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Abstract 

Background: Obstructive jaundice is a common problem associated with diverse etiologies 

which has not been thoroughly investigated in large-scale cohorts. Our study involved the largest 

retrospective cohort of obstructive jaundice to date, exploring the spectrum of diseases while 

establishing a diagnostic system with machine learning (ML) methods based on routine 

laboratory tests. 

Methods: This study involves two retrospective observational cohorts from China. The biliary 

surgery cohort (BS cohort, n=349) served for initial data exploration and external validation of 

ML models, while the large general cohort (LG cohort, n=5726) enabled comprehensive data 

analysis and ML model construction. Interpretable ML techniques were employed to derive 

insights from the models. 

Results: The LG cohort exhibited a more diverse disease spectrum compared to the BS cohort, 

with pancreatic adenocarcinoma, common bile duct stones, distal cholangiocarcinoma, perihilar 

cholangiocarcinoma, and acute pancreatitis (non-calculous) identified as the top five causes of 

obstructive jaundice. Traditional serum markers such as CA 19-9 and CEA did not emerge as 

standalone diagnostic markers for obstructive jaundice. Leveraging ML techniques, we 

developed two models collectively named as the MOLT model: one effectively distinguishes 

between benign and malignant causes (AUROC=0.862), while the other provides nuanced 

insights by further categorizing malignancies into three tiers and benign diseases into two 

(ACC=0.777). Interpretable ML tools revealed key features contributing to the decision-making 

process of each model. 

Conclusions: Through our study, we uncovered the diagnostic potential of routine laboratory 
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tests in obstructive jaundice, enabling the development of a practical diagnostic tool based on 

interpretable ML models. These findings may pave the way for personalized and user-friendly 

diagnosis of obstructive jaundice, thereby aiding clinical decision-making. 

 

Keywords:  

Biliary Tract; Bile Duct Obstruction; Biliary Atresia; Biliary Tract Neoplasms; Gallstones; 

Pancreatitis; Pancreatic Ductal Carcinoma 
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Introduction 

 

Obstructive jaundice is a common problem associated with various hepato-pancreato-biliary 

(HPB) diseases [1]. Its etiology includes both benign and malignant conditions. Benign causes of 

obstructive jaundice encompass a wide range of diseases, such as common bile duct stones, 

benign biliary strictures, Mirizzi syndrome, etc. Malignant causes typically involve tumors 

originating from the pancreas, bile ducts, or ampulla of Vater, including pancreatic 

adenocarcinoma, cholangiocarcinoma, ampullary carcinoma, and more [2-4]. Additionally, 

intrahepatic mass involving the hepatic hilus and metastatic tumors from other sites may also 

lead to obstructive jaundice [5, 6]. These diverse etiologies require careful evaluation and 

management to determine the appropriate course of treatment. 

Over the past few decades, significant advancements have been made in the diagnostic 

approaches for obstructive jaundice. Serum-based diagnostics and imaging techniques have 

played pivotal roles in this regard. Serum-based diagnostics, including liver function tests (LFTs) 

and tumor markers, have greatly facilitated the initial assessment of obstructive jaundice. LFTs 

provide valuable information about liver enzymes, bilirubin levels, and other parameters 

indicative of hepatobiliary dysfunction. Tumor markers, such as carbohydrate antigen 19-9 (CA 

19-9) and carcinoembryonic antigen (CEA), aid in the detection and monitoring of malignancies 

causing obstructive jaundice. On the other hand, imaging modalities have revolutionized the 

diagnosis and characterization of obstructive jaundice. Techniques such as ultrasonography (US), 

computed tomography (CT), magnetic resonance imaging (MRI) and endoscopic retrograde 

cholangiopancreatography (ERCP) offer detailed anatomical visualization of the hepatobiliary 
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system, enabling the identification of the underlying cause of obstruction [7]. Moreover, 

advancements in imaging technology, such as contrast-enhanced imaging and three-dimensional 

reconstruction, have further enhanced diagnostic accuracy of obstructive jaundice-associated 

HPB diseases [8, 9]. 

Despite these advancements, challenges persist in the diagnostic approach to obstructive jaundice. 

Serum-based markers may lack specificity and sensitivity, limiting their utility as standalone 

diagnostic tools [10]. Meanwhile, imaging modalities may encounter limitations in 

differentiating benign from malignant etiologies or accurately characterizing the extent of disease 

involvement, especially when the lesions are small [11]. Moreover, access to advanced imaging 

techniques may be limited under certain healthcare settings, hampering timely diagnosis and 

management. Additionally, in the field of obstructive jaundice research, there are still many gaps 

to be addressed. One of the most glaring issues is the lack of large-scale cohort studies, both 

retrospective and prospective. This has created numerous challenges, particularly in 

understanding the proportions of different diseases contributing to obstructive jaundice. This is 

one of the significant aspects our research endeavored to address, as we embarked on analyzing 

the specific causes to obstructive jaundice in a large retrospective cohort of over 5000 

individuals. During this process, we discovered that much of the information carried by various 

clinical markers remained underutilized. 

Hence, harnessing the power of state-of-the-art machine learning (ML) methods, renowned for 

their adaptability and ability to extract intricate patterns from complex datasets, we aimed to 

develop a robust diagnostic tool for obstructive jaundice [12, 13]. This tool, enabling the 

integration of diverse clinical laboratory tests to enhance accuracy and efficiency of diagnosis, 
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can be easily implemented due to its straightforward and user-friendly nature. Our objective was 

for it to not only differentiate between benign and malignant obstructive jaundice, but also to 

classify more specific etiologies based on this foundation. We validated its efficacy in real-world 

settings using an external surgical cohort, while employing interpretable ML techniques to offer 

transparency and insights into the decision-making process. By uncovering the untapped 

potential of routine clinical markers and leveraging ML techniques, we aimed to enhance the 

diagnosis and management of obstructive jaundice and improve patient outcomes. 

