cg21161138 [AHRR], cg25320328 [GFI], cg19719391 
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[intergenic], cg25691167 [FERD3L]) that were consistently associated with PTSD in blood and 

postmortem brain also demonstrated a significant change in this cell model. 

 

Gene Regulation 

Of the 11 PTSD-associated CpGs annotated to a gene, 10 correlated with their gene 

expression in at least one of the 4 RNA-seq cohorts (Figure 2, eTable 8 in the Supplement). 

Meta-analysis across cohorts identified 4 CpGs whose methylation levels were negatively 

correlated with their annotated gene expression after multiple test corrections: cg05575921, 

cg21161138, and cg23576855 with AHRR, and cg27541344 with BCL11B (p < 4.5e-03, -16.69  z 

 -4.86 eTable 8 in the Supplement).  

 

Genetic regulation of PTSD-associated CpGs  

Of the 19 CpGs from the primary and stratified analyses, 12 CpGs were associated with 

at least one nearby SNP within 1 MB according to GoDMC(51) and meQTL EPIC(53) databases 

(eTable 9 in the Supplement). In total, we identified 41 lead meQTLs, of which 8 were nominally 

associated with PTSD (p < 0.05, albeit in the opposite direction) in the PGC-PTSD Freeze 3 

GWAS(11) (eTable 9 in the Supplement). For instance, lower methylation at the intergenic 

cg14753356 site is associated with PTSD (z = -5.72, p = 1.09E-08, Table 2) and higher 

methylation at cg14753356 is associated with rs28986310 T allele (beta = 0.31, p < 5e-324), 

which increases the risk of PTSD (z = 6.73, p = 1.68e-11, eTable 9 in the Supplement).  

In addition, of the 11 genes harboring PTSD-associated CpGs, AHRR, CDC42BPB, and 

BCL11B were implicated in the recent PGC-PTSD gene-based analysis (3.48e-03 < p < 5.40e-05, 
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eTable 10 in the Supplement). All genes are still significant after Bonferroni correction for 11 

tests (p < 4.5e-03). 

 

Discussion 

In the present epigenome-wide meta-analysis of blood DNAm levels, we identified 11 

CpG sites associated with PTSD. Many of these are also associated with PTSD in multiple brain 

regions and a cellular model of prolonged stress exposure (49). Many of the PTSD-associated 

CpGs were associated with the expression of their respective genes. An examination of the most 

recent PGC-PTSD GWAS (11) indicated that many SNPs near significant CpGs were associated 

with both DNAm levels and PTSD diagnosis. Moreover, many of the EWAS-implicated genes 

were significant in gene-based tests from the GWAS. Thus, the GWAS results represent further 

evidence supporting the role of these genes in PTSD pathogenesis. However, the lower 

significance of the SNPs in association with PTSD relative to the corresponding CpGs (eTable 10 

in the Supplement) indicates that the association between PTSD and the CpGs is likely not 

simply a byproduct of PTSD-associated SNPs. 

Our CDC42BPB (CDC42 binding protein kinase beta) findings are of particular interest. 

CDC42BPB is involved in the regulation of cytoskeletal rearrangement, cell migration, and 

neurodevelopment(54). In the current study, increased CDC42BPB methylation at cg04987734 

was associated with PTSD in blood and the dlPFC. Methylation at this site was also positively 

correlated with CDC42BPB expression in blood. Notably, higher methylation at cg04987734 has 

been associated with depressive symptoms (55) and increased C-reactive protein (CRP) levels 

(56, 57), which is perhaps not surprising given the bi-directional genetic association between 
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PTSD and CRP levels (58). Multiple studies reported increased CRP levels and other 

inflammatory markers in those with PTSD, suggesting inflammation as an important component 

of PTSD (59-61). Future studies are warranted to investigate CDC42BPB methylation as a 

potential mediator of the relationship between PTSD and inflammation. 

We observed 3 CpGs (cg05575921, cg21161138, and cg23576855) in AHRR (aryl-

hydrocarbon receptor repressor) that were identified in the initial PGC-PTSD EWAS (31) and an 

independent study of US veterans (45). The aryl hydrocarbon receptor (AhR) plays a role in 

immunomodulation, including the regulation of T lymphocytes, B cell maturation, and the 

activity of macrophages, dendritic cells, and neutrophils (62), supporting the link between the 

immune system and PTSD. Although methylation at the AHRR CpGs is known to be influenced 

by smoking (63), cg05575921 and cg23576855 remained nominally significant (p = 1.52E-03 and 

p = 7.59E-04, respectively) in our sensitivity analysis adjusting for DNAm-based smoking scores. 

