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 2 

Abstract  19 

Identifying biomarkers able to discriminate individuals on different health trajectories is crucial to 20 

understand the molecular basis of age-related morbidity. We investigated multi-omics signatures of 21 

general health and organ-specific morbidity, as well as their interconnectivity. We examined cross-22 

sectional metabolome and proteome data from 3,142 adults of the Cooperative Health Research in 23 

South Tyrol (CHRIS) study, an Alpine population study designed to investigate how human biology, 24 

environment, and lifestyle factors contribute to people's health over time. We had 174 metabolites and 25 

148 proteins quantified from fasting serum and plasma samples. We used the Cumulative Illness 26 

Rating Scale (CIRS) Comorbidity Index (CMI), which considers morbidity in 14 organ systems, to 27 

assess health status (any morbidity vs. healthy). Omics-signatures for health status were identified 28 

using random forest (RF) classifiers. Linear regression models were fitted to assess directionality of 29 

omics markers and health status associations, as well as to identify omics markers related to organ-30 

specific morbidity.  31 

Next to age, we identified 21 metabolites and 10 proteins as relevant predictors of health status and 32 

results confirmed associations for serotonin and glutamate to be age-independent. Considering organ-33 

specific morbidity, several metabolites and proteins were jointly related to endocrine, cardiovascular, 34 

and renal morbidity. To conclude, circulating serotonin was identified as a potential novel predictor 35 

for overall morbidity. 36 

 37 
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1. Introduction 42 

Non-communicable diseases (NCDs) are the leading cause of morbidity and premature mortality 43 

globally1. Age itself is the leading predictor for most NCDs: NCD prevalence increases with age and 44 

multiple diseases tend to cluster among older individuals2. Common biological processes triggered by 45 

molecular damage and modified by cellular and systemic responses drive biological aging and modify 46 

risks for multiple diseases in a tissue-, organ- and system-specific manner3. In turn, these health 47 

outcomes feed back into the underlying biological processes impacting the rate of aging and 48 

enhancing the risk for further disease4. It is therefore important to enhance our understanding of the 49 

molecular basis of age-related diseases to improve measures for disease prevention and general 50 

health5. Omics-based biomarkers provide insights into the molecular processes driving functional 51 

decline, they also help monitoring health trajectories, age-related physiological decline and disease 52 

onset6. Such biomarkers can also support the development of prevention strategies targeting those 53 

processes and provide surrogate endpoints in intervention studies5. The goal is early identification of 54 

individuals at higher risk of diseases, who will benefit most from such preventive interventions7. 55 

Protein biomarkers have the advantage of being direct biological effectors of the underlying genomic 56 

background7. Serum metabolomics on the other hand provides a snapshot of general physiological 57 

state of an organism, and is influenced by genetic, epigenetic, and environmental factors8,9. For 58 

instance, Tanaka et al. (2020)7 identified a proteomic signature of aging involving 76 proteins and 59 

predicting accumulation of chronic diseases and all-cause mortality. You et al. (2023)10 developed a 60 

disease specific proteomic risk score, which stratified the risk for 45 common disease conditions, 61 

resulting into an equivalent predictive performance over established clinical indicators for almost all 62 

endpoints. Similarly, Gadd et al. (2024)11 demonstrated the utility of proteomic scores in predicting 63 

several 10-year incident outcomes beyond factors, such as age, sex, lifestyle and clinically relevant 64 

biomarkers, showing the relevance of early proteomic contributions to major age-related diseases. 65 

Pietzner et al. (2021)12 used untargeted metabolomics to investigate signatures of multimorbidity and 66 

found that 420 metabolites are shared between at least two chronic diseases. A recent work 67 

demonstrated the potential of metabolomic profiles as a multi-disease assay to inform on the risk of 68 

many common diseases simultaneously. For 10-year outcome prediction of 15 selected endpoints a 69 

combination of age, sex and the metabolomic state was equal or outperformed established 70 

predictors13.  71 

 72 

Advances in different omics technologies and computing capabilities have also enabled the 73 

integration of multi-omics data to capture the complex molecular interplay of health and disease14. In 74 

TwinsUK, using data from 510 women, Zierer et al. (2016)15 integrated four high-throughput omics 75 

datasets and demonstrated the interconnectivity of age-related diseases by highlighting molecular 76 

markers of the aging process, which might drive disease comorbidities.  77 
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 78 

