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Abstract

Diffusion Magnetic Resonance Imaging (dMRI) sensitises the

MRI signal to spin motion. This includes Brownian diffu-

sion, but also flow across intricate networks of capillaries.

This effect, the intra-voxel incoherent motion (IVIM), enables

microvasculature characterisation with dMRI, through metrics

such as the vascular signal fraction 𝑓𝑉 or Apparent Diffusion

Coefficient (ADC) 𝐷∗. The IVIM metrics, while sensitive

to perfusion, are in general protocol-dependent, and their in-

terpretation can change depending on the flow regime spins

experience during the dMRI measurements (e.g., diffusive vs

ballistic), which is in general not known — facts that ham-

per their clinical utility. Innovative vascular dMRI models are

needed to enable the in vivo calculation of biologically mean-

ingful markers of capillary flow. These could have relevant ap-

plications in cancer, for instance assessing responses to anti-

angiogenic therapies targeting tumor vessels. This paper tackles

this need by introducing SpinFlowSim, an open-source simula-

tor of dMRI signals arising from blood flow within pipe net-

works. SpinFlowSim, tailored for the laminar flow patterns in

capillaries, enables the synthesis of highly-realistic microvas-

cular dMRI signals, given networks reconstructed from histol-

ogy. We showcase the simulator by generating synthetic signals

for 15 networks, reconstructed from liver biopsies, and contain-

ing cancerous and non-cancerous tissue. Signals exhibit com-

plex, non-mono-exponential behaviours, pointing towards the

co-existence of different flow regimes within the same network,

and diffusion time dependence. We also demonstrate the poten-

tial utility of SpinFlowSim by devising a strategy for microvas-

cular property mapping informed by the synthetic signals, fo-

cussing on the quantification of blood velocity distribution mo-

ments, and of an apparent network branching index. These were

estimated in silico and in vivo, in healthy volunteers and in 13

cancer patients, scanned at 1.5T. In conclusion, realistic flow

simulations, as those enabled by SpinFlowSim, may play a key

role in the development of the next-generation of dMRI meth-

ods for microvascular mapping, with immediate applications in

oncology.

1 Introduction

In diffusion Magnetic Resonance Imaging (dMRI), water pro-

ton motion is encoded in the acquired signals through mag-

netic field gradients [Kiselev, 2017]. Diffusion encoding pro-

vides sensitivity not only to Brownian motion due to pure dif-

fusion, but also to pseudo-diffusion effects arising from the in-

coherent flow of blood protons through intricate capillary net-

works [Le Bihan et al., 1986]. Flow through sets of pseudo-

randomly distributed capillaries leads to magnitude dMRI sig-

nal attenuation, a phenomenon known as Intra-Voxel Incoherent
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Motion (IVIM) effect. IVIM enables the in vivo characterisation

of microvascular perfusion through dMRI [Le Bihan, 2019],

relevant in a variety of diseases, as, for example, in cancer

[Fokkinga et al., 2023]. Cancers feature aberrant microvascula-

ture, whose flow patterns can differ considerably from normal

tissues [Munn, 2003]. Tumour vasculature is targeted specif-

ically by anti-angiogenic treatments, which are being used in

several cancers (e.g., in liver or kidney carcinomas [Jayson et al.,

2016]) and tested in combination with therapies such as im-

mune check-point inhibitors, with promising results [Huinen

et al., 2021]. The non-invasive assessment of vascular proper-

ties through dMRI can equip physicians with new tools for tu-

mour characterisation and longitudinal assessment. It is thereby

an active field of research, with studies spanning from malig-

nancy detection to treatment response assessment [Iima et al.,

2018, Perucho et al., 2021].

IVIM methods typically rely on disentangling vascular from

extra-vascular tissue dMRI signals [Barbieri et al., 2016b, Bar-

bieri et al., 2016a]. Multi-exponential models are routinely used

for this purpose, providing metrics such as the vascular sig-

nal fraction 𝑓𝑣, or the pseudo-diffusion (vascular) apparent dif-

fusion coefficient (ADC) 𝐷∗. Both 𝑓𝑣 and 𝐷∗ are useful in-

dices, as they have shown value in cancer assessment [Dappa

et al., 2017]. However, these metrics have limitations, since

they entangle several, different characteristics of the microvas-

cular scale into a single number, e.g., the product between the

means of the blood velocity and capillary length distributions in

the diffusive flow regime [Le Bihan and Turner, 1992]. More-

over, they do not account for higher-order cumulants of the dif-

fusion decay (e.g., kurtosis terms proportional to 𝑏2), and their

actual numerical value can depend on the acquisition protocol in

non-trivial ways [Wu and Zhang, 2019]. In practice, this makes

routine IVIM metrics semi-quantitative, surrogate parameters,

a fact that, together with their known high variability [Barbieri

et al., 2020], hampers their practical clinical deployment.

Recently, the numerical simulation of dMRI signals within

histologically-realistic voxel models is being increasingly used

to inform parameter estimation [Nilsson et al., 2010, Nguyen

et al., 2014, Fieremans and Lee, 2018, Buizza et al., 2021,

Morelli et al., 2023]. Simulation-informed approaches in-

crease the realism of signal models, and may thus improve the

biological fidelity of dMRI parametric maps [Nedjati-Gilani

et al., 2017, Palombo et al., 2019]. However, up to date dMRI

simulations have been dominated by Monte Carlo Brownian

random walks [Hall and Alexander, 2009, Ginsburger et al.,

2019, Rafael-Patino et al., 2020, Lee et al., 2021]. Given that

only a few simulation frameworks have focussed on blood flow

[Van et al., 2021, Weine et al., 2024], there is an urgent need

for new, histologically-meaningful, and reproducible simulation

frameworks tailored for dMRI signal arising from blood flow.

These could be used to inform novel numerical approaches for

non-invasive microvasculature mapping based on dMRI, which

could equip oncologists with biologically-meaningful vascular

markers in clinical settings. The new dMRI methods could

enable the characterisation of capillary flow patterns that are

not captured by classical IVIM 𝑓𝑣 and 𝐷∗, e.g., informing on

anisotropic flow patterns, higher-order cumulants or diffusion-

time dependence of the vascular signal.

With this article we aim to fill this scientific gap. We present

an open-source framework for blood flow simulation within vas-

cular networks, referred to as SpinFlowSim from here on, and

demonstrate its potential to inform microvasculature property

estimation in dMRI. We start by illustrating the computational

engine behind SpinFlowSim, based on pipe network theory. Af-

terwards, we describe the synthesis of dMRI signals arising

from flow within realistic vascular networks obtained from his-

tological images of human tumours. Finally, we showcase a

potential application of SpinFlowSim, by using the synthetic

signals to inform microvasculature property estimation, which

is demonstrated in silico and in vivo, in healthy volunteers and

in cancer patients.

2 Methods

In this section we illustrate the computational engine upon

which SpinFlowSim relies. Afterwards, we present the histo-

logical data used to generate realistic vascular networks, and

then describe how synthetic dMRI signals were used to inform

microvasculature parameter estimation in silico and in vivo.

SpinFlowSim is made freely available at https://github.

com/radiomicsgroup/SpinFlowSim.

2.1 Simulation framework

In SpinFlowSim we aim to reconstruct the distribution of volu-

metric flow rate (VFR) across the different segments of an input

vascular network. The following characteristics of the vascular

network are specified directly by the user:

• a list of capillary segments with their radii;

• the 3D coordinates of the extremities of each segment, re-

ferred to as nodes;

• the inlet/outlet of the whole network;

• the input VFR 𝑞𝑖𝑛.