 

Patients and Methods 

 

Participants 

 

The study protocol was approved by the Ethics Committee Biomedical Research, West China 

Hospital of Sichuan University, involving two retrospective observational cohorts from a single 

center (West China Hospital, Chengdu, China), and was preregistered in Open Science 

Framework (registration DOI: https://doi.org/10.17605/OSF.IO/DC4B8). The study workflow is 

visualized with a graphical abstract. This study involved two retrospective observational 

cohorts from a single center: the biliary surgery cohort (BS cohort) served as the dataset for 

initial data exploration and external validation of ML models, while the large general cohort 

(LG cohort) was utilized for comprehensive data analysis and ML model construction. The 

BS cohort consisted of patients diagnosed with obstructive jaundice who were admitted to the 

department of biliary surgery between February 2022 and September 2023. A total of 349 
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patients were eventually included in the BS cohort after screening with predefined criteria 

(Fig.S1). For the LG cohort, data was reviewed from all hospitalized patients diagnosed with 

obstructive jaundice in the general hospital between January 2008 and January 2022. A total of 

5726 patients were included in the LG cohort after screening according to our predefined 

inclusion/exclusion criteria (Fig.1). 

In short, these are the principles for patients to be included: (1) obstructive jaundice as a 

documented diagnosis; (2) reconfirmation of the diagnosis based on elevated cholestatic 

parameters (bilirubin, alkaline phosphatase and γ-glutamyltransferase); (3) etiology 

pathologically confirmed via ERCP, PTCD, FNB or surgical intervention; (4) age over 18 years. 

Additionally, patients with obstructive jaundice secondary to HPB surgery were excluded, ruling 

out iatrogenic factors. The aforementioned criteria delineated the spectrum of diseases covered 

by this study, as summarized in Figure 3. 

 

Collection of clinical data 

 

The clinical data of each patient was retrieved from the medical record archive of our institution 

and underwent de-identification. The following information underwent further investigation: age, 

sex, clinical diagnosis, pathological report and clinical laboratory test results. 

The following test results were included: α-fetoprotein (AFP, ng/mL), carcinoembryonic antigen 

(CEA, ng/mL), cancer antigen 125 (CA 125, U/mL), cancer antigen 19-9 (CA 19-9, U/mL), red 

blood cell count (RBC, ×10�� /L), hemoglobin (HGB, g/L), hematocrit (HCT, L/L), mean 

corpuscular volume (MCV, fL), mean corpuscular hemoglobin concentration (MCHC, g/L), 
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mean corpuscular hemoglobin (MCH, pg), red cell distribution width-coefficient of variation 

(RDW-CV, %), red cell distribution width-standard deviation (RDW-SD, fL), platelet count (PLT, 

×10�/L), mean platelet volume (MPV, fL), platelet distribution width (PDW, %), large platelet 

ratio (P-LCR%, %), white blood cell count (WBC, ×10�/L), neutrophil percentage (NEUT%, %), 

lymphocyte percentage (LYM%, %), monocyte percentage (MONO%, %), eosinophil percentage 

(EO%, %), basophil percentage (BASO%, %), neutrophil count (NEUT#, ×10�/L), lymphocyte 

count (LYM#, ×10�/L), monocyte count (MONO#, ×10�/L), eosinophil count (EO#, ×10�/L), 

basophil count (BASO#, ×10� /L), total bilirubin (TBIL, μmol/L), direct bilirubin (DBIL, 

μmol/L), indirect bilirubin (IBIL, μmol/L), alanine aminotransferase (ALT, IU/L), aspartate 

aminotransferase (AST, IU/L), alkaline phosphatase (ALP, IU/L), γ-glutamyl transferase (γ-GT, 

IU/L), albumin (ALB, g/L), globulin (Glo, g/L), albumin/globulin ratio (A/G), glucose (GLU, 

mmol/L), urea (UREA, mmol/L), creatinine (CREA, μmol/L), cystatin C (CysC, mg/L), uric acid 

(UA, μmol/L), triglycerides (TG, mmol/L), cholesterol (CHOL, mmol/L), high-density 

lipoprotein cholesterol (HDL, mmol/L), low-density lipoprotein cholesterol (LDL, mmol/L), 

creatine kinase (CK, IU/L), lactate dehydrogenase (LDH, IU/L), hydroxybutyrate dehydrogenase 

(HBDH, IU/L), prothrombin time (PT, s), international normalized ratio (INR), activated partial 

thromboplastin time (APTT, s), fibrinogen (Fbg, g/L), thrombin time (TT, s), and C-reactive 

protein (CRP, mg/L). 

Of note, one patient may undergo multiple examinations for the same item during the course of 

treatment. Only the laboratory results during the initial diagnosis of obstructive jaundice were 

utilized. If multiple test results still persist, median value was taken for further analysis. 
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Development and validation of ML models 

 

Based on these clinical data, we explored a diverse array of prediction models in two different 

tasks. Firstly, we delved into binary classification models, which focused on distinguishing 

between benign and malignant diseases. We utilized various ML algorithms to achieve best 

predictive performance. These algorithms included logistic regression (LR), decision tree models, 

K-nearest neighbors (KNN), random forest (RF), support vector machine (SVM), eXtreme 

Gradient Boosting (XGBoost), and lightGBM. To evaluate model performance, we employed a 

comprehensive set of evaluation metrics, including area under the receiver operating 

characteristic curve (AUROC) with 95% confidence intervals, accuracy (ACC), area under the 

precision-recall curve (AUPR), F1 score, sensitivity and specificity. 

Furthermore, beyond binary classification models, we extended our analysis to include multi-

class classification models which further categorized diseases into five detailed categories based 

on their characteristics. These multi-class models were constructed using decision tree, XGBoost, 

RF, SVM, lightGBM, and KNN algorithms. Evaluation metrics of multi-class models included 

accuracy (ACC), area under the receiver operating characteristic curve weighted by prevalence 

(AUNU), Macro F1 score, precision score and recall score. 