Here, we aimed to identify multi-omics signatures of general health among adult individuals using 79 

cross sectional data from the population-based Cooperative Health Research in South Tyrol (CHRIS) 80 

study, an Alpine population study designed to investigate how human biology, environment, and 81 

lifestyle factors contribute to people's health over time. We specifically included targeted serum 82 

metabolomics16 and plasma proteomics data17. The Cumulative Illness Rating Scale (CIRS) based 83 

Comorbidity Index (CMI)18, reflecting disease status and severity in 14 relevant organ systems, was 84 

used to assess health status by classifying individuals into having any morbidity (CMI≥1) or being 85 

healthy (CMI=0). We then applied predictive models using a random forest classifier to determine 86 

health status. The analyses were complemented by multiple linear regression models investigating 87 

associations and inter-dependencies of individual proteins or metabolites with morbidity assessed by 88 

each organ-specific CIRS domains, such as the endocrine-metabolic or the renal domains.  89 

2. Results 90 

The main analytic sample consisted of n=3,142 adult individuals from the CHRIS study with 91 

available metabolomics and proteomics data. The AbsoluteIDQ® p180 kit from Biocrates (Biocrates 92 

Life Sciences AG, Innsbruck, Austria) was used for metabolite quantification in fasting serum 93 

samples16. The high abundance plasma proteome was determined using the Scanning SWATH mass 94 

spectrometry-based approach17. We first present the study sample's main characteristics by health 95 

status (any morbidity vs. healthy) and the relationships between the co-occurring comorbidities. Next, 96 

we provide findings from the random forest (RF) analysis. The analyses were complemented by the 97 

integration of multiple linear regression models to better characterize actual associations of each 98 

significant feature from the RF analysis with health status. Finally, we investigated associations of 99 

omics signatures with organ specific morbidity using linear regression models. 100 

 101 

2.1  Health status and characteristics of the study sample  102 

The characteristics for the main analytic sample are presented in Table 1. The CIRS organ domains 103 

most completely described by the available data (completeness≥50%) were the hypertension, cardiac, 104 

respiratory, neurological, renal, vascular, endocrine-metabolic, hepatic and psychiatric/behavioral 105 

domains (Table 1). The remaining domains had <50% completeness and in general a lower 106 

proportion of unhealthy individuals was observed for these domains (Table 1). Among all 107 

individuals, 56% (n=1,751) were affected by at least one morbidity condition (CMI≥1). As expected, 108 

these were on average older than healthy individuals (CMI=0; Table 1, Figure 1). The top five organ 109 

domains affected by health problems were the hepatic, vascular, hypertension, endocrine-metabolic 110 

and the respiratory domain, with 27.4%, 14.9%, 12.8%, 10.3%, and 8.8% of morbidity prevalence 111 

estimates, respectively. We additionally provide the characteristics for the CHRIS cohort, regardless 112 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.15.24310410doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.15.24310410
http://creativecommons.org/licenses/by-nd/4.0/


 5 

of available omics data, to confirm the robustness of main characteristics and estimated disease 113 

prevalences in our analytic sample. These are reported in Supplementary Table S1 and Figure S1.  114 

 115 

Table 1. Characteristics of the main analytic sample with information on health status (any morbidity 116 

vs. healthy)a and CIRS domain specific morbidityb. 117 

 118 

 119 

 Overall  Healthy  Any morbidity  Completeness c 

Sample size, n (%) 3,142 1,391 (44%) 1,751 (56%)  

Age, mean (SD) 46.5 (16.7) 39.0 (13.9) 52.5 (16.3)  

Comorbidity Index, 

mean (SD) 
1.04 (1.34) 0 1.86 (1.30)  

Sex, n (%)     

Females 1748 (55.6%) 868 (62.4%) 880 (50.3%)  

Males 1394 (44.4%) 523 (37.6%) 871 (49.7%)  

Morbidity in CIRS domains, yes (%) 