To obtain the VFR distribution, we solve a linear inverse

problem, in which the pressure drop Δ𝑝𝑘,𝑛 across each pair of

connected nodes (𝑘, 𝑛) is proportional to the VFR 𝑞𝑘,𝑛 between

𝑘 and 𝑛 through a flow resistance coefficient 𝑅𝑘,𝑛, via

Δ𝑝𝑘,𝑛 = 𝑅𝑘,𝑛 𝑞𝑘,𝑛. (1)

The approach, valid for the laminar flow regime in micro-

capillaries, has been recently proposed for capillary flow simu-

lations [Schmid et al., 2015, Van et al., 2021].

To solve for all unknown 𝑞𝑘,𝑛 in Eq. 1, we rely on PySpice

[Salvaire, 2023], a python package for electric circuit analysis,

given that our flow problem is formally equivalent to solving a

passive electric circuit (electric-hydraulic analogy). Note that

in a passive electric circuit, the voltage drop across a resistor

is proportional to the product of the electric current through the

resistor and the resistance of the element itself, i.e., it is formally

equivalent to Eq. 1. In this first demonstration of SpinFlowSim,

we compute the resistance between nodes 𝑘 and 𝑛 through a

modified Hagen-Poiseuille law, as done in [Blinder et al., 2013]:

𝑅𝑘,𝑛 = 4

(
1 − 0.863 𝑒

−
𝑟𝑘,𝑛

14.3𝜇m + 27.5 𝑒
−

𝑟𝑘,𝑛

0.351𝜇m

)
8𝜇 𝐿𝑘,𝑛

𝜋 𝑟4
𝑘,𝑛

.

(2)

Eq. 2 models the effect of the hematocrit as well as erythrocyte-

capillary wall interactions [Pries and Secomb, 2008, Blinder

et al., 2013]. Above, 𝜇 is the dynamic viscosity of pure plasma

[Késmárky et al., 2008] (𝜇=1.20 mPa s at 37ºC), 𝑟𝑘,𝑛 is the ra-

dius of the capillary segment, and 𝐿𝑘,𝑛 its length.
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Figure 1: Outline of the proposed SpinFlowSim framework. The dashed red box indicates user-provided input information. An

illustrative example of a network segmented on a biopsy with resolved volumetric flow rates for an input flow 𝑞𝑖𝑛 = 3.1 ⋅ 10−3

mm3/s and synthesised signals are shown.
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After recovering the VFR 𝑞𝑘,𝑛 between each pair of connected

nodes, in SpinFlowSim we obtain the corresponding mean ve-

locity

𝑣𝑘,𝑛 =
𝑞𝑘,𝑛

𝜋𝑟2
𝑘,𝑛

. (3)

Finally, the 3D trajectory 𝐩𝑤(𝑡) of the generic 𝑤-th blood spin

is synthesised by integrating the discrete-time system

𝐩𝑤 (𝑡 + Δ𝑡) = 𝐩𝑤(𝑡) + Δ𝑡 𝑣𝑤(𝑡)𝐧𝑤(𝑡) (4)

given an initial position 𝐩𝑤(0) = 𝐩𝑤,0. In Eq. 4, Δ𝑡 is the tem-

poral resolution of the simulation, while 𝑣𝑤(𝑡) and 𝐧𝑤(𝑡) are

the instantaneous velocity vector magnitude and direction ex-

perienced by the spin at time 𝑡. Spins’ initial positions 𝐩𝑤,0 are

seeded across the whole network, with uniform spin density in

each segment. The numbers of spins assigned to each segment

is proportional to its volume [Van et al., 2021]. During the in-

tegration of Eq. 4, spins reaching the termination of a capillary

are assigned at random to one of the emanating branches. The

probability of a spin being assigned to a specific branch is pro-

portional to the VFR through that branch [Van et al., 2021].

More formally, once a flowing spin reaches the 𝑘-th node, the

probability of it continuing its trajectory in the 𝑘 → 𝑛 branch

emanating from 𝑘 is 𝑝(𝑘 → 𝑛) =
𝑞𝑘,𝑛∑
𝑛 𝑞𝑘,𝑛

. Moreover, spins reach-

ing the network outlet continue flowing through a shifted copy

of the vascular network, whose inlet position coincides exactly

with the outlet itself. This ensures that no spins are lost during

the simulation (periodic boundary condition). SpinFlowSim

supports the visualisation of spin trajectories as a video, in order

to facilitate the visual inspection of the simulation output.

Once the trajectories for 𝑊 spins have been generated, we

synthesise a complex-valued dMRI signal 𝑠 for any input gra-

dient wave form 𝐆(𝑡) as [Fieremans and Lee, 2018]

𝑠 =
1

𝑊

𝑊∑

𝑤=1

𝑒−𝑖 𝛾 Δ𝑡
∑𝑇

𝑡=0 𝐩𝑤(𝑡) ⋅𝐆(𝑡) (5)

given the requested total simulation duration 𝑇 .

2.2 Vascular networks

We deployed SpinFlowSim on vascular networks reconstructed

from 2D histological images. These consisted of biopsies ob-

tained in patients suffering from advanced tumours and partic-

ipating in an ongoing imaging study at the Vall d’Hebron Insti-

tute of Oncology (Barcelona).

The biopsied tissue, taken from liver tumours, was processed

and stained. Digitised images of the stained tissue were ac-

quired on a Hamamatsu C9600-12 optical slide scanner (resolu-

tion: 0.454 𝜇𝑚). For this study, we used 11 histological images,

obtained from 11 patients. For each patient, we had access to

either a routine hematoxylin-eosin (HE) stain (n=9) or a CD31

stain (n=2).

We drew a total of 15 2D networks. We drew networks

manually, by tracing visible capillaries in non-cancerous liver

parenchyma or in cancerous regions-of-interest (ROIs). Net-

works were drawn on approximately square ROIs, of sizes rang-

ing from 250 to 550 𝜇𝑚 per side. Networks were made of inter-

connected segments, with curved capillaries approximated by a

piece-wise series of straight pipes. A characteristic radius was

assigned to each segment by averaging three radius measure-

ments, performed on at the inlet, middle point, and outlet level.

For each network, we computed an approximated network size

as the maximum euclidean distance between any pair of nodes.

We also computed the mean and standard deviation of the cap-

illary radii and lengths (𝑟 and 𝐿).

We generated 100 VFR distribution realisations by chang-

ing randomly the position of the network inlet/outlet 10 times,

and varying the input VFR 𝑞𝑖𝑛 for each inlet/outlet pair (10

uniformly-spaced 𝑞𝑖𝑛 values in [1.5⋅10−4; 5.5⋅10−3] mm3∕s), to

cover plausible blood capillary velocities [Ivanov et al., 1981].

The total duration and the temporal resolution of the simula-

tions were 𝑇 = 100𝑚𝑠 and Δ𝑡 = 0.01𝑚𝑠. We characterised

each realisation by computing the mean (𝑣𝑚) and standard de-

viation (𝑣𝑠) of the velocity distribution across capillary seg-

ments, as well an Apparent Network Branching (𝐴𝑁𝐵 index).

𝐴𝑁𝐵 measures the average number of segments spins travel

through during the simulation. Spearman’s correlation coeffi-

cients among all possible pairs of mean 𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵, 𝑟 and 𝐿

were computed.

Finally, we synthesised illustrative dMRI signals for routine

pulsed-gradient spin echo (PGSE) sequences. We probed b-

values in the range [0; 150] s/mm2, and varied the gradient sep-

aration Δ in Δ = {30, 50, 70} ms, while fixing the gradient

duration to 𝛿 = 20 ms. Signals were generated for two orthogo-

nal directions within the plane containing the 2D networks, and

their magnitude averaged. Signals were characterised through

the computation of the vascular ADC 𝐷∗ via linear fitting (min-

imum/maximum 𝑏 of 0/100 s/mm2, with 10 s/mm2 increments).

