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Abstract 65 

Discerning the mechanisms driving type 2 diabetes (T2D) pathophysiology from genome-wide 66 

association studies (GWAS) remains a challenge. To this end, we integrated omics information 67 

from 16 multi-tissue and multi-ancestry expression, protein, and metabolite quantitative trait loci 68 

(QTL) studies and 46 multi-ancestry GWAS for T2D-related traits with the largest, most 69 

ancestrally diverse T2D GWAS to date.  70 

Of the 1,289 T2D GWAS index variants, 716 (56%) demonstrated strong evidence of 71 

colocalization with a molecular or T2D-related trait, implicating 657 cis-effector genes, 1,691 72 

distal-effector genes, 731 metabolites, and 43 T2D-related traits. We identified 773 of these cis- 73 

and distal-effector genes using either expression QTL data from understudied ancestry groups 74 

or inclusion of T2D index variants enriched in underrepresented populations, emphasizing the 75 

value of increasing population diversity in functional mapping. Linking these variants, genes, 76 

metabolites, and traits into a network, we elucidated mechanisms through which T2D-77 

associated variation may impact disease risk. Finally, we showed that drugs targeting effector 78 

proteins were enriched in those approved to treat T2D, highlighting the potential of these results 79 

to prioritize drug targets for T2D.  80 

These results represent a leap in the molecular characterization of T2D-associated genetic 81 

variation and will aid in translating genetic findings into novel therapeutic strategies. 82 

 83 

Introduction 84 

Type 2 diabetes (T2D) and its associated complications are one of the biggest global health 85 

problems of the 21st century1,2. The biological mechanisms underlying T2D are not fully 86 

understood, yet expanding upon pathways for T2D could inform therapeutic approaches. It has 87 

been demonstrated that clinical trials of drugs that have genetic support are more likely to be 88 

successful and to be granted expedited development and review by the FDA3–6. Therefore, a 89 
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logical approach to accelerate development of new T2D drugs is through linking T2D-associated 90 

variants with their effector genes.  91 

 92 

One strategy to nominate potential disease effector genes is to identify rare variants that alter 93 

the protein coding sequence through putative loss-of-function (pLOF) or amino-acid altering 94 

variants7,8. While this approach has generated numerous leads9, discovery of rare coding 95 

variants associated with T2D has been limited by small sample sizes from available exome or 96 

genome sequencing studies, especially in underrepresented populations. In contrast, large-97 

scale multi-ancestry array-based genome-wide association studies (GWAS) have been 98 

successful in identifying hundreds of genetic associations10–15. However, only 50 (4%) of the 99 

1,289 T2D-associated genetic variants from the latest T2D GWAS are themselves a pLOF or 100 

amino-acid altering variant15. Previous results have also suggested only 43% of T2D-associated 101 

protein-altering variants show evidence of causality after fine-mapping16, complicating efforts 102 

with this strategy alone to identify the effector genes underlying most T2D associations. 103 

Additionally, inference of the tissue of action, effect direction, and physiological mechanisms of 104 

T2D-associated variants are also important to translate these discoveries into mechanistic 105 

insights and novel drug targets. 106 

 107 

Many T2D variant-to-function efforts have attempted to determine these downstream targets 108 

through the identification of shared causal signals underlying both T2D and a single omics layer 109 

from a quantitative trait loci (QTL) analysis, with gene expression being the most common17–20. 110 

However, a recent GWAS for T2D could only map cis-effector genes for 21% of their signals 111 

when using transcriptomic and proteomic data11, motivating the pursuit of integrating larger and 112 

more ancestrally diverse molecular data to identify additional mechanisms. To date, few studies 113 

in T2D have attempted to jointly analyze transcriptomic, proteomic, and metabolomic data to link 114 

genetic variations to T2D biological pathways. Furthermore, there have been limited attempts to 115 
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explore the overlap of these functional genomics datasets with cardiometabolic trait-associated 116 

clusters for T2D15,21 to better characterize the biology underlying T2D heterogeneity. More 117 

importantly, previous analyses have focused on populations genetically similar to European 118 

ancestry individuals from the 1000 Genomes Project (1000G), which we henceforth refer to as 119 

EUR-like, limiting our understanding of the biological downstream effects of T2D in other 120 

population groups such as those genetically similar to African ancestry (AFR-like), admixed-121 

American (AMR-like), East Asian ancestry (EAS-like), and South asian ancestry (SAS-like). 122 

 123 

Here, we tested for colocalization between the largest, recently reported multi-ancestry T2D 124 

GWAS meta-analysis15 with association datasets for transcriptomic, proteomic, and 125 

metabolomic traits to identify effector transcripts and downstream targets for T2D across 126 

multiple tissues and ancestry groups. Additionally, we used GWAS data from T2D-related traits, 127 

including glycemic, cardiometabolic, and anthropometric traits, to understand the physiological 128 

mechanisms linked to T2D-associated variation and to further characterize the heterogeneity of 129 

T2D loci. We found evidence of colocalization between T2D signals and molecular or T2D-130 

related traits for the majority of the T2D signals, expanding the catalog of variant-to-gene 131 

mappings and physiologic correlates with disease. We combined these associations into an 132 

interactive network to define relationships between genetic variants, molecular trait data, and 133 

T2D-related traits, providing a resource to prioritize mechanisms and propose potential 134 

therapeutic hypotheses. 135 

 136 

Results 137 

Overall analysis strategy 138 

To understand molecular mechanisms and physiological mechanisms of T2D-associated 139 

genetic variation, we evaluated evidence of pairwise-colocalization between each of the 1,289 140 

T2D-associated index variants identified in Suzuki et al.15 and cis-gene expression QTL from 141 
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diverse tissues and ancestries (eQTL, 10 datasets), protein QTL (cis- and trans-pQTL, 4 142 

datasets), metabolite QTL (metabQTL, 2 datasets), and T2D-related cardiometabolic trait 143 