To assess the robustness and generalizability of the constructed models, internal validation and 

external validation were both conducted in binary classification models. Internal validation but 

not external validation was carried out for multi-class classification models, as the spectrum of 

diseases was limited in the BS cohort. All models were developed by R 4.1.3 (R Foundation for 

Statistical Computing, Vienna, Austria) using the mlr3 machine learning framework. 
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In addition, interpretability analysis was conducted on the optimized models to gain insights into 

the decision-making processes. Various tools from the iml package and mlr3verse package in R 

were employed for this purpose, including feature importance analysis and SHapley Additive 

exPlanations (SHAP) values. 

 

Statistical analysis 

 

Statistical analyses were conducted using R software. Shapiro-Wilk test and QQ plot were 

employed to assess the normality of data distribution. Continuous variables with a normal 

distribution were expressed as mean with standard deviation (SD), while those not following a 

normal distribution were expressed as median with interquartile range (IQR). Categorical data 

were presented as frequencies and percentages. For comparisons between groups, independent 

samples t-tests and Mann-Whitney U tests were performed for continuous variables with and 

without normal distribution, respectively, while chi-square tests were conducted for categorical 

variables. The DeLong test was employed for the assessment of model performance. A 

significance level of P < 0.05 was considered statistically significant. 

 

Results 

 

Patient profiles and disease spectrums of the study cohorts 

 

We initially analyzed data from the biliary surgery cohort (BS cohort) which included 349 
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consecutive surgical inpatients diagnosed with obstructive jaundice (Fig. S1). Demographically, 

there were 216 (62%) male and 133 (38%) female, with 60% of them aged over 60. In terms of 

the disease spectrum, there were 204 cases (58.5%) with malignant obstructive jaundice and 145 

cases (41.5%) with benign etiologies (Fig. S2A). As the BS cohort exclusively included patients 

from a biliary surgery center, it can be inferred that the majority of these patients presented with 

biliary-related issues rather than hepato-pancreatic diseases. Our analysis revealed that patients 

in the BS cohort were predominantly associated with biliary malignancies, accounting for 49.0% 

of all types of diseases and 86.8% of all malignancies (Fig. S2C). In terms of benign etiologies, 

calculous diseases, including common bile duct stones (CBDS) and hepatolithiasis (HL), were 

identified as the main cause to obstructive jaundice, accounting for 67.6% of all benign causes.  

Undoubtedly, these preliminary results may not accurately reflect the true distribution of diseases 

in the general population, given that patients were selectively admitted to the surgical ward. 

Therefore, we proceeded to analyze obstructive jaundice in a large general cohort (LG cohort), 

comprising 5726 patients from a comprehensive medical center over a span of 14 years (Fig. 1). 

We first observed similarities between the LG cohort and BS cohort in terms of sex, age, and the 

relative proportion of benign and malignant diseases, underscoring the representativeness of our 

previous observations (Fig. S2B). Still, statistical analysis revealed significant differences in the 

disease spectrum as well as other baseline characteristics between the LG and BS cohorts (Table. 

S1). Based on a larger sample size, the LG cohort was able to unveil some previously 

undisclosed insights into obstructive jaundice, summarized in Fig. 2. To sum up, biliary 

malignancies (1657 cases, 28.94%), pancreatic malignancies (1106 cases, 19.32%), ampullary 

malignancies (252 cases, 4.40%), hepatic malignancies (190 cases, 3.32%), metastatic cancers 
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(360 cases, 6.29%) and other rare malignancies (155 cases, 2.71%) built up the malignant side of 

the disease spectrum; while calculous diseases (1257 cases, 21.95%), inflammatory diseases (566 

case, 9.88%) and other benign causes (171 cases, 2.99%) composed the benign counterpart. The 

composition of a more detailed category of diseases is also depicted in Fig. 2. The top five 

leading causes of obstructive jaundice were revealed as pancreatic adenocarcinoma (1094 cases, 

19.11%), CBDS (1046 cases, 18.27%), distal cholangiocarcinoma (dCCA) (595 cases, 10.39%), 

perihilar cholangiocarcinoma (pCCA) (573 cases, 10.01%) and acute pancreatitis (non-calculous) 

(328 cases, 5.73%). 

To summarize, before we went further into the development of diagnostic models for obstructive 

jaundice, comprehensive analysis was conducted of our data and obtained valuable insights into 

the spectrum of diseases underlying this condition. 

 

Requirement for machine learning-based diagnostics in obstructive jaundice 

 

Our next objective was to evaluate the effectiveness of current diagnostic markers for obstructive 

jaundice, aiming to ascertain whether a more effective diagnostic approach is warranted. In the 

exploratory phase of this study, we conducted a comparative analysis of the baseline 

characteristics of patients with benign and malignant obstructive jaundice in the BS cohort. The 

results suggested that there was a significant difference in multiple clinical indices between 

benign and malignant groups, particularly evident in tumor markers and LFTs (Table. S2 and 

Figure. S3A). However, despite the evident statistical difference, the diagnostic performance of 

single laboratory markers for distinguishing benign from malignant conditions was suboptimal. 
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The top five diagnostic markers were CA 19-9 (AUROC=0.768), DBIL (AUROC=0.736), TBIL 

(AUROC=0.730), CEA (AUROC=0.697), and DBIL/TBIL ratio (AUROC=0.696) (Figure. S3B). 

We then continued our investigation in the LG cohort to further validate these results based on a 

larger sample size. Accordingly, a comparative analysis was conducted to unveil statistical 

variances in the baseline characteristics between benign and malignant groups (Table. 1). 
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Table. 1. Comparative analysis of baseline characteristics between benign and malignant groups in the LG cohort. 