We investigated whether microvascular properties are encoded

in the diffusion-weighted (DW) signal by scattering 𝐷∗ against

each of 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 in turn, at fixed gradient separation Δ.

Linear fitting between 𝐷∗ and each microvascular property was

performed and Spearman’s correlation coefficients were com-

puted, in order to corroborate qualitative trends on scatter plots.

2.3 Microvascular property estimation from

dMRI

We also investigated whether the synthetic signals generated

with SpinFlowSim can be used to inform microvascular pa-

rameter estimation in dMRI. We hypothesised that, for a given

dMRI protocol, large dictionaries of synthetic, noise-free sig-

nal arrays 𝐒 = {𝐬1, ..., 𝐬𝑀}, coupled with their corresponding

vascular parameter arrays 𝐏 = {𝐩1, ...,𝐩𝑀}, can be used to

find practical numerical implementations of the forward sig-

nal model 𝐏 ↦ 𝐒(𝐏). Numerical implementations of this type

could be easily incorporated in standard non-linear least square

(NNLS) fitting, used routinely in dMRI, thus avoiding the need

for approximated analytical signal expressions.

In the following sections, we will describe in silico analyses

performed to investigate the feasibility of simulation-informed

fitting. We will then describe experiments performed to demon-

strate the approach in vivo, based on the acquisition of dMRI

scans in healthy volunteers and cancer patients at 1.5T.

2.3.1 In silico estimation

We used SpinFlowSim to synthesise signals for 3 realistic dMRI

protocols, and then analysed such signals to test whether it is

possible to estimate 𝑣𝑚, 𝑣𝑠 and𝐴𝑁𝐵 from noisy measurements.

One of the protocols represents a rich, comprehensive PGSE

acquisition, encompassing several b-values in a measurement

regime with high sensitivity to IVIM effects (i.e., 𝑏 smaller than

approximately 100 s/mm2 [Le Bihan, 2019]), as well as multi-

ple diffusion times. A second protocol is instead a shorter subset
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Figure 2: Vascular networks segmented on digitised liver tumor biopsies (resolution: 0.454 𝜇m). Each network is labelled

as “Non-Cancerous” or “Cancerous”, depending on whether it was drawn on non-cancerous liver parenchyma or on tumour

tissue. For the latter case, the primary cancer is also indicated (CRC stands for Colorectal Cancer, while HCC for Hepatocellular

Carcinoma). The non-cancerous networks were drawn on liver tissue found on liver tumour biopsies of patients suffering from

Melanoma (n=2) and Ovarian cancer (n=1).

of the rich protocol. Finally, the third protocol matches a DW

twice-refocussed spin echo (TRSE) used for in vivo imaging.

Signals were generated for two orthogonal directions within the

plane containing the 2D networks, and their magnitude aver-

aged. In summary, the protocols were:

• a rich PGSE protocol, referred to as “richPGSE”. It con-

sisted of a total of 99 measurements, consisting of 9 𝑏 = 0

and 10 non-zero b-values 𝑏 = {10, 20, 30, 40, 50, 60, 70,

80, 90, 100} s/mm2, each acquired for 9 unique diffusion

times, corresponding to (𝛿,Δ) = {10, 20, 30} ms × {30,

50, 70} ms.

• A second PGSE protocol, referred to simply as “PGSE”. It

is a subset of the former, and describes a more realistic ac-

quisition that could be implemented under time pressure.

It encompassed 3 𝑏 = 0 and 6 diffusion-weighted (DW)

measurements, namely 𝑏 = {50, 100} for 3 different dif-

fusion times. The gradient duration 𝛿 was fixed to 20 ms,

while the 3 diffusion times were achieved by varying Δ as

Δ = {30, 50, 70} ms.

• a DW twice-refocussed spin echo (TRSE) protocol, re-

ferred to simply as “TRSE”. It matches the protocol im-

plemented on a 1.5T Siemens Avanto system in vivo (see

section 2.3.2 below). It consisted of 3 non-DW and 6 DW

measurements. These were 𝑏 = {50, 100}, acquired for

3 diffusion times. The gradient duration of the 4 gradi-

ent lobes (Supplementary Fig. 1) for the 3 diffusion times

were: 𝛿1 = {8.9, 13.2, 18.9} ms, 𝛿2 = {17.6, 19.3, 21.0}

ms, 𝛿3 = {20.4, 24.8, 30.5} ms, 𝛿4 = {6.0, 7.7, 9.5}

ms. The separation between the onset of the gradient lobes

(Supplementary Fig. 1) were instead: Δ1,2 = {17.4, 21.7,

27.5} ms, Δ1,4 = {63.9, 74.2, 87.5} ms.

Briefly, we performed a leave-one-out experiment. For each

vascular network in turn, we used noise-free signals from 14

out of 15 substrates to learn the forward signal model (𝑣𝑚,

𝑣𝑠, 𝐴𝑁𝐵) ↦ 𝑠(𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵), which we then used for es-

timating 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 on noisy signals for the remain-

ing 15-th network (signal-to-noise ratio (SNR) at 𝑏 = 0 of

20). The forward signal model (𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵) ↦ 𝑠(𝑣𝑚, 𝑣𝑠,

𝐴𝑁𝐵) was learnt by interpolating the set of paired examples

signals/vascular parameters with a radial basis function (RBF)

regressor, so that fitting could be performed by embedding

𝑠(𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵) into standard maximum-likelihood NNLS rou-

tines [Panagiotaki et al., 2012]. Fitting was performed with the

freely-available mri2micro_dictml.py tool, part of the bodymri-

tools python repository (https://github.com/fragrussu/
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bodymritools). To characterise fitting performance, we gen-

erated scatter plots between ground truth and estimated 𝑣𝑚, 𝑣𝑠
and 𝐴𝑁𝐵, and computed corresponding Spearman’s correla-

tion coefficients.

2.3.2 In vivo estimation

We also investigated the feasibility of using synthetic signals

from SpinFlowSim to inform microvascular property estima-

tion in vivo, on both healthy volunteers and cancer patients.

All participants were scanned after providing informed writ-

ten consent, in imaging sessions approved by the Clinical Re-

search Ethics Committee (CEIm) of the Vall d’Hebron Univer-

sity Hospital of Barcelona, Spain (codes: PR(AG)29/2020 and

PR(IDI)109/2022)).

Healthy volunteers: data and analysis We scanned two

healthy volunteers in their thirties on a 1.5T Siemens Avanto

system. The acquisition included routine anatomical imaging

and a DW TRSE Echo Planar Imaging (EPI) scan, with salient

parameters: resolution of 1.9 × 1.9 × mm2; slice thickness of 6

mm; 𝑏 = {0, 50, 100, 400, 900, 1200, 1600} s/mm2, with each

𝑏 acquired at 3 different diffusion times, with the same diffu-

sion times as the “TRSE” protocol used simulations (see section

2.3.1 above); TE = {93, 105, 120} ms for the short, intermedi-

ate, and long diffusion time; TR = 7900 ms; trace DW imaging;

NEX = 2; GRAPPA = 2; 6/8 Partial Fourier imaging; BW =

1430 Hz/pixel; acquisition of a 𝑏 = 0 image at the shortest TE

with reversed phase encoding.

We denoised scans with MP-PCA [Veraart et al., 2016], miti-

gated Gibbs ringing [Kellner et al., 2016] and corrected for mo-

tion and EPI distortions [Andersson et al., 2003]. Subsequently,

we normalised the signal acquired at each TE to the 𝑏 = 0 sig-

nal level at the same TE, and then estimated the vascular signal

𝑆𝑉 for 𝑏 ≤ 100 s/mm2 in each voxel [Gurney-Champion et al.,

2018, Wang et al., 2021], as

𝑆𝑉 = 𝑆 − 𝑆𝑇 . (6)

Above, 𝑆 is the measured signal and 𝑆𝑇 is an estimate of the

extra-vascular tissue signal. 𝑆𝑇 was computed by extrapolat-

ing to 𝑏 ≤ 100 s/mm2 an ADC fit 𝑆𝑇 = 𝑆𝑇 (𝑏 = 0) 𝑒−𝑏𝐴𝐷𝐶𝑇

performed on signal measurements at 𝑏 > 100 s/mm2.