GWAS (46 datasets; Fig. 1a; Supplementary Tables 1 and 2; Methods). We identified 12,180 144 

colocalizations with a posterior probability of a shared causal variant (PP.H4) > 0.8, 145 

corresponding to a total of 716 T2D index variants colocalizing with 657 cis-effector genes from 146 

an eQTL or cis-pQTL, 1,691 distal-effector genes from trans-pQTL, 731 metabolites, and 43 147 

T2D-related traits (Fig. 1b, 1c; Supplementary Tables 3, 4, 5, and 6; Methods).  148 

 149 

We represented the 12,180 colocalizations as a multi-layer colocalization network, where nodes 150 

represent T2D GWAS index variants, genes, metabolites, or traits, and edges represent a 151 

colocalization between T2D and eQTLs, pQTLs, metabQTLs or trait GWAS data (Fig. 1a; 152 

Supplementary File).  153 

 154 

Identification of T2D cis-effector genes and their relevant tissues 155 

To identify candidate T2D effector genes and their tissues of action, we tested for evidence of 156 

colocalization between T2D and eQTL datasets from blood22,23 and six T2D-related tissues: 157 

pancreatic islets19, subcutaneous and visceral adipose tissue, liver, hypothalamus, and skeletal 158 

muscle23 (Methods). We observed 1,324 colocalizations, representing 632 candidate cis-159 

effector genes, and 349 (27.1%) of the 1,289 T2D index variants. Of the 349 index variants, 110 160 

(32.0%) colocalized to different effector genes in different tissues, suggesting evidence of 161 

varying effects by tissue (Supplementary Table 7).  162 

 163 

To quantify the improvement in our list of T2D effector genes, we compared our results to 164 

previous studies that performed colocalization analyses on different T2D GWAS11,14,19,24. We 165 

found that the present analysis doubles the number of candidate effector genes compared to 166 

the largest previous study14, owing to the larger sample size and diversity of the T2D GWAS, 167 
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and the new and larger eQTL datasets we employed (Fig. 2a). Indeed, the number of 168 

colocalizations per eQTL dataset was strongly correlated with the eQTL dataset sample size 169 

(Pearson r=0.79, P=6.8�10-3), highlighting the importance of statistical power in colocalization 170 

analyses (Extended Data Fig. 1).  171 

 172 

We observed many colocalizations in a single tissue only (Fig. 2b) with pancreatic islets having 173 

the highest proportion of single-tissue observed colocalizations (0.50; Fig. 2c). One of the 174 

colocalizations only observed in pancreatic islets was with SCTR, a G-protein-coupled receptor 175 

in the same family as known T2D drug target GLP1R (Fig. 2d). SCTR is highly and specifically 176 

expressed in pancreatic islets19 and is downregulated in pancreatic islets of T2D patients25, 177 

supporting the relevance of pancreatic islet expression of SCTR in T2D pathophysiology. SCTR 178 

also harbors a missense variant associated with lower T2D risk12,13 that is enriched in EAS-like 179 

populations. 180 

 181 

To validate the candidate effector genes colocalizing with T2D in islets, we performed gene set 182 

enrichment analyses between differentially expressed T2D genes in islets and these effector 183 

genes stratified by the direction of effect for the T2D risk allele (Supplementary Table 8; 184 

Methods). We found that genes from colocalizations where decreased expression is associated 185 

with increased T2D risk are significantly enriched in genes downregulated in islets of T2D cases 186 

(Normalized Enrichment Score [NES]=-1.7; P=0.01) (Extended Data Fig. 2). Enrichment only in 187 

the colocalizations where the risk allele reduces expression may indicate a large abundance of 188 

associations between diminished gene function and T2D risk.  189 

 190 

pQTL colocalization identifies additional cis and trans effector proteins 191 

To expand our identification of effector genes beyond eQTLs, we tested for evidence of 192 

colocalization between T2D and four pQTL datasets (plasma UKB, plasma deCODE, plasma 193 
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HELIC, and brain ROS/MAP). We identified 42 and 3,423 colocalizations with a cis-pQTL and 194 

trans-pQTL respectively, encompassing 1,728 unique genes and 365 (28.3%) T2D index 195 

variants.  196 

 197 

We identified most of the colocalizations (2,451, 70.7%) with pQTLs from the deCODE dataset, 198 

which had the second largest sample size but included more proteins, owing to the use of the 199 

Somascan panels (N=35,559; Nproteins=4,907), compared with the OLINK panels employed by 200 

the UKB data (N=54,219, Nproteins=1,472; Fig. 3a). We also observed 85 colocalizations with the 201 

HELIC data (N=2,933) and 7 with the ROS/MAP data (N=330). Despite differences in sample 202 

size and protein sets, we observed 37 identical colocalizations (all in trans) with deCODE and 203 

UKB pQTL datasets, which is 7.5-fold higher than expected by chance considering the overlap 204 

of proteins detected by both the Somascan and OLINK panels (Fisher’s exact test P=7.4�10-20; 205 

Methods; Supplementary Table 9). Among those 37, we found strong consistency of protein 206 

effect size estimates between deCODE and UKB (Pearson r=0.93; P=9.1�10-17; Fig. 3b). One 207 

example colocalization detected with both UKB and deCODE pQTL datasets was for CBLN4 208 

with T2D index variant rs1415287 in trans, within the LYPLAL1 locus defined in Suzuki et al.15, 209 

where the risk allele associated with increased levels of CBLN4 (Fig. 3c). rs1415287 210 

additionally colocalized with IGFBP-1 in trans (Fig. 3d), with decreased IGFBP-1 levels 211 

associated with the T2D risk allele. A previous study found decreased CBLN4 and increased 212 

IGFBP-1 plasma levels after administering SGLT2 inhibitors, a class of T2D drugs which 213 

reduces glucose reabsorption within the proximal renal tubule, to participants of varying glucose 214 

tolerance26, mirroring our findings of increased CBLN4 and decreased IGFBP-1 levels with the 215 