Hepatic 861 (27.4%)  861 (49.2%) 59 

Vascular 467 (14.9%)  467 (26.7%) 62 

Hypertension 403 (12.8%)  403 (23.0%) 100 

Endocrine-Metabolic 325 (10.3%)  325 (18.6%) 74 

Respiratory 278 (8.8%)  278 (15.9%) 71 

Upper Gastrointestinal 168 (5.3%)  168 (9.6%) 44 

Psychiatric and 

behavioral 
151 (4.8%)  151 (8.6%) 53 

MBJd 141 (4.5%)  141 (8.1%) 48 

Renal 132 (4.2%)  132 (7.5%) 59 

Cardiac 110 (3.5%)  110 (6.3%) 71 

Neurological 82 (2.6%)  82 (4.7%) 66 

Lower Gastrointestinal 67 (2.1%)  67 (3.8%) 44 

Genitourinary 58 (1.8%)  58 (3.3%) 33 

EENTe 11 (0.4%)  8 (0.6%) 32 
aHealth status was assessed through the Cumulative Illness Rating Scale (CIRS) Comorbidity Index (CMI) by 

classifying individuals as having any morbidity (CMI≥1) or being healthy (CMI=0).  bCIRS domain specific 

morbidity is defined as having a score ≥2 in the given domain. cCompleteness presents the coverage of the 

necessary information available in the CHRIS Study with regard to the CIRS guidelines expressed in 

percentages. dMBJ=Musculoskeletal, bones and joints. eEENT= Ears, eyes, nose and throat.  
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 120 

 121 
Figure 1. Distribution of health status and age in the CIRSHS sample. A) Age distribution by Comorbidity 122 
Index, which is expressed as the total number of CIRS organ domains scoring ≥2. B) Absolute distribution of 123 
“Any morbidity” (yes,no) by age-group. The relative proportion of red-bars within each stacked column-bar 124 
represents the age-group specific prevalence of any morbidity.  C) Age distribution by morbidity conditions in 125 
the specific CIRS domains. 126 
 127 

Next, we explored relationships between the 14 CIRS domains through ordinary correspondence 128 

analysis (OCA; Figure 2). We observed proximity between the hypertension, renal and endocrine 129 

domains, the cardiac and the vascular domains, and between the neurological and the psychiatric 130 

domains. To compare the robustness of the comorbidity relationships we present the OCA analysis 131 

results for the CHRIS cohort in Supplementary Figure S2.  132 

 133 
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 134 
Figure 2. Biplot of ordinary correspondence analysis considering all subjects with available metabolomics and 135 
proteomics data, presenting relations between the 14 CIRS domains. CIRS domains with a stronger relation 136 
have longer (size consistency) and closer (direction consistency) loadings. 137 

 138 

2.2 Multi omics signatures of health status  139 

To avoid confounding of results due to the impact of medication17, we performed the analysis on 140 

metabolites and protein abundances adjusted for use of medications that were not considered in the 141 

CIRS definition (Supplementary Table S2).  142 

 143 

For the RF analysis we built a model including age, sex, 174 metabolites and 148 proteins as 144 

predictors. Overall, 100 RF models were generated, each containing 500 trees per model, using 145 

repeated random subsampling with 80% training and 20% validation set sizes, respectively. We 146 

compared the performance measures using the area under the receiver operating curve (ROC AUC;, 147 

as well as the Matthew's correlation coefficient (MCC) and MCC-F1. The RF model showed 148 

moderate performance (AUC=0.743, 95%Conficence Interval (CI)=0.740, 0.747; Figure 3; MCC and 149 

MCC-F1 are presented in Supplementary Figure S3). In addition, we built models that included 150 

varying sets of the predictors, which were a) age and sex, b) age, sex and metabolites, c) age, sex and 151 
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proteins, and d) age, sex, metabolites, proteins. The performance comparison of these to the full 152 

model are presented in Supplementary Text S1. The metabolomics/proteomics based models (b,c,d) 153 

show greater performance but the differences are not statistically significant.  154 

 155 

 156 
Figure 3. Performance evaluation of 100 random forest models including as predictors age, sex, 174 metabolites 157 
and 148 proteins to classify health status (any morbidity vs. healthy) represented as ROC AUCs. In the plots 158 
each validation run is shown as a gray line with the average curve shown in black. 159 

 160 

We next estimated the significance of the selected individual features using permutation testing. We 161 

obtained 33 significant features, including 21 metabolites and 10 proteins, with age being the most 162 

important variable and sex the least relevant (Figure 4A). Among the top ten omics features were the 163 

metabolites serotonin, glutamate, hexose, three acylcarnitines (C18:1, C16:1, C16), ornithine, and the 164 

proteins CFH, A2M and IGFALS. The medication-adjusted abundance distributions of these 165 

metabolites and proteins stratified by health status are presented in Figure 4B. Individuals with any 166 

morbidity had lower mean abundance of serotonin, taurine and lysoPC C18:2, and higher mean 167 

abundance of all other metabolites. Regarding proteins, individuals with any morbidity had lower 168 

mean abundances of A2M, IGFALS, IGHM, and F2, and higher abundance of CFH, C4BPA, A1BG, 169 