 
Variables LG cohort (borderline disease excluded, n=5714) 

Benign obstruction (n=1994) Malignant obstruction (n=3720) pVal 
Sex   0.36 

Male 1151 (57.7%) 2099 (56.4%)  
Female 843 (42.3%) 1621 (43.6%)  

Age (years) 53.9 (16.1) 59.9 (11.7) <0.01 
CA 19-9 (U/ml) 31.43 [13.63, 84.61] 132.64 [34.76, 306.48] <0.01 
CEA (ng/ml) 2.12 [1.35, 3.35] 3.41 [2.07, 6.39] <0.01 
CA 125 (U/ml) 19.33 [11.61, 41.29] 24.35 [14.15, 51.65] <0.01 
AFP (ng/ml) 2.64 [1.90, 3.75] 2.92 [2.14, 4.23] <0.01 
TBIL (μmol/L) 53.0 [42.4, 81.7] 54.8 [44.3, 119.4] <0.01 
DBIL (μmol/L) 21.3 [13.3, 51.1] 24.7 [16.5, 88.1] <0.01 
IBIL (μmol/L) 9.2 [6.6, 13.2] 8.0 [5.6, 11.9] <0.01 
ALT (IU/L) 42 [24, 73] 39 [26, 63] 0.20 
AST (IU/L) 41 [27, 75] 33 [24, 57] 0.02 
ALP (IU/L) 139 [87, 226] 131 [82, 229] 0.42 
γ-GT (IU/L) 119 [37, 288] 81 [27, 195] <0.01 
ALB (g/L) 38.5 (5.3) 37.5 (5.8) <0.01 
Glo (g/L) 28.5 (6.0) 27.2 (5.2) <0.01 
A/G 1.37 [1.17, 1.56] 1.41 [1.23, 1.61] 0.07 
GLU (mmol/L) 5.74 [5.17, 6.68] 5.83 [5.23, 6.86] 0.36 
UREA (mmol/L) 4.8 [3.9, 5.8] 4.7 [3.9, 5.6] 0.59 
CREA (μmol/L) 55.48 [52.00, 63.98] 53.27 [48.11, 61.00] 0.04 
CysC (mg/L)  0.95 [0.84, 1.08] 0.94 [0.83, 1.06] 0.24 
UA (μmol/L) 228 (79) 207 (89) 0.03 
TG (mmol/L) 1.33 [1.02, 1.72] 1.37 [1.03, 1.80] 0.38 
CHOL (mmol/L) 4.20 [3.45, 5.01] 4.26 [3.42, 5.30] 0.25 
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HDL (mmol/L) 1.00 [0.61, 1.32] 0.87 [0.41, 1.29] <0.01 
LDL (mmol/L) 2.16 (0.87) 2.06 (0.87) 0.06 
CK (IU/L) 65 [44, 104] 71 [47, 101] 0.31 
LDH (IU/L) 177 [155, 203] 179 [157, 201] 0.79 
HBDH (IU/L) 137 [124, 159] 138 [123, 156] 0.78 
RBC (×10^12/L) 3.84 (0.79) 3.58 (0.65) <0.01 
HGB (g/L) 115 (22) 109 (19) <0.01 
HCT (L/L) 0.35 (0.07) 0.33 (0.06) <0.01 
MCV (fL) 93.0 [89.5, 96.3] 93.7 [90.2, 97.0] <0.01 
MCHC (g/L) 328 (11) 327 (11) 0.26 
MCH (pg) 30.6 [29.3, 31.7] 30.8 [29.6, 32.0] <0.01 
RDW-CV (%) 14.6 [13.5, 16.0] 15.2 [14.2, 16.6] <0.01 
RDW-SD (fL) 49.1 [45.1, 53.5] 51.6 [47.9, 55.9] <0.01 
PLT (×10^9/L) 187 [138, 241] 194 [148, 245] <0.01 
MPV (fL) 11.9 (1.2) 11.8 (1.2) 0.35 
PDW (%) 15.3 (3.2) 15.1 (3.1) 0.08 
P-LCR% (%) 39.9 (9.8) 39.5 (9.9) 0.27 
WBC (×10^9/L) 6.97 [5.54, 9.26] 7.36 [5.74, 9.52] <0.01 
NEUT% (%) 72.0 [65.0, 78.9] 73.6 [67.3, 79.3] <0.01 
LYM% (%) 17.3 [11.6, 23.9] 15.0 [10.7, 20.9] <0.01 
MONO% (%) 7.0 [5.9, 8.3] 7.2 [6.2, 8.5] <0.01 
EO% (%) 1.4 [0.8, 2.3] 1.5 [0.9, 2.4] 0.04 
BASO% (%) 0.4 [0.3, 0.5] 0.4 [0.3, 0.5] 0.58 
NEUT# (×10^9/L) 4.81 [3.58, 6.95] 5.27 [3.87, 7.44] <0.01 
LYM# (×10^9/L) 1.17 [0.85, 1.53] 1.09 [0.83, 1.41] <0.01 
MONO# (×10^9/L) 0.48 [0.38, 0.62] 0.52 [0.41, 0.66] <0.01 
EO# (×10^9/L) 0.09 [0.05, 0.16] 0.10 [0.06, 0.16] <0.01 
BASO# (×10^9/L) 0.03 [0.02, 0.04] 0.03 [0.02, 0.04] 0.26 
PT (s) 11.7 [10.9, 12.8] 11.6 [11.0, 12.6] 0.38 
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INR 1.04 [0.97, 1.14] 1.03 [0.97, 1.12] 0.06 
APTT (s) 28.1 [26.1, 30.8] 28.0 [26.1, 30.8] 0.85 
Fbg (g/L) 3.45 (1.24) 3.66 (1.08) <0.01 
TT (s) 18.4 [17.3, 19.5] 18.2 [17.1, 19.4] 0.03 
CRP (mg/L) 14.8 [4.7, 42.4] 19.8 [6.8, 72.5] <0.01 

Continuous variables with normal distribution are presented as mean value (SD) while others are presented as median (IQR). Categorical variables 

are presented as frequency (percentage). 