T2D risk allele.  216 

 217 

We also identified 784 genes for which there was a pQTL colocalizing with more than one T2D 218 

index variant (Extended Data Fig. 3a). We ranked these genes based on the association 219 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.15.24310282doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.15.24310282
http://creativecommons.org/licenses/by-nc-nd/4.0/


between the pQTL and T2D GWAS effect sizes across all index variants that colocalized with a 220 

given gene (Supplementary Table 10, Methods). Among the highest ranked genes, IGFBP2 221 

had 14 colocalizations with overall negative associations between T2D-associated index variant 222 

risk allele effect size and protein levels, supporting previously reported negative associations 223 

between IGFBP-2 levels and T2D incidence27 (Extended Data Fig. 3b). Seven of these index 224 

variants (50%) have previously been classified as being involved in lipodystrophy-related 225 

pathways15, suggesting IGFBP-2 may be involved lipodystrophy-like T2D. In agreement with 226 

that, previous publications have found associations between increased IGFBP-2 and lower BMI, 227 

lower waist-hip ratio, and increased triglycerides28 and decreased NAFLD risk29,30. Together, 228 

these results highlight the value of highly powered pQTL datasets in identifying biologically 229 

relevant effector genes. 230 

 231 

Inclusion of understudied population datasets boosts effector gene identification 232 

In the latest multi-ancestry T2D meta-analysis, 289 index variants (22.4%) have a MAF half as 233 

large in EUR-like populations compared to other populations15, in total mapping to 615 effector 234 

genes from a previously-described T2D-relevant tissue eQTL colocalization or pQTL 235 

colocalization. However, identifying effector genes for variants enriched in underrepresented 236 

populations remains a challenge due to a lack of molecular data from the same population31. To 237 

quantify the extent to which including molecular data from underrepresented populations 238 

improves the discovery of effector genes, we tested for colocalization between blood eQTL 239 

datasets collected in self-reported African American (AA), Mexican American (MX), and Puerto 240 

Rican (PR) cohorts22 and the EUR-like GTEx dataset with both the multi-ancestry T2D GWAS 241 

and with matched ancestry T2D GWAS containing only AFR-like participants within the USA or 242 

AMR-like participants. We identified 633 colocalizations with one of these eQTL datasets 243 

(47.8% of all eQTL colocalizations), representing 347 gene-to-variant mappings. We identified 244 

204 (58.8%) of the 347 blood eQTL mappings in the AA, MX, or PR eQTL datasets only, and 37 245 
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(10.7%) only in the EUR-like GTEx dataset (Fig. 4a; Methods; Supplementary Table 11). In 246 

total, adding the AA, MX, or PR eQTL data identified 158 additional T2D effector genes not 247 

identified with any of the tested EUR-like eQTL or pQTL datasets, highlighting the importance of 248 

collecting data from underrepresented populations, even when testing a tissue that is not 249 

directly relevant for T2D pathophysiology. We found that T2D index variants with a 250 

colocalization observed only with an AA, MX, or PR blood eQTL were more common in AMR-251 

like participants and less common in EUR-like participants relative to T2D index variants with a 252 

colocalization observed only with the EUR-like GTEx blood eQTL dataset (Fig. 4b; P=0.02). 253 

These results suggest differences in statistical power due to allele frequency heterogeneity 254 

and/or varying linkage disequilibrium (LD) with the true causal variant may underly differential 255 

detection of colocalizations across ancestry groups. 256 

 257 

Two example colocalizations observed only in the MX blood eQTL data were with LIN7A and 258 

ACSS3, both with the same lead variant from colocalization analyses, rs10128882 (Fig. 4c). 259 

The LD between rs10128882 and the T2D GWAS index variant rs11114650 was different 260 

between ancestry groups, with the highest being in EAS-like individuals (r2=0.89) and the lowest 261 

in AFR-like individuals (r2=0.02), possibly reflecting differential LD to the true causal variant 262 

across populations. The T2D risk allele of rs11114650 has a frequency of 1.5% in gnomAD-263 

defined European populations compared to 39% in gnomAD-defined African populations (Fig. 264 

4d) and is associated with decreased blood expression levels of LIN7A and ACSS3 (Fig. 4e). 265 

LIN7A, mainly expressed in the brain, is involved in localizing, distributing, and maintaining 266 

channels and receptors at polarized cell membranes32, while ACSS3 is highly expressed in 267 

brown adipose tissue and has been previously associated with insulin-resistant obesity-like 268 

phenotypes in mice33.  269 

 270 

Identification of effector metabolites 271 
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To understand the metabolic processes of T2D-associated genetic variation, we tested for 272 

colocalization between T2D GWAS and plasma metabQTL data from UKB and the METSIM 273 

study. We identified 5,221 metabQTL colocalizations, corresponding to 283 T2D index variants, 274 

with a majority of these colocalizations (4,480, 85.8%) with the UKB metabQTL data. This is 275 

expected given the larger sample size of the UKB data (N=114,999) compared to the METSIM 276 

data (N=6,136). Of the 18 metabolites measured in the METSIM Metabolon panel that could be 277 

mapped to metabolites in the UKB Nightingale panel, 7 colocalized with the T2D GWAS in both 278 

METSIM and UKB, an overlap greater than expected by chance (Fisher’s exact test OR=26.2, 279 

P=1.8�10-7; Methods; Supplementary Table 12), suggesting good concordance between the 280 

two platforms for shared metabolites.  281 

 282 

To prioritize metabolites with the largest implication with T2D, we ranked metabolites by the 283 

number of T2D index variants with which they colocalize, and by the association of genetic 284 

effect sizes between T2D and metabolites across all the index variants that colocalized with 285 

each metabolite (Fig. 5a; Supplementary Table 13; Methods). We found consistent 286 

associations between the risk allele effects and expected metabolite levels, such as T2D risk 287 

alleles associated with increased glucose levels (Fig. 5a, 5b). Among less well-established 288 

metabolites, we found 10 colocalizations where the T2D risk alleles lowered phosphatidylcholine 289 

levels (Fig. 5c), consistent with higher phosphatidylcholine intake previously associated with 290 

lower risk of T2D34,35. A subnetwork of all phosphatidylcholine-linked colocalizations was 291 

enriched for metabolites known to be related to phosphatidylcholine metabolism, such as 292 

sphingomyelin (Padj.=0.02), cholines (Padj.=2.4�10-17), and polyunsaturated fatty acids (PUFAs) 293 