Afterwards, we fitted (𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵) voxel-by-voxel, using

the same fitting procedure employed in in silico experiments

above, but learning the forward model 𝐏 ↦ 𝐒(𝐏) on all 1500

synthetic signals from all vascular networks. For reference, we

also computed more standard IVIM metrics 𝑓𝑉 and 𝐷∗, by fit-

ting 𝑆𝑉 = 𝑆𝑉 (𝑏 = 0) 𝑒−𝑏𝐷
∗

to the vascular signal estimated at

the shortest TE, with 𝑓𝑉 ≈ 1 −
𝑆𝑇 (𝑏=0)

𝑆(𝑏=0)
. Mean and standard er-

rors of 𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵, 𝑓𝑉 and 𝐷∗ within manually drawn ROIs

were computed. The ROIs were placed in the liver, spleen, as

well as medulla and cortex of a kidney.

Cancer patients: data and analysis Finally, we tested our

simulation-informed parameter estimation on dMRI scans of 13

patients suffering from advanced solid tumours (7 females, 5

males; approximate age range 30-85 y.o.), who participated in

an ongoing imaging study at the Vall d’Hebron Institute of On-

cology (Barcelona, Spain). Patients were scanned on the same

1.5T Siemens Avanto system used to acquire data on healthy

volunteers, and according to the same imaging protocol. dMRI

scans underwent the same processing as described above, ob-

taining voxel-wise maps of 𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵, 𝑓𝑉 and 𝐷∗. Mean

and standard deviation of such metrics within tumours were ob-

tained, with tumours manually segmented by an expert radiol-

ogist (R.P.L).

3 Results

3.1 Vascular networks

Fig. 2 illustrates the 15 vascular networks generated in this

study from liver tumour biopsies. Out of the total, 3 were seg-

mented on non-cancerous liver parenchyma, while the remain-

ing 12 on cancerous tissue. The 3 non-cancerous networks were

drawn on liver tissue found on the histological slide, adjacent to

tumour tissue (n=2 melanoma metastases; n=1 ovarian cancer

metastasis). The 12 networks drawn on cancerous tissue came

from primary liver hepatocellular carcinoma (HCC, n=5), or

from liver metastases of colorectal cancer (CRC, n=5), endome-

trial cancer (n=1), and melanoma (n=1).

Table 1 reports salient statistics of the vascular networks

shown in Fig. 2, related to capillary radii, length, velocity dis-

tribution, and number of vascular segments sensed by flowing

spins. The table shows that different network morphologies lead

to different blood velocity distributions. For example, mean 𝑣𝑚
across VFR realisation can vary from as low as approximately 4

mm/s up to 25 mm/s. This range of variation is mirrored in the

average number of capillaries blood travels through during the

simulation (𝐴𝑁𝐵 metric), which varies from just over 12 up to

almost 57 segments. Supplementary Fig. 2 shows distributions

of 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 for all networks, across the 10 different in-

let/outlet realisations and given an illustrative input VFR 𝑞𝑖𝑛 =

3.1⋅10−3 mm3/s. Distributions are skewed, and strong contrasts

in terms of 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 are seen across networks (e.g.,

compare Net 3 with Net 4). Supplementary Fig. 3 shows cor-

relation coefficients among all possible pairs of metrics among

𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵, as well as mean segment length 𝐿 and capillary

radius 𝑟. There is a strong, positive correlation between 𝑣𝑚 and

𝑣𝑠 and 𝐴𝑁𝐵 (0.89, 0.82), and a moderate positive correlation

between 𝑣𝑠 and 𝐴𝑁𝐵 (0.55). All of 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 are neg-

atively correlated with 𝐿 and 𝑟 (strongest correlations between

𝐴𝑁𝐵 and 𝑟, of -0.93; weakest for 𝑣𝑠 and𝐿, of -0.19). Finally, 𝐿

and 𝑟 are positively correlated between each other (correlation

of 0.68).

Fig. 3 shows examples of VFR and blood velocity fields re-

constructed in two vascular networks with SpinFlowSim, along-

side dMRI signals. The two networks were segmented on non-

cancerous liver parenchyma of a patient suffering of melanoma

(top panel, Net 6) and on metastatic CRC (bottom panel, Net

12). The figure highlights that distributions of VFRs and ve-

locities arise across network segments, owing to their different

resistance to flow. The segments with the highest VFRs do not

necessarily feature the highest velocities, due to differences in

terms of segment diameter. The VFR distributions lead to fast

dMRI signal attenuation in both networks, with most of the sig-

nal decayed by 𝑏 = 150 s/mm2. The signal decay is not mono-

exponential (note the log-scale in the y-axis). Oscillatory pat-

terns are also seen as well as some diffusion time dependence,

with the dMRI signal decreasing slightly with increasing Δ at

fixed 𝑏.

Fig. 4 reports on the relationship between 𝐷∗ and microvas-

cular properties 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵. 𝐷∗ increases with increasing

𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵. There is a strong positive correlation between
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Table 1: Summary of vascular networks with corresponding microvascular properties generated for this study. The non-cancerous

networks were drawn on non-cancerous liver tissue found on biopsies from melanoma (n=2) and ovarian cancer (n=1) metastases.

Mean patient age was 66.2 years. Male = 5, Female = 6. CRC = colorectal cancer, HCC = hepatocellular carcinoma, EC =

endometrial cancer.

Network Description 𝑣𝑚
[mm/s]

𝑣𝑠 [mm/s] ANB [segments] 𝑟 [µm] 𝐿 [µm] Size [mm]

Net. 1 Cancerous liver, CRC 13.76

(8.52)

14.05

(9.69)

46.51 (22.15) 3.1 (0.9) 46.24

(13.95)

0.35

Net. 2 Cancerous liver, melanoma 11.24

(7.01)

13.69

(9.18)

28.33 (13.92) 4.02

(1.37)

60.85

(21.59)

0.39

Net. 3 Cancerous liver, CRC 24.54

(14.9)

19.76

(12.14)

56.91 (23.3) 2.45

(0.95)

53.19

(21.38)

0.24

Net. 4 Non-cancerous liver 3.92

(2.39)

3.12

(1.98)

12.38 (6.42) 5.14

(1.55)

90.55

(31.33)

0.50

Net. 5 Non-cancerous liver 10.42

(6.38)

8.16

(5.01)

35.95 (17.13) 3.76

(1.03)

53.03

(15.54)

0.39

Net. 6 Non-cancerous liver 10.99

(6.79)

11.05

(6.98)

36.92 (17.55) 3.43 (0.9) 48.23

(13.26)

0.42

Net. 7 Cancerous liver, HCC 10.54

(6.59)

10.24

(6.8)

33.77 (16.18) 3.54

(1.03)

60.12

(17.81)

0.36

Net. 8 Cancerous liver, HCC 8.42

(7.68)

12.71

(10.52)

13.74 (6.71) 5.36

(1.78)

70.9

(22.43)

0.60

Net. 9 Cancerous liver, HCC 13.92

(9.27)

17.06

(12.41)

32.78 (16.59) 3.7 (1.05) 55.28

(16.45)

0.41

Net. 10 Cancerous liver, HCC 8.68

(5.46)

9.8 (6.52) 17.96 (8.71) 4.71

(1.59)

68.17

(21.72)

0.44

Net. 11 Cancerous liver, HCC 19.14

(12.03)