 

  

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted July 16, 2024. 

; 
https://doi.org/10.1101/2024.07.15.24310411

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2024.07.15.24310411


Interestingly, a greater number of laboratory indices were identified to show statistically 

significant distinctions in the LG cohort as opposed to the BS cohort, most likely due to the 

considerably larger sample size. In contrast, in the LG cohort, most laboratory indices 

demonstrated a notable decrease in diagnostic potency. The diagnostic efficacy of tumor markers 

was generally less satisfactory in the LG cohort (Figure. 3A). Among the top five indicators in 

terms of diagnostic efficacy, only CA 19-9 had an AUROC exceeding 0.7 (AUROC=0.712), 

followed by CEA (AUROC=0.685), Age (AUROC=0.617), RDW-SD (AUROC=0.616) and 

DBIL (AUROC=0.613) (Figure. 3B). The DeLong test indicated a significant decrease in 

diagnostic efficacy of indicators including CA 19-9 and DBIL in the LG cohort compared with 

the BS cohort (Figure. 3C). These results suggested that in a surgical cohort with a simpler 

diagnostic environment, common laboratory indices may have acceptable power as standalone 

diagnostic markers; but in a larger, more comprehensive patient cohort with a more complex 

diagnostic environment, individual serum markers are no longer robust diagnostic tools for 

obstructive jaundice. Therefore, we propose constructing a diagnostic model for obstructive 

jaundice that can integrate multiple test indicators. 

We first attempted a traditional linear regression model to distinguish benign and malignant 

etiologies. The diagnostic model construction process, employing stepwise logistic regression, 

systematically incorporated a selection procedure involving the inclusion and exclusion of 

variables from an initial pool of 57 indicators (Figure. S4A). The diagnostic efficacy of the 

stepwise logistic regression model was found to be moderate, achieving AUROC values of 0.784 

and 0.791 in the internal and external validation sets, respectively. However, when compared to 

the subsequently established ML model, it presented significantly lower AUROC values, along 
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with inadequate sensitivity and specificity (Figure. S4B & S4C). These results highlighted the 

inherent advantage of ML techniques in this particular task. Similarly, in subsequently 

established ML models, we observed that the number of features included in the model 

significantly influenced its diagnostic efficacy (Figure. 3D). These results indicate that 

constructing high-efficiency diagnostic models based on common laboratory markers is feasible, 

but it requires multiple parameters or features to jointly exert their utility. Therefore, in the final 

version of our ML models, all 57 features were included. These features delineate common 

dimensions of disease characteristics, including demographic features, tumor markers, complete 

blood count, comprehensive metabolic panel, clotting screen and inflammatory markers (Figure. 

3E). 

 

Establishment, validation and interpretation of diagnostic models to distinguish benign and 

malignant obstructions 

 

After confirming the feasibility of constructing a ML diagnostic model for obstructive jaundice 

based on 57 common clinical features, we proceeded to optimize the diagnostic performance of 

this binary diagnostic model. A series of mainstream ML methods were employed to construct 

the model, with their performance compared to select the optimal model. The RF model 

ultimately stood out for its remarkable performance both in the internal and external validation 

sets (Figure. 4A, Figure. 4B and Table. 2). 
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Table. 2. Comparison of performance among various ML methods employed for construction of the binary MOLT model. 

 

Cohort Model 
Index 

AUROC (95%CI) ACC AUPR F1 score Sensitivity Specificity 

LG cohort 
(training) 

Random Forest 1.000 (1.000-1.000) 0.996 1.000 0.997 0.987 1.000 
LightGBM 0.999 (0.999-1.000) 0.983 0.999 0.988 0.956 0.996 
XGBoost 0.891 (0.878-0.904) 0.836 0.842 0.888 0.573 0.961 
Decision Tree 0.836 (0.820-0.853) 0.825 0.744 0.874 0.681 0.894 
SVM 0.920 (0.907-0.932) 0.872 0.892 0.911 0.680 0.963 
Logistic Regression 0.811 (0.793-0.829) 0.787 0.707 0.855 0.501 0.923 
KNN 0.992 (0.990-0.995) 0.907 0.982 0.935 0.731 0.990 

LG cohort 
(internal validation) 

Random Forest 0.875 (0.855-0.896) 0.824 0.816 0.878 0.566 0.955 
LightGBM 0.907 (0.891-0.923) 0.842 0.851 0.887 0.650 0.938 
XGBoost 0.852 (0.832-0.873) 0.798 0.774 0.862 0.504 0.947 
Decision Tree 0.826 (0.803-0.849) 0.791 0.748 0.848 0.613 0.881 
SVM 0.817 (0.793-0.842) 0.772 0.719 0.841 0.500 0.910 
Logistic Regression 0.781 (0.754-0.809) 0.757 0.672 0.835 0.431 0.923 
KNN 0.713 (0.684-0.743) 0.705 0.582 0.799 0.354 0.883 

BS cohort 
(external validation) 

Random Forest 0.862 (0.819-0.904) 0.828 0.865 0.864 0.676 0.936 
LightGBM 0.822 (0.774-0.870) 0.802 0.827 0.841 0.669 0.897 
XGBoost 0.725 (0.667-0.782) 0.699 0.709 0.768 0.483 0.853 
Decision Tree 0.678 (0.615-0.741) 0.731 0.689 0.783 0.586 0.833 
SVM 0.856 (0.812-0.900) 0.808 0.844 0.828 0.834 0.789 
Logistic Regression 0.800 (0.754-0.846) 0.722 0.734 0.771 0.614 0.799 
KNN 0.816 (0.770-0.862) 0.751 0.781 0.806 0.559 0.887 

Cells labeled red/yellow represent the first/second-best performance in each cohort. 
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Of note, the lightGBM model and the SVM model also exhibited impressive performance. 