(Padj.=0.02; Fig. 5d; Supplementary Table 14; Methods). Within this subnetwork, SMPD1 294 

(sphingomyelin phosphodiesterase 1) protein levels also colocalized with 4 of the same 10 T2D 295 

index variants, including two detected in two plasma pQTL studies (UKB pQTL and deCODE 296 

pQTL for rs9987289 and UKB pQTL and HELIC pQTL for rs8107974), providing robustness to 297 
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these results. SMPD1 acts in the same biochemical pathways as phosphatidylcholine synthesis 298 

and, along with PUFAs, has previously been associated with diabetic complications including 299 

diabetic retinopathy36. Combined, these results highlight the role of phosphatidylcholine 300 

metabolic pathways in T2D.  301 

 302 

Colocalization with T2D-related traits recapitulates previously described T2D genetic 303 

clusters 304 

We next performed colocalization analyses between T2D and 46 T2D-related traits to shed light 305 

into distinct T2D pathophysiologic mechanisms. We identified 2,170 colocalizations, including 306 

521 (40.4%) of the T2D index variants and 43 traits.  307 

 308 

Previously, Suzuki et al. grouped T2D index variants based on their associations with a smaller 309 

subset of 37 of these traits to define 8 distinct genetic T2D mechanistic clusters (Beta cell with 310 

positive proinsulin, Beta cell with negative proinsulin, Residual glycaemic, Body fat, Metabolic 311 

syndrome, Obesity, Lipodystrophy, Liver/lipid metabolism). Their analyses used a k-means 312 

clustering approach on the Z-scores of the T2D index variants from each of the 37 T2D-related 313 

trait GWAS15. We expanded on this work by assessing the proportion of T2D index variants per 314 

cluster which could be mapped to a colocalization between T2D and at least one of the 37 traits 315 

previously used for clustering. We found that the Obesity cluster had the highest number of 316 

variants confirmed by colocalization, with 163 (70%) of the 223 index variants colocalizing with 317 

at least one of the 37 traits, reflecting the large number of obesity-related traits considered 318 

during colocalization testing. The colocalizing trait patterns also largely recapitulated the single-319 

variant association-derived clusters15 (Fig. 6a, left panel). 320 

 321 

We also tested the enrichment of eQTL colocalization from different tissues and metabQTL 322 

colocalizations in each of the clusters. We observed enrichment of subcutaneous adipose tissue 323 
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colocalizations with the Metabolic syndrome cluster (P=2.2�10-5) and of the pancreatic islet 324 

colocalizations with the Beta Cell +PI cluster (P=1.6�10-5; Extended Data Fig. 4; 325 

Supplementary Table 15). We also observed enrichment of fatty acid metabolites with the 326 

Lipodystrophy clusters (P=2.0�10-9), and of glycolysis related metabolites with the Beta Cell +PI 327 

cluster (P=4.7�10-9; Extended Data Fig. 4; Supplementary Table 16). When aligning effect 328 

allele directions and effect sizes, we again recapitulated cluster patterns from Suzuki et al. 329 

based on single variant lookups. The results mirror the effects between Obesity (largely same 330 

direction) and Metabolic Syndrome/Lipodystrophy (largely opposite direction) cluster SNPs 331 

across anthropometric and adipose traits15 (Fig. 6a, right panel). As we restricted the analyses 332 

to loci that have evidence of colocalization, these results are more specific than those previously 333 

presented. 334 

 335 

Within each cluster, variants showed different patterns of colocalizations with different traits 336 

(Fig. 6b). For example, the two Beta Cell clusters have the bulk of their colocalizing variants 337 

linked to at least one glycaemic trait, while the variants in the Obesity cluster are linked to 338 

anthropometric, adipose, and lipids traits (Extended Data Fig. 5). In contrast, the Lipodystrophy 339 

cluster variants are more pleiotropic, with 19 of 27 variants linked to 4 or more trait groups, 340 

suggestive of heterogeneity within lipodystrophy-related variants (Fig. 6c). 341 

 342 

Effector genes are enriched in drug targets for diabetes 343 

The prioritization of drugs targeting candidate genes can accelerate clinical translation5,37,38. We 344 

pulled known drugs which target one of the 2,311 genes identified from a cis-eQTL or a cis- or 345 

trans-pQTL colocalization (Methods). Among 1,964 gene-to-drug mappings, consisting of 665 346 

drugs listed as approved, not withdrawn and with information on disease indications, and 159 of 347 

our colocalizing genes (Supplementary Table 17).  348 

 349 
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We tested if drugs targeting any of these genes were enriched with an approved indication for 350 

diabetes. We observed a 3.5-fold enrichment for approved diabetes indication within drugs that 351 

target our list of effector genes (P=4.4×10-10; Fig. 7a; Methods) and a 2.0-fold enrichment for 352 

any diabetes indication within drugs targeting the effector genes (P=1.9×10-6; Fig. 7b; 353 

Methods), compared to all other drugs. We then performed the same analysis stratified by the 354 

source of colocalization, using lists of 1,681 genes identified only from a pQTLs (cis or trans), 355 

1,654 only from trans pQTLs, or 583 only from eQTLs. Drugs targeting pQTL-only identified 356 

genes were enriched for approved T2D drug targets (OR=2.4, P=3.4×10-4). Drugs targeting 357 

eQTL-only identified genes were the most enriched for approved drugs for diabetes (OR=3.9, 358 