19.92

(12.57)

33.83 (15.22) 3.37 (1.0) 61.24

(18.89)

0.44

Net. 12 Cancerous liver, CRC 5.49

(3.36)

6.76

(4.66)

19.84 (10.15) 4.42

(1.42)

60.47

(19.98)

0.38

Net. 13 Cancerous liver, CRC 6.44 (4.1) 6.26

(3.98)

23.84 (11.8) 4.59

(1.66)

55.5

(20.63)

0.32

Net. 14 Cancerous liver, EC 12.45

(7.55)

10.92

(6.73)

48.51 (22.53) 3.64

(1.27)

45.1

(16.13)

0.29

Net. 15 Cancerous liver , CRC 13.54

(8.5)

11.23

(6.97)

44.38 (19.67) 3.05

(1.13)

50.68

(21.07)

0.32

𝐷∗ and 𝑣𝑚 and between 𝐷∗ and 𝐴𝑁𝐵 (e.g., Spearman’s 𝑟 =

0.85 at Δ = 30 ms for both 𝑣𝑚 and 𝐴𝑁𝐵), while the correlation

is moderate between 𝐷∗ and 𝑣𝑠 (𝑟 = 0.43 at Δ = 30 ms for 𝑣𝑠).

The dependence of 𝐷∗ on 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 is modulated by

the diffusion gradient separation Δ, albeit slightly. For all three

metrics, 𝐷∗ increases with increasing Δ.

3.2 Microvascular property estimation from

dMRI

3.2.1 In silico estimation

Fig. 5 reports results from in silico estimation of 𝑣𝑚, 𝑣𝑠 and

𝐴𝑁𝐵 from noisy vascular signals, synthesised according to

protocols “TRSE”, “PGSE” and “richPGSE”. There is a mod-

erate correlation between ground truth and estimated 𝑣𝑚, 𝑣𝑠 and

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.15.24310335doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.15.24310335
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Examples of resolved vascular networks. The top row shows results from a vascular network segmented on a HE-stained

non-cancerous liver region, found on a biopsy of a patient with metastatic melanoma (Net 6). The bottom panel shows results from

a CD31-stained rectal cancer area (Net 12). From left to right, we show the vascular network, the resolved blood flow velocity

field for 𝑞𝑖𝑛 = 3.1 ⋅ 10−3 mm3/s, and examples of dMRI signal decay over a range of b-values (0-150 𝑠∕𝑚𝑚2) and diffusion times

(Δ = {30, 50, 70} ms, 𝛿 = 20 ms).

𝐴𝑁𝐵 values for protocols “PGSE” and “PGSE” (minimum cor-

relation: 0.45 for 𝑣𝑠 for protocol “TRSE”; maximum correla-

tion of 0.65 for 𝐴𝑁𝐵 for protocol “PGSE”). Correlation is in-

stead strong for protocol “richPGSE”, e.g., up to 0.79 for met-

ric 𝐴𝑁𝐵. As an example, Supplementary Fig. 4 illustrates the

complete set of synthetic signals generated for protocol “TRSE”

across the 15 segmented networks. The figure highlights that

the signal decay spans several order of magnitude: variations

in the microvascular characteristics of the networks lead to re-

markably different vascular dMRI signals.

3.2.2 In vivo estimation

Fig. 6 shows IVIM metrics 𝑓𝑉 and 𝐷∗ alongside 𝑣𝑚, 𝑣𝑠 and

𝐴𝑁𝐵 in the liver and spleen of healthy volunteer 1. On visual

inspection, 𝑓𝑉 and𝐷∗ are systematically higher in the liver than

in the spleen. This contrast is mirrored by 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵,

which are as well higher in the former organ than in the lat-

ter. Fig. 7 reports instead mean and standard errors of all met-

rics within several ROIs (liver, kidney medulla and cortex, and

spleen), and in both healthy volunteers. Inter-organ differences

are seen, as for example higher 𝐷∗, 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 in the

liver, compared to the spleen. Trends of inter-subject differ-

ences are also seen. E.g., in healthy volunteer 1, higher values

of all of 𝑓𝑉 , 𝐷∗, 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 in the kidney medulla than

in the kidney cortex are seen. However, in healthy volunteer 2,

𝐷∗ is higher in the cortex than in the medulla, and differences

between medulla and cortex among all other metrics are less

marked. Intra-/inter-scanner variability is seen in all of 𝑓𝑉 , 𝐷∗,

𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵.

Fig. 8 shows representative microvascular maps in cancer.

The figure refers to a colorectal cancer adrenal gland metastasis.

Both IVIM metrics 𝑓𝑉 and 𝐷∗ as well as microvascular 𝑣𝑚,

𝑣𝑠 and 𝐴𝑁𝐵 show intra-tumour contrasts. For example, we

observe a core of lower 𝑓𝑉 and 𝐷∗ as compared to the outer

ring of the tumour. This spatial trend is mirrored by metrics

𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵: the lower 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 point towards

slower and less variable blood velocity in the core of the tumour,

and predict blood to travel through fewer vessel segments, as

compared to the outer ring. Overall, 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 exhibit

similar contrasts among each other, but certain differences are

also seen e.g., voxels with high 𝑣𝑚 that do not necessarily show

the highest 𝐴𝑁𝐵 values.

Table 2 reports mean and standard deviation of all vascu-

lar metrics within tumours. The metrics highlight inter-tumour

differences in terms of vascularisation, as seen in dMRI. For

example, breast cancer metastases feature the highest vascular

signal fraction 𝑓𝑉 among all tumours. Conversely, the highest

𝐷∗ is seen in a lung cancer adrenal gland metastasis (patient

11), which also features the highest 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 across the

whole cohort. The lowest 𝐷∗ is instead seen in liver metastasis

of rectal cancer (patient 8), a trend that is mirrored by 𝑣𝑚 and

𝐴𝑁𝐵, which in this case are the lowest across all tumours.

Supplementary Fig. 5 reports Spearman’s correlation coef-

ficients between all possible pairs of vascular metrics, as ob-

tained across the 13 cancer patients. IVIM 𝐷∗ is significantly,

positively correlated with all of 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 (𝑟𝑠 = 0.55,

𝑝 = 0.049 with 𝑣𝑚; 𝑟𝑠 = 0.57, 𝑝 = 0.044 with 𝑣𝑠; 𝑟𝑠 = 0.64,

𝑝 = 0.019 with 𝐴𝑁𝐵). No significant correlations are instead

seen between 𝑓𝑉 and any of 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵. 𝐷∗ and 𝑓𝑉 are

weakly, negatively correlated between each other (𝑟𝑠 = -0.25, 𝑝

= 0.394).
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Figure 4: Scatter plots relating 𝐷∗ to microvascular properties for different gradient separation Δ and fixed gradient duration 𝛿

= 20 ms. From left to right: relationship between 𝐷∗ and metric 𝑣𝑚 ; 𝐷∗ and metric 𝑣𝑠 ; 𝐷∗ and metric 𝐴𝑁𝐵. Spearman’s

correlation coefficients between 𝐷∗ and each microvascular property are also reported in each plot, for any fixed Δ.

Table 2: Summary of patients’ demographics and key clinical data (primary cancer type, location of the imaged tumours, patients’

sex and approximate age, expressed in 5-years ranges) and trends of microvascular metrics 𝑓𝑉 , 𝐷∗, 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 within the

manually-segmented tumours (mean and standard deviation). For sex, F indicated female, while M male. Routine IVIM metrics

𝑓𝑉 and 𝐷∗ were obtained at fixed diffusion time, on the dMRI scan with the shortest TE.