APOH, AFM, and RBP4. 170 

  171 
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 172 
Figure 4. Evaluation of importance for significant features identified through the random forest models 173 
including as predictors age, sex, 174 metabolites and 148 proteins, for health status (any morbidity vs healthy). 174 
#: Rank of the specific feature. Predictor significance was estimated by permutation testing, which generates 175 
100 background distributions, yielding 100 p-values for each predictor variable. Box plots are color-coded by 176 
the number of times a p-value was significant for such a variable (p <0.05): red, all 100 runs returned a 177 
significant p-value; orange, between 80 and 99 runs returned a significant p-value; blue, between 50 and 79 runs 178 
returned a significant p-value. Panels are restricted to features that are significant in at least 50% of all 179 
permutation runs. Density plots are scaled to have the same width, a median of zero (0) (horizontal bar) and 180 
standard deviation of one (1) for the healthy group. For comparability, the any morbidity group data have been 181 
scaled to the standard deviation of the healthy group. A) Mean decrease in Gini Index for significant features. B) 182 
Violin plots presenting scaled abundance distributions stratified by health status for significant features 183 
identified through RF, ordered by importance from left to right.  184 

 185 

To better characterize the actual association of each significant feature from the RF analysis with 186 

health status, we performed separate regression analyses with the abundances of each identified 187 

molecular feature as the response variable and health status (any morbidity vs. healthy), age and sex 188 

as the explanatory variables, allowing us to evaluate the influence of the feature on health status 189 
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independently of age or sex. Coefficients for health status were extracted from these models and are 190 

presented in Figure 5 and Supplementary Table S3. Individuals with any morbidity had, on average, 191 

22% lower mean abundance of serotonin and 12% higher abundance of serum glutamate. Twelve 192 

other features (C18:1, C16:1, lyso PC a C18:2, PC aa C32:1, tyrosine, taurine, hexose, kynurenine, 193 

AFM, CFH, RBP4, and A1BG) passed the multiple-testing correction, however, the observed 194 

differences in abundances did fall within the range of the technical variability and were thus not 195 

considered significant. Given that age was the strongest predictor for health status in the RF model, 196 

we further investigated and compared the coefficients for age and health association from the 197 

regression models. For some features, such as citrulline, abundances were almost entirely explained 198 

by age and the coefficient for the association with health status from the regression model was only 199 

very small, and not significant. For others, such as serotonin and glutamate, associations with health 200 

status were strong, even in these age-adjusted models, suggesting an age-independent association of 201 

these features with health.  202 

 203 

 204 
Figure 5. Volcano plot for the differential abundance of metabolomic and proteomic features of health status 205 
(any morbidity vs. healthy). Coefficients represent the log2�difference in average concentrations between the 206 
groups.  207 
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 208 

2.3 Metabolomic and proteomic signatures related to CIRS domain specific morbidity  209 

We further evaluated morbidity markers, implementing separate regression models for medication 210 

adjusted abundances of all 174 metabolites and 148 proteins with each CIRS domain as well as age 211 

and sex as explanatory variables, and evaluated whether markers were shared across - or specific for 212 

any domain (Figure 6; Supplementary Table S4). In total, 83 significant omics-disease associations 213 

were identified, with 40 metabolites and 17 proteins being significant for ≥1 CIRS domain. 214 

Associations were observed with the cardiac, vascular, hypertension, endocrine-metabolic, renal, 215 

hepatic, psychiatric, neurological, respiratory and lower gastrointestinal and genitourinary domains 216 

(Figure 6). Eleven metabolites (serotonin, glutamate, isoleucine, taurine, dihydroxyphenylalanine, 217 

several glycerophospholipids and acylcarnitines) and three proteins (F2, C3, A2M) were shared across 218 

multiple domains. For example, serotonin was related to the cardiac, vascular, hypertension and 219 

psychiatric systems, and glutamate to the hypertension, endocrine-metabolic, respiratory and hepatic 220 

domains. The proteins F2 and A2M were related to the cardiac, vascular, and the renal domains, and 221 