P=3.7×10-7). These results suggest that drugs targeting any of our candidate effector genes are 359 

potential candidates for repurposing to treat T2D. Permutation analyses similarly found 360 

significant enrichment for diabetes drugs among our genes relative to random sets of genes 361 

(Extended Data Fig. 6; Methods). 362 

 363 

Among the genes observed only from an eQTL colocalization, we identified FXYD2 (Fig. 7c) 364 

which has been proposed as a pancreatic beta-cell specific biomarker39. FXYD2 modulates 365 

Na,K-ATPase activity and cell proliferation40 and is expressed at the early stages of the human 366 

endocrine pancreas development (15 weeks), preceding insulin detection39, suggesting a 367 

putative role in islet development. We also detected FXYD2 mRNA expression at the end of the 368 

differentiation process of induced pluripotent stem cells into islet-like cells in both bulk and 369 

single-cell datasets28,41–43 (Extended Data Fig. 7).  370 

 371 

The risk allele of the T2D index variant rs529623 was associated with lower expression of 372 

FXYD2 in pancreatic islets19 (Fig. 7d; P=3.4×10-7). We further explored expression differences 373 

of FXYD2 in existing bulk RNA-seq44 and single-cell RNA-seq45 (scRNA-seq) from pancreatic 374 
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islets of human donors with and without T2D (Methods). After adjusting for multiple hypothesis 375 

testing, FXYD2 was significantly downregulated in pancreatic islets of T2D patients (Fig. 7e) 376 

specifically within Beta cells45 (Fig. 7f). There are currently five approved drugs that target 377 

FXYD2 but are not approved for diabetes: delanoside, digoxin, digitoxin, acetyldigitoxin, and 378 

lanatoside. These drugs potentially could be modified to treat T2D, particularly if further 379 

preclinical investigations show indications that they can target and modulate beta cell function.  380 

 381 

We also found multiple other drugs targeting proteins for one of our effector genes which had 382 

clinical evidence to support a role in impacting glycemia and may represent possible targets for 383 

drug repurposing (Supplementary Table 18). For example, amisulpride, an antagonist for the 384 

Serotonin (5-HT) receptor encoded by HTR6, increases pancreatic insulin secretion in healthy 385 

controls46. We identified HTR6 from a blood trans-pQTL colocalization where the T2D risk allele 386 

is associated with increased protein levels, consistent with amisulpride, which antagonizes 387 

HTR6 and increases insulin secretion.  388 

  389 

Discussion 390 

T2D is a model for complex disease genetics owing to its high prevalence and polygenicity, with 391 

the largest T2D multi-ancestry meta-analysis to date based on >2.5 million participants, 392 

identifying 1,289 index variants15. However, understanding the function of associated variants 393 

from a GWAS is extremely challenging, and only few examples have provided additional 394 

insights into the molecular mechanisms underpinning signals47–51. These comprehensive studies 395 

take years to complete, and biological insights from previous studies were mostly described in 396 

EUR-like populations14,18,19,24, limiting findings for other populations in which T2D risk alleles are 397 

now being increasingly reported11,15. 398 

 399 
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Here, we aimed to create a catalog of effector genes, metabolites, and traits for the 1,289 T2D-400 

associated index variants. We identified >12,000 colocalizations with T2D across all omics 401 

layers and T2D associated traits tested. We found cis-effector genes for 361 of the index 402 

variants (28%) and identified a >2-fold increase in the number of cis-effector genes compared 403 

with the previous largest T2D GWAS14. We observed many of the eQTL colocalizations in only 404 

one of the tissues tested, emphasizing the importance of including multiple tissue types in 405 

variant-to-function efforts for T2D. We also demonstrated the value of multi-ancestry eQTL data 406 

through the identification of 158 additional effector genes (24% of all cis-effector genes) using 407 

blood eQTL data from AA, PR, and MX populations22 that we did not observe in eQTL or pQTL 408 

data from EUR-like populations alone. We demonstrate that even in blood, which is not directly 409 

related to T2D progression, including eQTL data from multiple ancestry groups improves 410 

effector gene discovery. Despite substantial progress in the inclusion of diverse ancestries in 411 

GWAS meta-analysis, the availability of molecular data from diverse ancestries remains 412 

limited31. We hope that the present findings will help motivate the generation of molecular QTL 413 

resources from participants of diverse ancestries to unveil additional effector genes and 414 

potential drug targets.  415 

 416 

We compiled the pairwise colocalizations between T2D and each omics layer and additional 417 

traits to create a network of T2D index variants mapped to genes, metabolites, and traits. This 418 

provides the most comprehensive resource to date of the genetic relationships between genes, 419 

traits, metabolites, and genetic variants associated with T2D to the research community. Such a 420 

resource allows searches for genes, metabolites, or traits of interest and find the T2D index 421 

variants underlying their shared causal signals with T2D to quickly generate hypotheses and 422 

gain insights into T2D pathophysiology. We additionally include effect and variant information 423 

from the molecular QTL, trait GWAS, and T2D GWAS summary statistics to further improve the 424 

searchability of the network. 425 
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 426 

Identifying drug targets for complex diseases has traditionally focused on protein coding 427 

variants, which involves designating the target gene and mimicking a loss-of-function or gain-of-428 

function effect52,53. However, effector genes regulated by non-coding variants may also be 429 

viable drug targets once the mechanism of action is understood. In this study, we identified 430 

candidate effector genes, their tissue of action and direction of effect, for potential drug target 431 

identification. We show that our list of effector genes is enriched for targets of approved drugs 432 

for treatment of T2D, suggesting that drugs not currently used to treat diabetes but targeting one 433 

of the effector genes are strong candidates for modification for the treatment of T2D. We 434 

acknowledge that additional studies to test causality, druggability, and functional validation with 435 

tissue and cell types of interest are needed.  436 

 437 

Our study has limitations. First, we utilized the 1,289 index variants from Suzuki et al. to define 438 

our tested colocalization regions, but we recognize that these variants were not assessed for 439 