ID Primary cancer Tumour(s) location Sex Age 𝑣𝑚
[mm/s]

𝑣𝑠
[mm/s]

ANB

[segments]

𝑓𝑉 𝐷∗

[𝜇𝑚2/ms]

Pat. 1 Endometrial Uterus F 66-70 7.34

(8.11)

8.41

(8.38)

28.86

(37.71)

0.11

(0.12)

14.44

(22.35)

Pat. 2 Melanoma Liver F 81-85 7.12

(9.14)

7.76

(8.71)

31.45

(43.12)

0.20

(0.24)

27.16

(43.33)

Pat. 3 Gastric Soft tissues M 61-65 7.78

(8.90)

8.53

(8.71)

34.88

(46.89)

0.09

(0.09)

21.09

(35.53)

Pat. 4 Melanoma Liver, lung, pleura F 61-65 10.72

(9.21)

11.97

(9.23)

42.24

(45.49)

0.19

(0.17)

24.05

(33.60)

Pat. 5 Melanoma Liver M 76-80 9.96

(8.05)

11.26

(7.93)

39.84

(41.39)

0.04

(0.14)

19.62

(21.99)

Pat. 6 Lung Liver M 51-55 5.76

(8.33)

6.64

(8.26)

26.88

(40.85)

0.14

(0.13)

15.51

(30.47)

Pat. 7 Gastric Stomach F 66-70 5.80

(7.27)

7.10

(7.52)

24.76

(28.91)

0.25

(0.18)

13.62

(22.17)

Pat. 8 Rectal Adrenal glands M 61-65 4.80

(7.14)

5.78

(7.58)

20.80

(32.32)

0.27

(0.18)

10.13

(20.32)

Pat. 9 Gastric Liver F 66-70 7.49

(8.43)

8.69

(8.51)

31.35

(40.54)

0.22

(0.18)

20.58

(35.76)

Pat. 10 Colon Liver F 46-50 6.77

(8.05)

7.86

(8.21)

28.21

(38.83)

0.22

(0.15)

17.50

(30.04)

Pat. 11 Lung Adrenal glands M 61-65 13.37

(9.42)

15.15

(9.85)

55.18

(52.69)

0.26

(0.15)

34.10

(44.59)

Pat. 12 Breast Liver F 31-35 11.15

(10.75)

11.94

(10.48)

54.71

(60.86)

0.39

(0.24)

14.40

(27.20)

Pat. 13 Lung Adrenal glands M 76-80 7.77

(8.75)

8.88

(8.97)

32.96

(44.13)

0.15

(0.13)

22.85

(36.79)
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Figure 5: Scatter plots relating estimated and ground truth microvascular parameters in computer simulations. First row (panels

(a), (b), (c)): results for protocol “TRSE”. Second row (panels (d), (e), (f)): results for protocol “PGSE”. Third row (panels (g),

(h), (i)): results for protocol “richPGSE”. From left to right: results for metric 𝑣𝑚 (panels (a), (d), (g)); results for metric 𝑣𝑠 (panels

(b), (e), (h)); results for metric 𝐴𝑁𝐵 (panels (c), (f), (i)). Spearman’s correlation coefficients between estimated and ground truth

values are also reported in each plot.
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4 Discussion

4.1 Summary and key findings

This work presents SpinFlowSim, an open-source simulator of

blood flow based on pipe network analysis. The simulation

framework, tailored for the laminar flow regime at the micro-

capillary level, enables the synthesis of DW signals for any de-

sired input dMRI gradient waverform. We demonstrate Spin-

FlowSim on 15 microvascular networks, reconstructed from

biopsies in a variety of liver cancers and in non-cancerous liver

parenchyma. These allowed us to simulate micro-perfusion

IVIM signals for realistic dMRI protocols, in the low 𝑏 regime.

The signals exhibit complex, non-mono-exponential behaviour,

pointing towards the co-existence of spin pools experiencing

different flow regimes. Key microvascular properties, such as

moments of the blood velocity distribution the local network

branching sensed by flowing spins, are shown to be encoded in

the dMRI signal decay. This fact enabled the design of a strat-

egy for the practical estimation of these properties from any in-

put dMRI signal measurements, given simulations of the cor-

responding acquisition protocol. We showcase the approach in

silico and on in vivo scans of healthy volunteers and cancer pa-

tients, obtaining patterns of microvascular metrics that are plau-

sible with the known anatomy and cancer pathophysiology.

4.2 Simulation framework

Our simulator relies on a well-established computational ap-

proach for laminar flow characterisation in capillaries. This

links the pressure drop across a capillary to the VFR passing

through it, via a flow resistance proportionality factor [Schmid

et al., 2015, Van et al., 2021]. In this study, as a first proof-

of-concept, we borrowed an empirical expression for this resis-

tance from [Blinder et al., 2013], and used the freely available

PySpice [Salvaire, 2023] package to convert the VFR estima-

tion problem into the analysis of a passive electric circuit. Our

strategy, computationally efficient, retrieves the VFR distribu-

tion across all segments of a vascular network. These are used

to estimate the mean blood velocity in each capillary and, fi-

nally, the trajectories of flowing spins, by numerical integra-

tion of the velocity field over time. By superimposing arbitrary

dMRI gradient wave forms to spins flowing in networks recon-

structed from histology, our framework enables the synthesis

of realistic IVIM signals, without making assumptions on the

specific flow regime in which measurements take place (e.g.,

diffusive/ballistic [Kennan et al., 1994,Scott et al., 2021]). Our

approach offers a practical way to characterise the salient char-

acteristics of micro-capillary perfusion, and its relationship to

dMRI. It may therefore play a key role in the development of in-

novative dMRI methods for vascular characterisation with un-

precedented specificity to physiology, urgently needed for non-

invasive cancer characterisation.

4.3 Vascular networks

We studied HE and CD31-stained histological images from liver

tumour biopsies, obtained from cancer patients suffering from

advanced solid tumours. From these data, we manually re-

constructed 15 2D vascular networks, on which we simulated

blood flow by varying the input VFR and the inlet/outlet posi-

tions. We characterised the networks in terms of the underly-

ing blood velocity distribution (𝑣𝑚 and 𝑣𝑠 parameters), and by

introducing a metric quantifying the average number of capil-

lary branches spins flow through, referred to as 𝐴𝑁𝐵. Over-

all, our simulations generated a total of 1500 network reali-

sations, which provide insight into microvascular blood per-

fusion. The most important observation is that the networks

exhibit blood velocity distributions that can vary considerably

from each other, with mean velocity 𝑣𝑚 ranging from approx-

imately 4 to 25 mm/s. This is exemplified, for example, by

Net 11 and 12 in Table 1, which feature a mean 𝑣𝑚 of 19 and

5 mm/s, despite exhibiting a similar mean capillary length of

circa 60 𝜇m. This finding suggests that, for the typical diffusion

times that can be probed in clinical settings (15-65 ms approx-

imately), spins in the vascular compartment likely experience

flow regimes that can vary considerably from subject to sub-

ject. On the one hand, this implies that hypothesising a specific

regime in IVIM modelling (e.g., diffusive versus ballistic [Ken-

nan et al., 1994, Scott et al., 2021]), may not suffice to capture

the full complexity of blood micro-perfusion in real-world co-

horts. On the other hand, this also implies that remarkably dif-

ferent patterns of vascular dMRI signals are to be expected, even

for short, clinically-feasible IVIM dMRI protocols, as exempli-

fied by two examples in Fig. 3. Our simulated signals exhibit

complex patterns as a function of the b-value and the diffusion

time, e.g., fast decay, typical of the diffusive regime, as well

as oscillatory behaviours, as instead expected in the ballistic

regime (note that the PGSE signal for a set of uniformly dis-

tributed straight capillaries, characterised by the same blood ve-

locity 𝑣, is 𝑠 = 𝑠𝑖𝑛𝑐(𝛾 𝑣𝐺 𝛿Δ) [Scott et al., 2021]). Moreover,

they also feature a clearly non-mono-exponential behaviour as

a function of 𝑏, pointing again towards the co-existence of dif-

ferent flowing spin pools within the same network, potentially

characterised by different flow regimes. All in all, these results

suggest that numerical approaches such as SpinFlowSim may

lead to more accurate characterisation of unexplored properties

ofvascular dMRI signals — e.g., concerning flow anisotropy or

apparent pseudo-diffusion and kurtosis tensors, as illustrated in

Supplementary Fig. 6 for the apparent pseudo-diffusion tensor

in an exemplificative case —, ultimately opening up new op-

portunities for the development of more specific biomarkers of

micro-perfusion.