Notably, cg21161138 DNAm was also associated with PTSD in postmortem dlPFC and neuronal 

nuclei and demonstrated a significant change in the cellular model of prolonged stress (49), 

supporting the notion that there is an association between methylation at this locus and PTSD 

which is independent of the effects of smoking.  

The stratified analyses identified DNAm-PTSD associations specific to sex, ancestry, and 

cohort type. The PTSD-associated site cg25691167 (FERD3L) in females (p = 4.24e-08) was not 

associated with PTSD in males (p = 0.57), suggesting that DNAm changes in cg25691167 might 

be sex-specific. Similarly, cg27541344 (BCL11B) was associated with PTSD in the civilian (p = 

7.21e-08), but not the military cohorts (p = 0.38), whereas 3 out of 5 PTSD-associated CpGs in 

the military cohorts were not significant in the civilian cohorts (p > 0.05). We speculate that 
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some of these DNAm changes specific to sex, ancestry, or cohort type might be due to unique 

characteristics of those strata, such as hormonal factors and environmental exposures.   

 

Strengths and Limitations 

To our knowledge, this is the largest EWAS of PTSD to date. Our sample is diverse in 

terms of sex, ancestry, and cohort type. We leveraged data from postmortem brain samples, a 

cellular model of prolonged stress, GWAS, and genome-wide expression data to support our 

findings. 

However, the study is not without limitations. First, methylation BeadChips only assess a 

subset of CpG sites in the genome; therefore, we may not capture all PTSD-associated CpG sites. 

Second, this is a cross-sectional study of participants with prior exposure to a traumatic event; 

thus, we were not able to assess whether the differences in DNAm between individuals with 

and without PTSD are a cause or consequence of PTSD or both. Third, our primary meta-analysis 

was performed using measures of blood DNAm. While this strategy provided valuable insights 

for future research on biomarkers of PTSD, it might not accurately represent the DNAm patterns 

within other tissues that are likely the most relevant to PTSD. However, the majority of the 

PTSD-associated CpG sites’ methylation levels were correlated between blood and at least one 

brain region. In addition, most PTSD-associated CpGs in blood were also associated with PTSD in 

one or more brain regions. Fourth, we used bulk tissue and adjusted for cellular heterogeneity, 

which might have obscured some signals, given the alterations in cell composition in those with 

PTSD(64, 65). Additionally, the brain regions examined varied between the online databases 

used to examine the blood-brain correlation of methylation values and the gene expression 
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differences associated with PTSD, which can complicate interpretation. Finally, most cohorts 

that participated in the meta-analysis did not have detailed physical or psychiatric information 

on participants, including detailed information on trauma type and timing, PTSD symptom 

course, and treatment, making it challenging to evaluate and adjust for potential confounders, 

including substance use, comorbidities, or medication use.  

 

Conclusions 

Taken together, this study replicates our previous findings and identifies novel PTSD-

associated CpGs. Supporting data from multiple sources suggest that epigenetic mechanisms, 

particularly methylation in AHRR and CDC42BPB, may contribute to the complex relationship 

between the immune system and PTSD. 

 

List of abbreviations 

CpG  Cytosine-guanine dinucleotides  

DG  Dentate gyrus  
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OFC  Orbitofrontal cortex  

PC  Principal component 

PGC-PTSD Psychiatric Genomics Consortium PTSD Workgroup  

PTSD  Posttraumatic stress disorder  

RPC  Robust Partial Correlation  

RRoxBS Reduced representation oxidative bisulfite-sequencing  

vmPFC  Ventromedial prefrontal cortex 
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Table 1. Overview of the studies 

Cohort Array N Cases 
N (%) 

Controls 
N (%) 

Female  
N (%) 

European 
N (%) 

African 
N (%) 

Age 
mean (SD) 

Civilian 

BEAR EPIC 162 36 (22%) 126 (78%) 119 (73%) 112 (69%) 3 (2%) 15.16 (1.45) 

DNHS-1 EPIC 423 26 (6%) 397 (94%) 255 (60%) 23 (5%) 384 (91%) 54.54 (16.87) 

DCHS EPIC 95 46 (48%) 49 (52%) 95 (100%) 0 (0%) 54 (57%) 26.81 (5.2) 