DeLong’s test between ROC curves was conducted to finalize our choice (Figure. S5). Although 

the lightGBM model excelled in internal prediction (AUROC 0.907 vs. 0.875, DeLong’s test 

p�0.01), the RF model demonstrated greater stability in the external validation cohort (AUROC 

0.862 vs. 0.822, DeLong’s test p=0.03). This robust performance across different diagnostic 

contexts is essential for ensuring the model's effectiveness. Subsequently, the RF model was 

selected and designated as the MOLT model, standing for Machine learning of Obstructive 

jaundice based on common Laboratory Tests. 

To present the decision-making process of the MOLT model in a more transparent manner, we 

employed several methods for model interpretation. Feature importance scores highlighted the 

top-ranking features distinguishing benign from malignant etiologies. The top 10 features were 

identified as age, CA 19-9, CEA, CHOL, ALB, DBIL, A/G, RDW-SD, Fbg and AST (Figure. 4D 

and Figure. S6A). While feature importance scores provide a global view of feature importance 

across the dataset, SHAP values offer a more nuanced understanding of how each feature 

influences individual predictions, taking interactions and dependencies between features into 

account [14, 15]. Top 10 features ranked by SHAP value were CA 19-9, CEA, age, ALB, PLT, 

CHOL, RDW-CV, RDW-SD, Fbg and DBIL (Figure. 4E and Figure. S6B). By analyzing the 

overall interaction strength, we also provided insights into the complexity of relationships 

between predictor variables in the MOLT model (Figure. 4F). Partial Dependence Plots (PDP) 

and Individual Conditional Expectation (ICE) Plots were generated for the top three features 

identified by SHAP values (age, CA 19-9 and CEA), illustrating how individual feature values 

impact the model's predictions (Figure. 4G). With the SHAP-interpreted ML model, 
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individualized decision-making processes were elucidated, allowing for a comprehensive 

understanding of how the model arrives at predictions for each specific case (Figure. 4H). 

Decision boundaries pertaining to key features were also visualized (Figure. S7). 

 

Establishment, validation and interpretation of multi-class models for further classification 

of obstructive jaundice 

 

In clinical practice, merely obtaining information about the benign or malignant nature of 

obstructive jaundice is insufficient to support subsequent treatment options. In benign diseases, 

clinicians wish to differentiate patients with calculous disease from those with non-calculous 

disease, while in malignant cases, it is important for the specific degree of tumor malignancy to 

be assessed. Therefore, building upon the initial model, we converted the binary classification 

target into a multi-classification target for the construction of a more complex model, namely the 

multi-class MOLT model, allowing the differentiation between calculous benign lesions, non-

calculous benign lesions, metastatic malignancies, pancreato-biliary malignancies and other 

types of malignancies (Figure. 5A). Similar to the original binary MOLT model, a series of ML 

methods were employed, with the best-performing one selected to optimize model performance. 

The outcomes of model construction and internal validation were summarized (Figure. 5B). 

Notably, external validation was unable to be carried out for the multi-class MOLT model as 

there were no metastatic patient in the BS cohort. Outperforming the others, the XGBoost model 

showcased impressive diagnostic efficiency, boasting an ACC of 0.777 and an AUNU of 0.882, a 

notable achievement given the complexity of the task encompassing five classes. 
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ML interpretability tools were also utilized to explain the multi-class MOLT model. Feature 

importance scores highlighted the top-ranking features contributing to this model, namely CA 

19-9, age, CEA, ALB, CHOL, AFP, UA, A/G, RBC and CA125 (Figure. 5C). SHAP values were 

utilized to assess how individual features influenced the model's decisions within each disease 

category (Figure. 5D).ALB, A/G, CA 19-9, CEA and AST were top 5 features contributing to the 

diagnosis of benign calculous disease; CA19-9, PDW, ALB, CEA and P-LCR% were top 5 

features contributing to the diagnosis of benign non-calculous disease; CEA, age, TBIL, CA 19-9 

and RBC were top 5 features contributing to the diagnosis of metastatic malignancies; ALB, CA 

19-9, CEA, A/G and RBC were top 5 features contributing to the diagnosis of pancreato-biliary 

malignancies; while AFP, PLT, ALB, A/G and HDL were top 5 features contributing to the 

diagnosis of other malignancies. These results offer valuable insights into obstructive jaundice 

and provide a practical diagnostic tool. 

 

Discussion 

 

Until now, large-scale cohorts regarding obstructive jaundice remain scarce, which has led to a 

limited understanding of the proportions of specific types of diseases contributing to this 

condition, as well as limited insight into the efficacy of existing diagnostic approaches. Our 

study included the largest retrospective cohort of obstructive jaundice to-date, in order to 

delineate the spectrum of diseases associated with this condition. During the analysis of the 

patients' baseline, we discovered the untapped diagnostic potential in various clinical diagnostic 

tests. Consequently, we developed ML models based on common clinical laboratory tests, which 
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not only distinguishes between benign and malignant obstructions, but also further differentiates 

between calculous benign lesions, non-calculous benign lesions, metastatic malignancies, 

pancreato-biliary malignancies and other types of malignancies. To ensure transparency in the 

decision-making process, interpretable ML tools were utilized to decipher these models. 