4.4 Microvascular property estimation

We also investigated whether it is possible to use the syn-

thetic signals generated through SpinFlowsim to inform the
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Figure 6: Microvascular maps in a representative healthy volunteer. (a): 𝑏 = 0 image; (b) and (c): IVIM maps 𝑓𝑉 and 𝐷∗; (d),

(e) and (f): microvascular indices 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵. In the 𝑏 = 0 image, we highlight the location of the liver and the spleen.

non-invasive estimation of microvascular properties. For this

purpose, we interpolated the full set of paired synthetic sig-

nals and microvascular parameters, obtaining numerical for-

ward models that can be fitted through standard NNLS ap-

proaches. We specifically investigated the feasibility of esti-

mating 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵, since the analysis of simulated signal

suggests that even standard PGSE dMRI protocols carry some

sensitivity to these properties (note that strong correlations be-

tween the vascular ADC 𝐷∗ and 𝑣𝑚 and 𝐴𝑁𝐵, or the moderate

correlation between 𝐷∗ and 𝑣𝑠, visualised in Fig. 4).

Firstly, we studied 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 estimation on noisy in

silico signals. We considered 3 protocols: two were based on

PGSE, with one of these very rich in terms of b-values and dif-

fusion times, and another shorter and clinically feasible. One

additional protocol was instead based on DW TRSE, matching

that of our in vivo data. All protocols point towards the feasibil-

ity of estimating 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵: we observed strong corre-

lations between ground truth and estimated 𝑣𝑚 and 𝐴𝑁𝐵, and

moderate correlations for 𝑣𝑠. As expected, performances were

the highest for the richest protocol, with correlations as high

as 0.79 for the 𝐴𝑁𝐵 metric, yet still acceptable for the shorter

protocols (e.g., correlation of 0.63 for 𝐴𝑁𝐵 and the TRSE pro-

tocol). These promising results, obtained without requiring any

explicit analytical modelling of the signal, highlight the poten-

tial utility of simulation-informed microvascular property esti-

mation, motivating its testing in vivo.

Following in silico experiments, we moved on and tested

whether 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 can also be estimated in vivo. For

this purpose, we analysed dMRI scans acquired according to

the TRSE protocol on two healthy volunteers and in 13 cancer

patients. We fitted 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 alongside standard IVIM

𝑓𝑉 and 𝐷∗, and assessed trends qualitatively in several organs

in the healthy volunteers, and in the patients’ tumours.

In healthy volunteers, all metrics show high level of vari-

ability on visual inspection, which is confirmed by cross-organ

trends in Fig. 7. The variability, qualitatively comparable be-

tween 𝑓𝑉 /𝐷∗ and 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵, is in line with the well-

known challenge of estimating microvascular property accu-

rately with dMRI [Barbieri et al., 2020]. This finding sug-

gests that more robust parameter estimation procedures may

be needed than those used here (e.g., Bayesian fitting or deep

learning [Barbieri et al., 2016a, Barbieri et al., 2020]), for the

effective deployment of simulation-informed fitting in clinical

settings. However, despite the variability, metrics show trends

that are compatible with known physiology. For example, in

healthy volunteers the liver shows much higher 𝑓𝑉 , 𝐷∗, 𝑣𝑚, 𝑣𝑠
and 𝐴𝑁𝐵 than in the spleen. This finding is plausible consid-

ering that the liver is a highly vascularised organ, a blood reser-

voir receiving approximately 25 % of the cardiac output, de-

spite representing only 2.5 % of the body weight [Lautt, 2010].

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.15.24310335doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.15.24310335
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7: Bar plots reporting mean and standard error of the mean of all microvascular metrics in the different regions-of-interest

(ROIs) of both healthy volunteers. (a): trends for metric 𝑓𝑉 ; (b): trends for metric 𝐷∗; (c): trends for metric 𝑣𝑚; (d): trends for

metric 𝑣𝑠; trends for metric 𝐴𝑁𝐵.

We also observe higher 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 in the kidney medulla

than in the cortex, a finding that may be reflecting their different

vascularisation. Regarding kidneys, we do not observe a clear

trend in terms of cortex-medulla differences in standard IVIM

𝑓𝑉 and 𝐷∗ (e.g., 𝑓𝑉 is higher in the medulla than in the cor-

tex for both healthy volunteers, while 𝐷∗ is in one case higher,

and in the other lower). This is in line with recent studies,

which have found high variability and strong inter-subject/inter-

machine differences of kidney IVIM [Barbieri et al., 2016a,Lji-

mani et al., 2018, Stabinska et al., 2023].

Finally, we also demonstrated the feasibility of simulation-

informed microvascular quantification in a pilot cohort of 13

cancer patients suffering from advanced solid tumours. While

this demonstration only represents a first, exploratory proof-of-

concept, it serves to highlight that contrasts seen in 𝑣𝑚, 𝑣𝑠 and

𝐴𝑁𝐵 are physiologically plausible, and consistent with pat-

terns seen on 𝑓𝑉 and 𝐷∗. For example, reduced 𝑣𝑚, 𝑣𝑠 and

𝐴𝑁𝐵 is seen in areas of low 𝑓𝑉 and 𝐷∗ compatible with re-

duced perfusion, expected in the tumour core [Karsch-Bluman

et al., 2019,Herman et al., 2011], exemplified by Fig. 8. In vivo,

𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 are positively correlated among each other,

and they correlate moderately to strongly to IVIM 𝐷∗. These

correlations agree with the correlations observed in simulations

(compare Supplementary Fig. 3 and 5), and may indicate that

𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵, while providing complementary information

to each other, are sensitive to similar, characteristics of the net-

work morphology. For example, the strong correlation between

𝑣𝑚 and 𝑣𝑠, indicating that higher variability in blood velocity

has to be expected as the mean velocity increases, may be a sig-

nature of heteroscedasticity of the blood velocity distribution

across capillaries.

All in all, our in vivo results demonstrate the feasibility of

simulation-informed microvascular mapping in dMRI. While

further confirmation and more detailed metric characterisa-

tion is required in future studies, realistic flow simulations in-

formed by histology may increase the accuracy of dMRI mi-

crovascular signal models. Ultimately, these may provide in-

novative, biologically-specific indices of micro-perfusion, ur-

gently sought for the non-invasive evaluation of cancer neo-

angiogenesis, vascular heterogeneity and in treatment during

the design of anti-angiogenic drugs.

4.5 Methodological considerations and limita-

tions

In this article, we show the potential utility of flow simulations

to inform dMRI signal modelling and analysis. We provide

a first demonstration, based on a simplified simulation frame-

work as a preliminary proof-of-concept. For example, we rely

on an empirical expression for the resistance to flow across a

capillary, borrowed from a model of cortical perfusion in the

mouse primary sensory cortex [Blinder et al., 2013]. While

this model accounts for salient features of blood flow resis-

tance in capillaries (e.g., the effect of an average hematocrit and

erythrocyte-wall interactions), a more realistic characterisation

of the capillary resistance would be obtained by accounting for

the Fåhræus-Lindqvist’s, the Fåhræus’ and the phase separation

effects [Schmid et al., 2015, Van et al., 2021]. This would have

required the simulation of the propagation of actual erythro-

cytes through the network, until a steady-state is reached, so that
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a per-capillary hematocrit (and hence, effective blood viscosity)

can be calculated. Here we did not simulate erythrocyte prop-

agation, being this computationally demanding. Nevertheless,

we acknowledge that it would enable more realistic represen-

tations of flow patterns within micro-capillary networks. We

plan to include erythrocyte flow in future work, and also extend

SpinFlowSim to account, for example, for oscillatory pressure

patterns and vessel deformation, and for fluid exchange between

capillaries and the interstitial space.