C3 to the hypertension and endocrine-metabolic domains. Overall, phosphatidylcholines and 222 

sphingolipids were all negatively associated to morbidity conditions in the related CIRS domain, 223 

whereas for acylcarnitines positive associations were observed. The directionality of biogenic amines 224 

and amino acids was not consistent across classes but remained consistent across CIRS domains. For 225 

proteins, negative associations were observed with APOB, APOD, APOM, IGHM, CD5L, PON1, 226 

FCN3, F2, C4BPA, IGHG2 and IGKC, whereas positive associations were found with SERPINA1, 227 

AFM, VTN, C3, HP, SERPIND1 and A2M. In general, all metabolites and proteins that were 228 

significantly associated with multiple domains showed consistent effect directions, being either 229 

negative or positive. 230 
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 231 

232 
 233 

Figure 6. Heatmap presenting associations between metabolites, proteins and CIRS organ domains. Associations were obtained from multiple linear regression m234 
adjusted for age and sex. Hierarchical clustering using the Eucledian distance as the similarity measure was applied. Only metabolites and proteins that were sign235 
associated with at least one specific CIRS domain are presented. *: highlights significant associations. β-coefficients are color-coded: red hues represent positive 236 
blue hues represent negative relations.237 
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 238 

3. Discussion 239 

In this cross-sectional analysis of CHRIS study data we identified age and 31 molecular features 240 

predicting overall health status (any morbidity vs healthy) in adults using a random forest classifier. 241 

These features included 21 metabolites (5 biogenic amines; 4 amino acids; 6 acylcarnitines; 5 242 

glycerophospholipids; and hexose monosaccharides), and 10 plasma proteins. Subsequent regression 243 

analyses confirmed a sizeable association of health status with both serotonin and glutamate, which 244 

was independent of age and sex. Analyses on single CIRS domains further identified multiple 245 

metabolite- and protein-disease associations, most being related to cardiovascular, hypertension, 246 

endocrine-metabolic and renal morbidity, revealing strong molecular interconnectivity across these 247 

related domains. 248 

Several studies have investigated omics markers of aging, longevity6,19, aging-related chronic 249 

diseases7,11–13,20,21 but only few have integrated multi-omics data with regards to general health 250 

assessment15,22. Independent of the approach used, great heterogeneity exists in the included omics 251 

technologies, protein and/or metabolite coverage, analytic tools as well as the outcome of interest, 252 

which makes comparison of studies challenging. In our study, multi-omics RF models identified 253 

several molecular features relevant for predicting health status (any morbidity vs. healthy).  254 

Among the age-independent predictive features was serotonin, which is involved in the regulation of 255 

energy, glucose and lipid metabolism. Changes in the serotonin system are known risk factors for 256 

many age-related diseases, such as diabetes and cardiovascular disease23,24, which was also observed 257 

in our study. Up to 95% of serotonin is produced in the gut, and only 5% of serotonin is synthesized 258 

by neurons, mainly in the central nervous system24. Although serotonin does not cross the blood-brain 259 

barrier, intestinal serotonin release causes neuronal activation in the brain stem, thus indirectly 260 

affecting the brain23. No other study has linked serotonin as a healthy aging marker per se. However, 261 

serotonin is a tryptophan derivative, and as inflammation and stress activate the tryptophan 262 

metabolism through the kynurenine pathway25, this consequently causes decreased production of 263 

serotonin26. The age associated upregulation of kynurenine and downregulation of serotonin therefore 264 

indicate a relevant role of tryptophan metabolism in inflammaging and aging27. Although tryptophan 265 

was included in the metabolomics panel in this study, it was not identified among the selected features 266 

in the RF model. These results indicate a robust relation between health and circulating serotonin 267 

levels, but the role of tryptophan metabolism and related pathways, and the putative causal 268 

relationships deserves further investigation.  269 
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Glutamate was also identified as an age-independent predictor for health status. This amino acid has 270 

been previously associated with physical frailty in elderly individuals28, supporting our findings. It has 271 

further been linked to cardiovascular disease and been suggested to be a potential biomarker of 272 

abdominal obesity and metabolic risk29. Glutamate is an important excitatory neurotransmitter in the 273 

brain, and although concentrations in the brain are much higher than in plasma as the blood brain 274 

barrier is not very permeable to glutamate30, it is also one of the most abundant amino acids in the 275 

liver, kidney and skeletal muscle, showing great metabolic versatility31. Glutamate plays a key role in 276 

protein synthesis and degradation32 and is a by-product of the catabolism of branched chain amino 277 

acids29. By linking amino acid and carbohydrate metabolism glutamate supports energy production, 278 