statistical independence applying formal fine-mapping approaches. Second, we leveraged the 440 

multi-ancestry meta-analysis for T2D to maximize sample size. However, this approach may 441 

underestimate the true number of colocalizations, as we could not perform fine-mapping to 442 

differentiate multiple independent signals within the same locus due to current limitations in fine 443 

mapping and conditional analyses utilizing only multi-population summary statistics data. Third, 444 

confirmation of the tissue of action and the causality and directionality of the effect, especially 445 

for distal-effector genes, remains to be determined. This necessitates careful investigation 446 

through appropriate causal inference experiments, cellular models, and in vivo studies. To 447 

facilitate these efforts, we provide here the most extensive list of effector genes, tissues, and 448 

potential physiological pathways linked to T2D associated variation for initial prioritization 449 

strategies. 450 

 451 
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In conclusion, we present a comprehensive functional follow-up of the largest T2D GWAS meta-452 

analysis and provide a framework model for functional annotation of other complex multi-453 

ancestry GWAS. We provide an interactive network to explore the relationships between T2D-454 

associated variants and genes, metabolites, and traits. We anticipate that this resource will 455 

serve as a valuable tool for generating testable hypotheses that may lead to the discovery of 456 

novel T2D drug targets and therapeutic strategies. 457 

 458 

Methods 459 

GWAS and Molecular Trait Associated Datasets 460 

We downloaded GWAS for T2D relevant traits downloaded from a variety of sources described 461 

in Supplementary Table 154–70. We used T2D multi-group meta-analysis generated using 462 

METAL71 from Suzuki et al.15 for all colocalization analyses. Additionally, single population 463 

group meta-analyses using METAL from Suzuki et al. for AFR-like participants living within the 464 

USA and for AMR-like participants were used for colocalization. We removed variants with a 465 

MAF <0.5% across all the 1000G-continental similarity groups from the analyses.  466 

 467 

We downloaded pancreatic Islet eQTL data from TIGER19. Since effect size and variance 468 

information is not available in the TIGER eQTL data, we used p-value information from the 469 

summary statistics and allele frequencies from UKB to calculate approximate bayes factors for 470 

colocalization analyses. We downloaded eQTL data for subcutaneous adipose, visceral 471 

adipose, skeletal muscle, hypothalamus, and liver tissue and blood from GTEx v8. We also 472 

tested eQTL data for whole blood from self-reported African American (AA), Mexican American 473 

(MX), and Puerto Rican (PR) populations for colocalization22. Additionally, we tested T2D 474 

GWAS including only AFR-like participants from the USA for colocalization with the AA blood 475 

eQTL data and tested T2D GWAS including only AMR-like participants for colocalization with 476 

the MX and PR blood eQTL datasets. We restricted the colocalization analyses to just these 477 
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eQTL datasets as pancreatic islets, subcutaneous adipose, visceral adipose, skeletal muscle, 478 

hypothalamus, and liver are known to be relevant to T2D. Despite blood representing multiple 479 

tissues and not being a target of T2D, the availability of blood eQTL from diverse populations 480 

motivated their inclusion.   481 

 482 

We performed integration with pQTL data using summary statistics from deCODE, UKB, HELIC, 483 

and ROS/MAP. The deCODE pQTL study contains 4,907 aptamers measured with the 484 

SomaScan version 4 assay (SomaLogic) in the plasma samples of 35,559 Icelanders72. The 485 

UKB Pharma Proteomics Project characterized 2,941 plasma protein analytes of 54,219 UKB 486 

participants using the antibody-based Olink Explore 3072 proximity extension assay and tested 487 

for pQTL with 2,923 proteins73. pQTL for only 1,472 of these proteins were available at the time 488 

of this study. Plasma pQTL from the Hellenic Isolated Cohorts (HELIC)74 included 2,933 489 

samples from two isolated Greek populations (Pomak and the Mylopotamos villages) and 543 490 

proteins from six different OLINK panels: Cardiovascular II, Cardiovascular III, Metabolism, 491 

Neurology, Neuro-exploratory and Cardiometabolic75–77. Genetic and proteomic data from post-492 

mortem samples of the dorsolateral prefrontal cortex of older adults was provided by the 493 

Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP)78. The pQTL 494 

analysis was conducted for every HapMap3 common variant (MAF >0.05) within a 100 Kb 495 

window around protein-coding genes. 496 

 497 

For the colocalization analyses with metabolites, we used summary statistics from the METSIM 498 

and UKB cohorts. The METSIM metabolomics study measured 1,391 plasma metabolites in 499 

6,136 Finnish men using the Metabolon Discovery HD4 mass spectrometry platform79. In the 500 

UKB cohort, a total of 249 metabolites (168 absolute levels and 81 derived ratios and 501 

percentages) were measured from the Nightingale panel and tested for genome-wide 502 

associations with 114,999 individuals of European ancestry80.  503 
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 504 

Colocalization Analyses 505 

We performed pairwise colocalizations between the multi-group T2D GWAS meta-analysis and 506 

eQTL, pQTL, metabQTL, and relevant trait GWAS datasets using the coloc.abf function from 507 

the coloc81 package in R. coloc.abf requires regions to be specified to test for colocalization. To 508 

define these regions, index variants were sorted by p-value and a 500 Kb window was 509 

constructed around each variant. If a less significant index variant was within the window of a 510 

more significant variant, the less significant variant’s window was removed from the list of 511 

regions. To prevent additional overlap of regions, any regions overlapping by more than 200 Kb 512 

were merged and regions overlapping by less than 200 Kb were split by half of their overlap 513 

size. The final region boundaries used in the analyses can be found in Supplementary Table 2. 514 