Furthermore, for this first demonstration, we simulated vas-

cular dMRI signals on 2D capillary networks. While Spin-

FlowSim is designed to work with generic 3D networks, here

we focussed on 2D representations due to the availability of 2D

data (i.e., HE and CD31-stained biopsies). We accounted for

this by averaging synthetic dMRI signals generated for two, or-

thogonal, in-plane gradient directions. However, in future we

plan to increase the fidelity of our flow simulations by recon-

structing 3D networks.

Related to the point above, the vascular networks recon-

structed from histology for this article were obtained at the cap-

illary level. Therefore, our synthetic signals may not be repre-

sentative of larger vessels, including smaller feeding arterioles

and small veins or venules. This implies that maps of 𝑣𝑚, 𝑣𝑠 and

𝐴𝑁𝐵 from our approach has to be taken with care in presence

of larger vessels. In future, we plan to expand our vascular sig-

nal dictionary to include realisations of larger vessels, and thus

improve the generalisability of our simulation-informed fitting.

Another point to acknowledge is that in this study we fo-

cussed on the characterisation of vascular dMRI signals, and

devised a simulation-informed fitting procedure requiring pure

vascular signals as input. For this reason, the analysis of in vivo

signals required disentangling vascular from extra-vascular tis-

sue signals, since low 𝑏 measurements include contributions

from both. This was achieved by extrapolating and ADC fit

performed on b-values with negligible vascular signal contri-

bution, and thus required identifying a b-value threshold. An

approach of this type, i.e., splitting the vascular-tissue signal

characterisation in two steps, is sometimes referred to as seg-

mented IVIM fitting [Gurney-Champion et al., 2018,Wang et al.,

2021]. While segmented fitting reduces the variability of vas-

cular metrics, since it avoids the challenging, joint estimation

of vascular and tissue properties [Barbieri et al., 2020], it may

lead to biases in 𝑓𝑉 estimates, since 𝑓𝑉 may depend, at least

slightly, on the b-value threshold. In future, we plan to improve

the simulation-informed fitting performed here, by employing

more advanced estimation techniques for the joint computation

of vascular and tissue properties.

Lastly, we acknowledge that the results reported here should

be confirmed by future studies. These would require the acqui-

sition of data from additional healthy volunteers and from larger

patient cohorts, and should include diffusion images from dif-

ferent MRI scanners and from more advanced dMRI protocols.

Here, we used a simple acquisition scheme in the low 𝑏 regime

(𝑏 = 0 and 𝑏 = {50, 100} s/mm2 at 3 diffusion times). How-

ever, the accurate characterisation of the complex signal pat-

terns arising from microvasculature would likely require denser

𝑏 samplings. Similarly, higher image quality and increased sen-

sitivity to micro-perfusion could also be achieved, for exam-

ple, by improving the robustness of the dMRI acquisition with

cardiac/respiratory gating, or by employing flow-compensated

[Wetscherek et al., 2015] gradient wave forms, or advanced b-

tensor encoding [Nilsson et al., 2021].
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Figure 8: Parametric maps obtained in an adrenal gland metastasis of a 61 y.o. male patient, suffering from advanced rectal cancer

(patient 8, scanned on a 1.5T Siemens Avanto system with a DW TRSE sequence). Top row: 𝑏 = 400 s/mm2 image and IVIM

maps 𝑓𝑉 and 𝐷∗. Bottom row: microvascular parameters obtained via simulation-informed model fitting, namely: mean blood

velocity 𝑣𝑠, blood velocity standard deviation 𝑣𝑠, and Apparent Network Branching 𝐴𝑁𝐵.

5 Conclusions

SpinFlowSim, our open-source, freely-available python simula-

tor of blood micro-perfusion in capillaries, enables the synthe-

sis and characterisation of realistic microvascular dMRI signals.

Perfusion simulations in vascular networks reconstructed from

histology may inform the non-invasive, numerical estimation of

innovative microvascular properties through dMRI, whose fea-

sibility is demonstrated herein in vivo in healthy subjects and in

cancer patients.
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Supplementary Fig. 1: Illustration of the PGSE (panel (a)) and DW-TRSE sequences used in simulations and implemented for

actual in vivo data acquisition.
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Supplementary Fig. 2: Histograms describing 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 distributions obtained across the 10 realisations of each vascular

network for an input volumetric flow rate of 𝑞𝑖𝑛 = 3.1 ⋅ 10−3 mm3/s.
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Supplementary Fig. 3: Spearman’s correlation coefficients, in form of a correlation matrix, for parameters 𝑣𝑚 (mean blood ve-

locity), 𝑣𝑠 (standard deviation of blood velocities), 𝐴𝑁𝐵 (apparent network branching), 𝐿 (mean segment length) and 𝑟 (mean

radius length) from the 15 vascular networks segmented for this study. Values of 𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵, 𝐿 and 𝑟 used to compute the

matrix are reported in Table 1 (mean values).
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Supplementary Fig. 4: Synthetic signals generated according to in silico protocol “TRSE”, and used for learning numerical

forward signal models.

Supplementary Fig. 5: Spearman’s correlation coefficients, in form of a correlation matrix, for parameters 𝑣𝑚 (mean blood ve-

locity), 𝑣𝑠 (standard deviation of blood velocities), 𝐴𝑁𝐵 (apparent network branching), 𝑓𝑉 (IVIM vascular signal fraction) and

𝐷∗ (vascular ADC) from the 13 cancer patients included in this study. Values of 𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵, 𝑓𝑉 and 𝐷∗ used to compute the

matrix are reported in Table 2 (mean values).
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Supplementary Fig. 6: Scatter plots illustrating the relationship between routine IVIM D∗ and the mean diffusivity of the apparent

diffusion tensor 𝐷𝑖,𝑗 ≈
1

2
⟨𝑣𝑖𝑣𝑗⟩𝑐 𝑡 for spins flowing in the ballistic regime [Kennan et al., 1994]. Above, 𝑡 is the diffusion time

(𝑡 ≈ Δ for PGSE in the narrow-pulse regime), while 𝑖 = 1, 2, 3 and 𝑗 = 1, 2, 3 iterate over the 𝑥, 𝑦 and 𝑧 components of the

capillary velocity vectors, and ⟨⋅⟩𝑐 is the ensemble average over the capillary set. The figure was obtained by pooling together

data points for all 100 realisations of the 15 vascular networks drawn for this study, with 𝑞𝑖𝑛 = 3.1 ⋅ 10−3 mm3/s and 𝛿 = 0.1

ms. From top to bottom, clock-wise: (a): Δ = 1 ms; (b): Δ = 10 ms; (c): Δ = 30 ms; (d): Δ = 50 ms; (e): Δ = 70 ms; (f): Δ

= 90 ms. The mean diffusivity of 𝐷𝑖,𝑗 , by construction, increases with increasing diffusion time, a fact that is replicated by the

D∗ metric obtained directly from our synthetic signals. However, there is a relatively weak-to-moderate correlation between D∗

and the apparent diffusion tensor mean diffusivity, suggesting that complex features of the vascular signal (which influence D∗

estimation) may not be captured by simple analytical expressions for diffusion cumulants derived in specific flow regimes.
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