which has further implications for insulin secretion32. More specifically, glutamate is also a source of 279 

alpha-ketoglutarate, which plays a key role in energy metabolism and aging processes and that has 280 

been implicated in improved life and health span33–36. In this study the morbidity group is associated 281 

with higher levels of circulating glutamate, which might reflect a depletion of alpha-ketoglutarate 282 

relative to healthy individuals.  283 

Other relevant molecular features (hexose, C18:1, C16:1, lyso PC a C18:2, PC aa C32:1, tyrosine, 284 

taurine, kynurenine, AFM, CFH, RBP4, A1BG) were determined with the RF model, and the age 285 

independent associations confirmed by linear regression, but the difference in abundances was lower 286 

than the cut-off set relative to the coefficient of variation. We provide further discussion of those 287 

features in Supplementary Text S2.  288 

When looking into organ-specific morbidity, most health conditions in our study were related to the 289 

hepatic domain, followed by the vascular, hypertension, endocrine-metabolic and the renal domains. 290 

Using OCA, we observed closer relatedness between the renal, hypertension and endocrine-metabolic, 291 

as well as the vascular and cardiac domains. Our analyses linking omics markers to specific CIRS 292 

domains supported such connections. For example, we observed the metabolites serotonin, glutamate, 293 

taurine, isoleucine, three glycerophospholipids (lysoPC a C17.0/18.1/18.2), and two acylcarnitines 294 

(C3, C6 (C4)-1-DC) and the proteins C3, APOB, F2, A2M and HP as common markers among the 295 

cardiac, vascular, hypertension, endocrine-metabolic, renal but also the respiratory domains. The co-296 

occurrence of type-2 diabetes and cardiovascular diseases is very common, and its high degree of 297 

connectivity has been found with other diseases as well37. In addition, cardiovascular and kidney 298 

disease are closely interrelated and disease of one organ is known to cause dysfunction of the other38. 299 

Remaining molecular signatures were domain specific showing no connections among each other, 300 

such as the proteins VTN, APOD and a set of other amino acids (valine, leucine, alanine) being only 301 

related to the endocrine-metabolic domain. Such associations have also been reported previously in 302 

the literature39–41. Untargeted metabolomics analysis in the prospective, population-based EPIC-303 

Norfolk study identified 420 metabolites that were shared among two or more chronic diseases12, 304 
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further observing high connectivity among cardiometabolic and respiratory diseases across different 305 

biochemical classes of metabolites. Those findings highlight potential biological pathways related to 306 

the onset of multiple chronic diseases, such as liver and kidney function, lipid and glucose 307 

metabolism and low-grade inflammation, among others12.  308 

 309 

Strengths of our investigation are the wealth of the available data resource, foremost with the 310 

availability of both plasma metabolomics and proteomics data among the same participants. 311 

Additionally available phenotypic parameters, both quantitative (such as blood parameters), self-312 

reported or collected by trained study-nurses allowed a detailed characterization of the participants 313 

and enabled the assessment of the health status through CIRS, which has been shown to be a useful 314 

tool to measure morbidity in clinical research42.  315 

A first limitations is given by the study design, due to which participants with severe morbidity might 316 

have been underrepresented. In addition, metabolite and protein concentrations might be influenced 317 

by lifestyle, hormonal changes such as introduced by menopausal status and its treatment, as well as 318 

medication. Available information on medication use, irrelevant for the CIRS assessment, allowed 319 

adjustments to exclude spurious influence of this factor on the results. However, as the CIRS itself 320 

considers medication status to characterize certain diseases, it was not possible to distinguish whether 321 

the observed associations were driven by the disease itself or by the treatment for the given or related 322 

diseases. The present analyses are also limited to the set of metabolites and proteins that are possible 323 

to quantify by the analytical approaches used. Finally, given the cross-sectional design of the study 324 

we are only able to assess associations, hence no conclusions on temporal antecedence and causality 325 

can be drawn.Finally, we did not validate our models on an independent testing set.Despite these 326 

limitations, we were able to replicate several findings from previous studies, which supports reliable 327 

data and procedural quality within this study. Overall, using multi-omics data for profiling health 328 

status has great potential to identify changes in health trajectories at an earlier stage in life. This could 329 

help to develop new, effective target therapies for treating related as well as seemingly unrelated 330 

diseases occurring at the same time by uncovering common biological pathways connecting different 331 

underlying pathogenic mechanisms43. 332 

 333 

To conclude, we identified several molecular signatures of overall health status. Specifically, 334 