A colocalization analysis was performed between a T2D region and a QTL or cardiometabolic 515 

trait if and only if there was evidence of an association (defined as P <1x10-4) of the T2D index 516 

variant or a proxy for the T2D index variant for that trait. Proxy variants were defined as a 517 

variant in strong linkage disequilibrium (LD, r2 >0.8) in all continental population groups defined 518 

by in 1000G (AFR, AMR, EAS, EUR, and SAS). 519 

 520 

coloc.abf provides the posterior probability that a region shares a causal variant in both 521 

association summary statistics tested and posterior probabilities that each variant present in 522 

both summary statistics is the causal variant. A colocalization was deemed of interest if the 523 

posterior probability or shared variation (PP.H4) was greater than 0.8. To determine if a T2D 524 

GWAS index variant is the most likely shared causal variant for a region in two colocalizing 525 

datasets, the variant with the highest posterior probability of being shared was mapped to a 526 

index variant if it was in partial-to-strong LD with the index variant (r2 >0.5) in 1000G population 527 

groups described above.  528 

 529 
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We labelled an eQTL colocalization as being observed in one tissue or population group dataset 530 

if the PP.H4 was greater than 0.8 in the dataset, but less than 0.3 in all other tissue or 531 

population group datasets. A maximum of 0.3 was chosen to avoid selecting suggestive 532 

colocalizations that may exist but not be sufficiently powered to be detected with our datasets. 533 

For single tissue analyses, we combined subcutaneous adipose and visceral omentum adipose 534 

results and combined blood results from each ancestry due to the larger similarities in gene 535 

expression profiles between these datasets relative to the other tissues analyzed. 536 

 537 

We characterized pQTL colocalizations as being in cis if the mapped index variant was within 1 538 

Mb of the pQTL gene TSS; otherwise they were denoted as in trans. We tested for enrichment 539 

of colocalizations identified between deCODE pQTL which uses the Somascan assay and UKB 540 

pQTL which uses the Olink assay, using Fisher’s exact test. We constructed contingency tables 541 

from all gene to T2D index variant mappings possible for genes included in Somascan and/or 542 

Olink respectively. We also used this approach to test for an enrichment of colocalizations 543 

identified between METSIM metabQTL and UKB metabQTL, using all metabolite to T2D index 544 

variant mappings possible for metabolites included in METSIM and/or UKB respectively.  545 

 546 

We also tested for enrichment between T2D index variants mapped to an eQTL tissue 547 

colocalization and T2D index variants within different T2D genetic clusters using Fisher’s exact 548 

test. We constructed contingency tables based on whether one of the 1,289 T2D index variants 549 

is within a specific T2D genetic cluster and is also the lead colocalizing variant for a 550 

colocalization with an eQTL dataset. The Liver/Lipid Metabolism cluster was excluded due to 551 

only having 3 total T2D index variants. We then adjusted P-values using the Benjamini-552 

Hochberg procedure. We repeated these enrichments analyses for UKB metabQTL 553 

colocalizations, grouped based on metabolite class. 554 

 555 
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Colocalization Network 556 

We constructed a network of all the colocalizations with the T2D meta-analyses using 557 

cytoscape82 and measured network properties using cytoNCA. 558 

 559 

Effect Direction Consistency 560 

We mapped many of the genes and metabolites identified from a pQTL or metabQTL dataset to 561 

multiple T2D index variants. We then measured the consistency of effect estimates for T2D and 562 

the pQTL or metabQTL for genes or metabolites with at least 3 mapped T2D index variants by 563 

testing for an association between pQTL or metabQTL effect sizes with T2D effect sizes using 564 

an ordinary least squares regression model without an intercept, adjusting for an FDR of 0.05 565 

using the Benjamini-Hochberg procedure.  566 

 567 

Expression Dataset Preparation 568 

We downloaded scRNA-seq data from HPAP45 analyzed it with Scanpy83 v1.9.3. The published 569 

data from HPAP we used in this study was pre-QC’ed, clustered, and annotated, and a full 570 

description of the HPAP data processing steps can be found in their publication45. Briefly, cells 571 

were filtered to have >500 expressed genes per cell and <15% mitochondrial reads. After, 572 

ambient RNA was adjusted using SoupX, followed by batch correction with Harmony and 573 

clustering using the Leiden algorithm with a resolution of 0.5. Cell types were defined by 574 

pseudo-bulking each cell type and identifying marker genes identified with a Wald test. We 575 

subset cells from healthy and T2D donors and created pseudobulks per sample by summing 576 

raw counts across cells per cell-type. We only kept pseudobulks with at least 5×105 counts and 577 

from adult individuals (age >= 20 years; N=21 for healthy and N=17 for T2D). We performed the 578 

DE analysis with edgeR84 v3.40.2. We removed lowly expressed genes per cell-type with 579 

filterByExpr, which removes genes with less than 10 counts in 10 samples or 15 counts in all 580 

samples, using diabetes status as a stratification covariate. After filtering, we tested a total of 581 
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9,995 genes in acinar cells, 8,150 genes in active stellate cells, 13,171 genes in alpha cells, 582 

13,095 genes in beta cells, and 9,422 genes in ductal cells. We then fit a generalized linear 583 

model with robust dispersion to the data, using as covariates diabetes status, age, sex, sex and 584 

age interaction, self-reported race and ethnicity, and sequencing chemistry. We next used the 585 

glmLRT function to identify T2D differentially expressed genes incorporating the dispersion 586 

estimates and adjusted the p-values with the Benjamini-Hochberg procedure.  587 

 588 

We pulled bulk expression dataset for human islets from Marselli et al.44, including 28 T2D 589 

cases and 58 ND controls. We performed transcript quantification using salmon 1.4.085, and 590 

differential expression tests using DESeq2 1.38.386. The DESeq2 results from this study are 591 

accessible on GEO under accession number GSE159984. 592 

 593 

We downloaded bulk expression data of FXYD2 from different iPSC differentiation stages from 594 

GEO under the accession number GSE190727. We also downloaded single-cell expression 595 

data for stem-cell-derived endocrine cells from Krentz et al. 201842, Xin et al. 201828, and 596 