GTP-1 EPIC 479 158 (33%) 321 (67%) 340 (71%) 12 (3%) 448 (94%) 42.22 (12.25) 

NIU EPIC 140 18 (13%) 122 (87%) 140 (100%) 110 (79%) 19 (14%) 26.01 (1.74) 

Shared Roots EPIC 120 61 (51%) 59 (49%) 85 (71%) 0 (0%) 120 (100%) 43.15 (10.77) 

AURORA EPIC 206 57 (28%) 149 (72%) 154 (75%) 67 (33%) 131 (64%) 39.24 (14.17) 

H3A_Rwanda EPIC 73 32 (44%) 41 (56%) 73 (100%) 0 (0%) 73 (100%) 45.54 (7.29) 

DNHS-2 450K 100 40 (40%) 60 (60%) 60 (60%) 13 (13%) 87 (87%) 53.6 (14.01) 

GTP-2 450K 265 74 (28%) 191 (72%) 187 (71%) 16 (6%) 249 (94%) 41.95 (12.37) 

WTC 450K 180 84 (47%) 96 (53%) 0 (0%) 138 (77%) 7 (4%) 49.72 (8.25) 

Civilian Total 2243 632 (28%) 1611 (72%) 1508 (67%) 491 (22%) 1575 (70%) 41.89 (16.27) 

Military 
  

  
    

GMRFQUT EPIC 96 48 (50%) 48 (50%) 0 (0%) 96 (100%) 0 (0%) 68.67 (4.36) 

MRS-1 EPIC 127 64 (50%) 63 (50%) 0 (0%) 88 (69%) 5 (4%) 23.07 (2.18) 

PRISMO-1 EPIC 89 24 (27%) 65 (73%) 9 (10%) 74 (83%) 3 (3%) 27.51 (8.63) 

Army STARRS-1 EPIC 216 106 (49%) 110 (51%) 0 (0%) 149 (69%) 22 (10%) 25.13 (4.82) 

PROGrESS EPIC 140 112 (80%) 28 (20%) 14 (10%) 89 (64%) 40 (29%) 34.77 (8.33) 

NCPTSD/TRACTS EPIC 1028 638 (62%) 390 (38%) 231 (22%) 706 (69%) 123 (12%) 44.06 (13.7) 

MRS-2 450K 126 63 (50%) 63 (50%) 0 (0%) 72 (57%) 10 (8%) 22.2 (3.04) 

PRISMO-2 450K 62 32 (52%) 30 (48%) 0 (0%) 62 (100%) 0 (0%) 27.1 (9.23) 

Army STARRS-2 450K 102 51 (50%) 51 (50%) 0 (0%) 102 (100%) 0 (0%) 23.79 (4.25) 

INTRuST 450K 303 116 (38%) 187 (62%) 102 (34%) 206 (68%) 58 (19%) 34.09 (11.68) 

VA-M-AA 450K 369 183 (50%) 186 (50%) 184 (50%) 0 (0%) 369 (100%) 38.36 (9.36) 

VA-M-EA 450K 176 87 (49%) 89 (51%) 38 (22%) 176 (100%) 0 (0%) 34.87 (9.89) 

Military Total 2834 1524 (54%) 1310 (46%) 578 (20%) 1820 (64%) 630 (22%) 37.08 (14.33) 

TOTAL 
 

5077 2156 (42%) 2921 (58%) 2086 (41%) 2311 (46%) 2205 (43%) 39.2 (15.4) 

Participating civilian cohorts: Biomarkers, social, and affective predictors of suicidal thoughts 
and behaviors in adolescents (BEAR), Detroit Neighborhood Health Study (DNHS), Drakenstein 
Child Health Study (DCHS), Grady Trauma Project (GTP), Northern Illinois University Trauma 
Study (NIU), Shared Roots, Advancing Understanding of RecOvery afteR traumA (AURORA), 
Human Heredity and Health in Africa, Rwanda (H3A_Rwanda), World Trade Center 9/11 
Responders (WTC). Participating military cohorts: Gallipoli Medical Research Foundation 
Queensland University of Technology (GMRFQUT), Marine Resiliency Study (MRS), Prospective 
Research in Stress-related Military Operations (PRISMO), Army Study to Assess Risk and 
Resilience in Servicemembers (Army STARRS), PROlonGed ExpoSure and Sertraline Trial 
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(PROGrESS), Boston VA - National Center for PTSD/ Translational Research Center for TBI and 
Stress Disorders (NCPTSD/TRACTS), Injury and Traumatic Stress study (INTRuST), and Veterans 
Affairs’ Mental Illness Research, Education and Clinical Centers (VA-M-AA & VA-M-EA). Note: For 
DNHS, GTP, MRS, PRISMO, and Army STARRS cohorts EPIC and 450k datasets represent different 
sets of subjects. 
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Table 2. CpG sites associated with current PTSD in the primary meta-analysis 