circulating serotonin is suggested as a promising novel predictor for health and morbidity independent 335 

of age, implicating a potential key role of tryptophan metabolism and serotonin related pathways in 336 

sustaining health. The results also point to glutamate as another predictor for health and morbidity in 337 

adults, in agreement with previous studies relating this amino acid to frailty, metabolic and 338 

cardiovascular health. Future studies are needed to investigate the mediating role of these signatures 339 

in relation to lifestyle and the environment to promote healthy aging. In this regard the application of 340 
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mendelian randomization approaches should be considered to further investigate causal links between 341 

circulating serotonin, serotonin metabolism and chronic disease. 342 

 343 

4. Methods 344 

4.1 Study cohort 345 

The CHRIS study is a population-based cohort of 13,393 adults aged 18 and over recruited from 13 346 

towns in the alpine Val Venosta/Vinschgau district in the Bolzano-South Tyrol province of northern 347 

Italy. The study was designed to investigate the genetic and molecular basis of age-related common 348 

chronic conditions and their interaction with lifestyle and environment in the general population44.  349 

The study was approved by the Ethics Committee of the Healthcare System of the Autonomous 350 

Province of Bolzano. The study conforms to the Declaration of Helsinki, and with national and 351 

institutional legal and ethical requirements.  352 

 353 

Metabolomics data were available for n=6,415 individuals and proteomics data for n=3,541. After 354 

excluding participants who were not fasting (n=475) or had missing information on fasting status 355 

(n=2), as well as women who were pregnant (n=25) or unsure about pregnancy (n=9), n=3,142 356 

individuals with overlapping omics data were available for analysis.  357 

 358 

4.2 Data collection 359 

Data, including collection of anthropometric measurements, blood and urine standard laboratory tests, 360 

blood pressure measurement and lifestyle information were collected at the study center following 361 

overnight fasting44. Laboratory test data included all main cardiovascular and metabolic risk factors, 362 

and markers of iron metabolism, coagulation, renal damage, thyroid, and liver function. Blood (serum 363 

and plasma) and urine samples were collected and stored in a biobank.  364 

 365 

To obtain information on disease history, participants were interviewed by trained study assistants. 366 

Specific clinical domains covered by the questionnaires were the circulatory and nervous system, as 367 

well as psychiatric disorders, cognition, autonomic and genitourinary function, endocrine, nutritional, 368 

and metabolic diseases. A detailed overview of the mode of assessment can be found elsewhere44. In 369 

addition, each questionnaire contained a section for “other diseases”, where participants could report 370 

any other condition not explicitly included in the domains, as free text. Detailed medication 371 

information was collected by scanning the barcodes of the boxes of the medication used within the 372 

seven days prior to study center visit and brought by the study participants to the interview. The 373 

Anatomical Therapeutic Chemical (ATC) medicinal product classification coding system45 and the 374 

mode, frequency, and duration of drug administration was recorded for each scanned medication. 375 
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 376 

4.3 Assessment of the health status 377 

To assess health in the CHRIS study sample, we used the Cumulative Illness Rating Scale (CIRS), 378 

which is a clinically relevant tool to measure the chronic medical illness burden by taking the number 379 

and the severity of chronic diseases into account46. For the purpose of this study we used the revised 380 

CIRS18, which assesses 14 organ related domains rating each of them according to the degree of 381 

severity ranging from: grade 0 (no impairment) to grade 4 (extremely severe impairment). Based on 382 

this guideline, we determined for all CHRIS participants the CIRS score for each domain by screening 383 

our questionnaire and interview data, as well as laboratory and clinical parameters for any given 384 

medical condition. We next derived the CIRS Comorbidity Index (CMI), which calculates the total 385 

number of CIRS organ domains with a score≥2 (domains with moderate or severe morbidity). To 386 

define health status we classified individuals as being healthy if the CMI=0 and as having any 387 

morbidity if CMI≥1, which means that at least one CIRS organ domain was identified with moderate 388 

or severe morbidity. We additionally considered organ specific health by classifying individuals as 389 

being healthy if the CIRS organ domain scored<2, or having morbidity if the respective domain 390 

scored≥2. 391 

We further assessed the completeness of the CIRS score with regard to the guidelines18 based on 392 

available CHRIS data for each domain. Detailed information on the completeness assessment is 393 

presented in Supplementary Text S3.  394 

 395 

Metabolite and protein quantification  396 

The AbsoluteIDQ® p180 kit from Biocrates (Biocrates Life Sciences AG, Innsbruck, Austria) was 397 

used for metabolite quantification in fasting serum samples. Details on data generation, quality 398 

assessment and normalization are provided in Verri Hernandez et al. (2022)16. In total, concentrations 399 

of 175 metabolites and lipids were quantified. Due to the large number of missing values, sarcosine 400 

was excluded from the present analysis. An overview of the included metabolites is presented in the 401 