Undoubtedly, the spectrum of diseases contributing to obstructive jaundice may vary across 

different countries and regions. However, the dearth of knowledge in this field has restricted our 

understanding of this condition. Our study has emerged as a significant contribution to this field, 

offering a comprehensive analysis of over 5000 patients with obstructive jaundice in a single 

Chinese center over a period of 14 years. Smaller retrospective cohort studies conducted across 

Europe, Australia, Central Asia and South Asia have provided valuable insights into obstructive 

jaundice [16-22]. Notably, Garcea et al.'s retrospective analysis of over 1000 cases in the United 

Kingdom found similar disease patterns to ours, with CBD stones and pancreatic ductal 

adenocarcinoma as primary benign and malignant etiologies, respectively [19]. Similarly, 

Björnsson et al.'s analysis of 241 patients in Sweden revealed a slightly higher incidence of 

malignant obstruction (63.9%) compared to benign cases, with cholangiocarcinoma accounting 

for one-third of malignant obstructions, mirroring our findings [16]. These findings suggest that 

the disease spectrum of obstructive jaundice may be more consistent across different regions than 

previously believed. Moreover, our study supplemented these insights by revealing additional 

dimensions of this condition. Firstly, we observed that non-calculous benign etiologies might 

have been underreported, as most of the previous studies identified CBD stones as the 

predominant benign cause. Our findings indicated that CBD stones only accounted for 

approximately half of the benign cases, while around one-third were associated with diverse non-

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 16, 2024. ; https://doi.org/10.1101/2024.07.15.24310411doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.15.24310411


calculous factors. In addition, there may have been an underestimation of metastatic causes of 

obstructive jaundice, considering the lower likelihood of obtaining a pathological diagnosis in 

these patients. Furthermore, intrahepatic lesions involving the hepatic hilus, mainly intrahepatic 

cholangiocarcinoma (iCCA) and hepatocellular carcinoma (HCC), constitute a significant 

proportion (approximately 10%) of all cases. 

Regarding the diagnosis of obstructive jaundice, our study also yielded valuable insights. We not 

only presented a practical diagnostic tool for distinguishing between different causes, but also 

enhanced comprehension to obstructive jaundice by providing transparency into the decision-

making process. According to previous studies, calculous diseases in benign obstructive jaundice 

can be accurately distinguished through various imaging modalities [23-25]. However, 

distinguishing non-calculous benign diseases from malignant diseases can be considerably 

challenging [26-29]. As our study revealed that over one-third of the benign cases were 

associated with non-calculous etiologies, there is a need to place greater emphasis on addressing 

this issue. Meanwhile, in the realm of malignancy, clinicians seek to stratify cancers according to 

their level of aggressiveness. To this end, we employed ML techniques to develop two models: 

one effectively distinguishes between benign and malignant causes, while the other offers 

nuanced insights by further classifying malignancies into three tiers and benign diseases into two. 

Subsequently, these models may facilitate the application of appropriate diagnostic and 

therapeutic interventions. 

It is noteworthy that the concept of integrating diverse laboratory test results into a unified model 

did not arise arbitrarily. There has long been ample evidence pointing towards this direction. For 

instance, multiple studies have observed that patients with malignant obstruction tends to be 
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older than the benign group [16, 20]. Similarly, benign obstructive jaundice is observed to be 

associated with lower bilirubin levels, as biliary obstructions caused by calculous disease tend to 

be intermittent [1, 19]. Furthermore, there is documented evidence suggesting an association 

between obstructive jaundice and renal injury, with the severity of renal dysfunction potentially 

reflecting the nature of the disease [30-32]. In this study, by leveraging interpretable ML models, 

we gained further insight about how these previous findings contribute to the diagnostic model. 

While traditional markers such as CA 19-9, CEA, age and bilirubin levels remained significant, 

factors like albumin levels, cholesterol levels and red cell distribution width emerged as 

noteworthy contributors. These findings warrant further investigation to provide physiological 

and pathological evidence elucidating their mechanisms. 

Several limitations of this study should be noted. Firstly, as this study exclusively enrolled 

patients with a confirmed pathological diagnosis, the findings regarding the proportions of 

specific types of diseases contributing to obstructive jaundice may be subject to bias due to 

variations in the likelihood of different diseases to be biopsied. Secondly, this is a single-center 

study, primarily involving patients from China. As a result, the potential impact of geographic 

variations among patients and differences in detection methods across various clinical 

laboratories on the study outcomes was not addressed, even though we observed similarities in 

our findings with previous researches from other regions. Furthermore, our MOLT model 

exhibited exceptional specificity; however, its sensitivity fell short of expectations. This 

underscores the need for future studies to improve both the specificity and sensitivity of 

diagnostics. Despite these limitations, our study stands as the largest cohort study in the field of 

obstructive jaundice to date, with robust diagnostic tools developed through the utilization of 
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state-of-the-art techniques. 

To conclude, our study delineated the disease spectrum of obstructive jaundice and developed a 

series of ML models, collectively termed the MOLT model, to differentiate between benign and 

malignant obstructions and further categorize diseases into five distinct categories. These models 

underwent meticulous interpretation, providing transparency into the decision-making process. 

These findings illuminate the diagnostic potential of routine laboratory tests in obstructive 

jaundice, highlighting the role of ML models in enhancing diagnostic accuracy in complex 

clinical conditions like obstructive jaundice. These insights may facilitate personalized and user-

friendly diagnosis of obstructive jaundice, thereby aiding clinical decision-making. 

 

Abbreviations 

ML, machine learning; ERCP, endoscopic retrograde cholangiopancreatography; PTCD, 

percutaneous transhepatic cholangiography drainage; iCCA, intrahepatic cholangiocarcinoma; 

pCCA, perihilar cholangiocarcinoma; dCCA, distal cholangiocarcinoma; AFP, α-fetoprotein; 

CEA, carcinoembryonic antigen; CA 125, cancer antigen 125; CA 19-9, cancer antigen 19-9; 

RBC, red blood cell count; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular 

volume; MCHC, mean corpuscular hemoglobin concentration; MCH, mean corpuscular 

hemoglobin; RDW-CV, red cell distribution width-coefficient of variation; RDW-SD, red cell 

distribution width-standard deviation; PLT, platelet count; MPV, mean platelet volume; PDW, 

platelet distribution width; P-LCR%, large platelet ratio; WBC, white blood cell count; NEUT%, 

neutrophil percentage; LYM%, lymphocyte percentage; MONO%, monocyte percentage; EO%, 

eosinophil percentage; BASO%, basophil percentage; NEUT#, neutrophil count; LYM#, 
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lymphocyte count; MONO#, monocyte count; EO#, eosinophil count; BASO#, basophil count; 

TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; ALT, alanine 

aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; γ-GT, γ-glutamyl 

transferase; ALB, albumin; Glo, globulin; A/G, albumin/globulin ratio; GLU, glucose; UREA, 

urea; CREA, creatinine; CysC, cystatin C; UA, uric acid; TG, triglycerides; CHOL, cholesterol; 

HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; CK, 

creatine kinase; LDH, lactate dehydrogenase; HBDH, hydroxybutyrate dehydrogenase; PT, 

prothrombin time; INR, international normalized ratio; APTT, activated partial thromboplastin 

time; Fbg, fibrinogen; TT, thrombin time; CRP, C-reactive protein. 

 

Data sharing 

 

We have made the source code and datasets used in this study publicly available on GitHub. The 

project, titled “Machine Learning of Obstructive Jaundice based on Common Laboratory Tests 

(the MOLT model)”, can be accessed at https://github.com/re5yho/Machine-learning-of-

Obstructive-jaundice-based-on-common-Laboratory-Tests-the-MOLT-model-.git. Researchers 

interested in replicating or extending our work are encouraged to explore the repository. 
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Figure legends 

 

Figure. 1. Flowchart illustrating the patient selection process from an initial pool of 20,545 

patients to establish the LG cohort. 

 

Figure. 2. Summary chart depicting the disease spectrum of obstructive jaundice observed 

in the LG cohort, highlighting the prevalence of various benign and malignant etiologies. 

 

Figure. 3. The necessity and feasiblility of contructing a ML model for the clinical diagnosis 

of obstructive jaundice. Traditional serum makers, including (A) tumor makers and (B) top 5 

biomarkers ranked by AUROC, were found to exhibit suboptimal diagnostic efficacy in the LG 

cohort. (C) In the LG cohort, the diagnostic scenario becomes more intricate, causing markers 

like CA 19-9 and DBIL to exhibit diminished efficacy compared to the BS cohort, necessitating 

the development of combined ML models. (D) The number of features included in the ML model 

significantly influenced its diagnostic efficacy, as ML model with 57 features outperformed the 

others (DeLong’s test p�0.01). (E) The included features encompass a wide spectrum of clinical 

characteristics including demographic features, tumor markers, complete blood count, 

comprehensive metabolic panel, clotting screen and inflammatory markers. 

 

Figure. 4. The establishment, validation and interpretation of binary MOLT model. (A) In 

the internal validation set, the lightGBM model showcased best performance measured by 

AUROC, while (B) the RF model showcased best performance in the external validation set. (C) 
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The RF model was subsequently designated as the MOLT model, which exhibited better 

performance compared with traditional CA 19-9 in the external validation set. Interpretation of 

the MOLT model revealed (D) features with top-ranked feature importance score, (E) features 

with top-ranked SHAP values and (F) features with top-ranked interaction score. (G) PDP and 

ICE plots were created for the top three features (age, CA 19-9, and CEA) identified by SHAP 

values, elucidating their impact on the model's predictions. (H) The SHAP-interpreted ML model 

clarified individualized decision-making processes, offering understanding into prediction 

rationale for each case. 

 

Figure. 5. The establishment, validation and interpretation of multi-class MOLT model. (A) 

Extending the binary MOLT model, a five-class ML task was formulated. (B) The performance 

of diverse multi-class models was gauged using metrics like ACC, AUNU, macro F1 score, 

precision and recall scores. Similarly, the decision-making process of the multi-class MOLT 

model was elucidated with (C) feature importance score and (D) SHAP value. 
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(proportion)

Disease
Number of Cases 
(proportion)

Type of Disease
Number of Cases 

(proportion)
Category

320 (5.59%)Intrahepatic cholangiocarcinoma

1657 (28.94%)Biliary

3720 (64.97%)
Malignant 
obstruction

573 (10.01%)Perihilar cholangiocarcinoma
595 (10.39%)Distal cholangiocarcinoma*
169 (2.95%)Gallbladder carcinoma

1094 (19.11%)Pancreatic adenocarcinoma
1106 (19.32%)Pancreatic

12 (0.21%)Others

252 (4.40%)Ampullary carcinoma*252 (4.40%)Ampullary

178 (3.11%)Hepatocellular carcinoma

190 (3.32%)Hepatic

12 (0.21%)Others

163 (2.85%)Colorectal cancer metastasis

360 (6.29%)Metastatic
121 (2.11%)Gastric cancer metastasis
26 (0.45%)Lung cancer metastasis
17 (0.30%)Breast cancer metastasis
33 (0.58%)Other origins

155 (2.71%)Others

12 (0.21%)
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disease

1046 (18.27%)Common bile duct stone

1257(21.95%)Calculus

1994 (34.82%)
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obstruction

137 (2.39%)Intrahepatic stone

37 (0.65%)Pancreatic duct stone**

37 (0.65%)Gallstone (Mirizzi syndrome)

328 (5.73%)Acute pancreatitis**

566 (9.88%)Inflammatory

44 (0.75%)Chronic pancreatitis**
74 (1.29%)IgG4-related disese
48 (0.84%)Primary sclerosing cholangitis
59 (1.03%)Autoimmune hepatitis
13 (0.23%)Biliary tree infection (non-calculus)

171 (2.99%)Others

Fig.2

* Distal cholangiocarcinoma and ampullary carcinoma can be hard to completely differentiate due to their anatomical proximity. Pathological reports were referred to for the most likely site of origin.
**A considerable proportion of pancreatitis are caused by calculus disease. In this study, patients were categorized into “calculous” only when there was definite evidence of stones.
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