CpG Position Gene z p-value 

cg05575921 chr5:373378 AHRR -6.05 1.44E-09 

cg21161138 chr5:399360 AHRR -5.96 2.50E-09 

cg04583842 chr16:88103117 BANP 5.81 6.29E-09 

cg14753356 chr6:30720108 Intergenic -5.72 1.09E-08 

cg25320328 chr1:92953037 GFI1 -5.65 1.64E-08 

cg26599989 chr11:1297087 TOLLIP 5.58 2.35E-08 

cg19719391 chr4:26789915 Intergenic 5.58 2.45E-08 

cg16758086 chr1: 6173356 CHD5 5.55 2.85E-08 

cg04987734 chr14:103415873 CDC42BPB 5.53 3.26E-08 

cg23576855 chr5:373299 AHRR -5.52 3.44E-08 

cg09822192 chr14:24801191 ADCY4 5.44 5.30E-08 

Position is based on hg19. 
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Table 3. CpG sites associated with current PTSD in the stratified analyses 

CpG Position Gene z p-value 

Stratified analysis for females 

cg25691167 chr7:19184961 FERD3L 5.48 4.24E-08 

Stratified analysis for males 

cg05575921 chr5:373378 AHRR -6.12 9.30E-10* 

Stratified analysis for European ancestry 

cg05575921 chr5:373378 AHRR -6.85 7.24E-12* 

cg11256214 chr12:110211642 MGC14436 5.76 8.17E-09 

cg21161138 chr5:399360 AHRR -5.62 1.95E-08* 

cg15977432 chr19:56709655 Intergenic -5.46 4.68E-08 

cg04583842 chr16:88103117 BANP 5.43 5.66E-08* 

Stratified analysis for African ancestry 

cg02003183 chr14:103415882 CDC42BPB 5.48 4.26E-08 

Stratified analysis for civilian trauma 

cg27541344 chr14:99650422 BCL11B 5.39 7.2073E-08 

Stratified analysis for military trauma 

cg05575921 chr5:373378 AHRR -6.22 4.92E-10* 

cg00774777 chr11:76478902 RP11-21L23.4 5.55 2.79E-08 

cg14753356 chr6:30720108 Intergenic -5.47 4.53E-08* 

cg21566642 chr2:233284661 Intergenic -5.41 6.36E-08 

cg03329539 chr2:233283329 Intergenic -5.36 8.53E-08 

Position is based on hg19. The sites that were also epigenome-wide significant (p < 9e-08) in the 
primary meta-analysis were indicated by an asterisk (*). 
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Figures 

 
Figure 1. Manhattan Plot of the epigenome-wide association meta-analyses. The x-axis depicts 

chromosomes and the location of each CpG site across the genome. The y-axis depicts the -

log10 of the unadjusted p-value for the association with current PTSD. Each dot represents a 

CpG site. The solid blue line indicates the epigenome-wide statistical significance at p < 9.0e-8. 
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Fig 2. Summary of all analyses and findings. Figure combines CpGs from the main analysis 

(gold) and stratified analyses for sex, ancestry, and trauma type (light gold); and summarizes the 

results of blood and brain correlations (rose); cross-tissue associations for multiple brain regions 

(light blue), neuronal nuclei (blue), and a fibroblast model of prolonged stress (aqua), gene 

expression (purple); and genetic effects, including methylation quantitative trait loci (meQTL) 

analyses (light green) and genetic associations from the recent PGC-PTSD GWAS (dark green). 

Positive findings (p < 0.05) are indicated with the specific color of the respective category. 

Asterisk (*) indicates epigenome-wide significance (p < 9e-8). Gray represents the CpGs or genes 

were not present in the respective datasets. PFC: prefrontal cortex. EC: entorhinal cortex. STG: 

superior temporal gyrus. CER: cerebellum. dlPFC: dorsolateral prefrontal cortex. vmPFC: 

ventromedial prefrontal cortex. DG: dentate gyrus. 5mC: 5-Methylcytosine. 5hmC: 5-

Hydroxymethylcytosine. GC: glucocorticoid.     
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