Supplementary Table S5.  Prior to the main analysis all metabolite concentrations were log2 402 

transformed.  403 

The high abundance plasma proteome was determined using the Scanning SWATH mass 404 

spectrometry-based approach. Details on sample processing, data acquisition and normalization are 405 

provided in Dordevic et al. (2024)17. In total 148 highly abundant proteins were quantified and 406 

included in this analysis. An overview of the included proteins is presented in Supplementary Table 407 

S6.   408 

  409 

Metabolite and protein abundances were adjusted for frequent medication use with a linear model 410 

based approach: models were fitted separately for each metabolite or protein with their abundance as 411 
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response, and medication (as individual binary variables) as explanatory variables. Only medications 412 

taken at least twice per week and not considered for CIRS scoring were used. The residuals from 413 

these models were used to construct medication-independent abundances for the RF and subsequent 414 

regression analyses. Supplementary Table S2 lists the medications for which abundances were 415 

adjusted. 416 

 417 

4.4 Statistical analysis 418 

Differences in characteristics were presented as mean (standard deviation, SD) for continuous 419 

variables and as percentages for categorical variables.  420 

  421 

To investigate the relations between CIRS-domain specific morbidity (morbidity vs healthy), ordinary 422 

correspondence analysis (OCA) was performed using the rda function in the vegan package for R47.  423 

 424 

Random forest 425 

We used a random forest (RF) regression model to predict health status (any morbidity vs healthy), 426 

including as predictors age, sex, 174 metabolites and 148 proteins, respectively. Overall, 100 RF 427 

models were generated, each containing 500 trees per model, considering 80% training set sizes. 428 

Predictions were validated by 100 times stratified repeated random subsampling with 20% test set 429 

sizes, such that the ratio between the healthy and the any morbidity group of the original set sizes 430 

remained the same for the subsampled sets. We used the randomForest R package48 to perform the RF 431 

analysis. 432 

 433 

Model performance was measured based on the receiver operating characteristic (ROC) area under 434 

the curve (AUC), the Matthew's correlation coefficient (MCC), and the unit-normalized Matthews 435 

correlation coefficient (MCC-F1).  436 

 437 

The Gini Index was used to measure feature importance. We further estimated the significance of 438 

importance metrics for the random forest models by permuting the response variable using the 439 

rfpermute R package 49. This generates a background distribution and recalculates the 100 random 440 

forests, each with 500 trees. Usually, a background distribution is calculated only once; however, to 441 

increase the robustness of our results, we created 100 background distributions, yielding 100 p-values 442 

for each predictor variable. We considered associations with a predictor to be significant if ≥50 out of 443 

100 test runs yielded a p-value<0.05.  444 

 445 

To further investigate the influence of the significant features obtained from the RF analysis we 446 

additionally fitted multiple linear regression models to estimate the association between metabolites 447 
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and proteins from the selected significant features, each implemented as the response variable, with 448 

health status as the explanatory variable and by further adjusting the models for age (years) and sex.  449 

 450 

Investigation of omics-markers related to CIRS domains 451 

To aid interpretation from the RF analysis, we further investigated the relation between metabolites, 452 

proteins and the specific CIRS domains using again multiple linear regression models with 453 

implementing all available metabolites and proteins (response variable) one by one with each CIRS 454 

domain (explanatory variable), adjusted for age and sex.  455 

We adjusted all p-values for multiple hypothesis testing using the Bonferroni correction method 456 

(metabolites: 0.05/(14 CIRS domains*174 metabolites); proteins: 0.05/(14 CIRS domains*148 457 

proteins)), thus an adjusted p-value <0.05 was considered statistically significant. For all linear 458 

regression analyses we additionally required the difference in abundance between categories to be 459 

≥2* coefficient of variation (CV) for the given metabolite and >1*CV for the given protein to 460 

consider the markers significant. All analyses were conducted using the R statistical software, version 461 

4.1.0 (www.R-project.org). 462 

 463 
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