Balboa et al. 202243.  597 

 598 

Open Targets Drug Identification 599 

To identify potential drug repurposing options from our candidate gene list, we queried data files 600 

from Open Targets87 on around 7k drug molecules and around 62k targets, where 4,930 drugs 601 

were annotated with 1,538 gene targets. After also retrieving the reported indications of drugs, 602 

we refined our search to the approved drugs, which were not withdrawn and did list indications. 603 

Open Targets used drug annotations from ChEMBL to define drugs as being approved for an 604 

indication if they come from a source of approved drug information (e.g. FDA, WHO ATC, EMA, 605 

BNF). To test if diabetes drugs were identified more often than expected by chance, we 606 

compared the drugs targeting our query genes and those targeting all documented non-query 607 
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genes using chi-squared tests. Additionally, we tested if permuted 100k random samples from 608 

the same gene list would identify diabetes drug targets at the same rate, sampling 42,539 609 

known genes with HGNC gene symbols and comparing the results from our query gene set and 610 

the random samples. 611 
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 678 

Figure Legends 679 

Figure 1: Overview of Project. a) Genomic regions containing the 1,289 T2D-associated index 680 

variants from Suzuki et al.15 were tested for evidence of colocalization with 10 eQTL datasets, 4 681 

pQTL datasets, 2 metabQTL datasets, and 46 related trait GWAS. Colocalizations were then 682 

mapped to an interactive network to visualize genes (from an eQTL or pQTL, colored green), 683 

metabolites (colored orange), or traits (colored purple) with evidence of sharing a causal variant 684 

with T2D around a index variant (colored yellow). These results were then used in downstream 685 
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analyses to identify enrichment with expression datasets, better understand T2D pathways, and 686 

identify drug targets for T2D. b) Upset plot of the 716 T2D index variants mapped to an 687 

association in an eQTL, pQTL, metabQTL, or trait GWAS dataset (with a colocalization PP.H4 688 

>0.8, Methods). c) Bar plot of the number of effector genes, metabolites, and traits identified 689 

from colocalization analyses with T2D. 690 

Figure 2: Identification of putative effector genes for T2D. a) Plotted are the number of 691 

effector genes for T2D previously identified from colocalization analyses between various T2D 692 

GWAS and eQTL datasets. Colors indicate the tissue type of the eQTL dataset and shape 693 

indicates major self-reported population group of the eQTL dataset. Gray bars represent the 694 

total number of unique transcripts across all colocalization analyses per GWAS. b) Upset plot of 695 

the variant to gene mappings identified in each eQTL dataset analyzed. c) Proportion of 696 

colocalizations with evidence in one tissue (PP.H4 >0.8) and no positive evidence observed in 697 

other tissues (PP.H4 <0.3). d) Example of a colocalization observed only in Pancreatic Islets, 698 

for the gene SCTR. Colors indicate LD in EUR populations from 1000G relative to rs2244214. 699 

Figure 3: pQTL colocalizations identified in multiple datasets. a) Upset plot of variant to 700 

gene mappings identified via colocalization analyses with four different pQTL datasets. b) 701 

Correlation of pQTL effect sizes for colocalizations identified in both UKB and deCODE pQTL 702 

datasets (Pearson R=0.93; P=9.1�10-17). c) Locus compare plot of CBLN4 using deCODE 703 

pQTL data. d) Colocalization subnetwork of rs1415287, containing the colocalizations with 704 

CBLN4 as well as a colocalization with IGFBP-1. Green nodes represent genes from an eQTL 705 

or pQTL, orange nodes represent metabolites, purple nodes represent traits, and yellow nodes 706 

represent T2D index variants. Size of the nodes indicate the number of colocalizations observed 707 

in the full network. Gray edges represent colocalizations with a plasma/blood dataset, green 708 

edges represent colocalizations with a subcutaneous adipose eQTL dataset, and pink edges 709 

represent colocalizations with a trait. Dashed lines indicate colocalizations are in the opposite 710 
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direction as T2D risk and solid lines indicate colocalizations are in the same direction as T2D 711 

risk. 712 

Figure 4: eQTL from understudied populations identify novel colocalizations with T2D. a) 713 

Upset plot of colocalizations identified with blood eQTL datasets from four different populations. 714 

Orange bars represent colocalizations observed only in the Puerto Rican (PR), Mexican 715 

American (MX), or African American (AA) datasets (PP.H4 >0.8) and not in the European (EUR) 716 

dataset (PP.H4 <0.3). Blue bars represent colocalizations observed only in the EUR dataset 717 

(PP.H4 >0.8) and not in PR, MX, or AA datasets (PP.H4 <0.3). Gray bars represent 718 

colocalizations observed in any of the PR, MX, or AA datasets and showed a PP.H4 between 719 

0.3 and 0.8 in the European dataset, or were observed in the European dataset but showed a 720 

PP.H4 between 0.3 and 0.8 in any of the PR, MX, or AA datasets. b) Log-fold change of allele 721 

frequencies between AMR-like and EUR-like populations for T2D index variants with a 722 

colocalization observed in one population group. c) Locus compare plots of LIN7A and ACSS3 723 

with MX data. Colors indicate LD in AMR continental ancestry from 1000G relative to variant 724 

rs10128882. d) Allele frequencies of lead colocalizing variant rs10128882 (blue) and T2D index 725 

variant rs11114650 (black) per continental ancestry and per inferred local ancestry among AMR 726 

participants from gnomAD v4.0. e) Effect sizes of rs10128882 (blue) and rs11114650 (black) in 727 

both the T2D GWAS and blood eQTL datasets, stratified by ancestry. 728 

Figure 5: Phosphatidylcholine has consistent negative effect directions with T2D risk. a) 729 

Joint scatterplot of metabolites comparing the number of T2D-associated index variants they are 730 

mapped to compared to the change in T2D effect size per change in metabQTL effect size 731 

across the variants. Points are colored and sized by Benjamoni-Hochberg adjusted p-value. b) 732 

Increased glucose has consistent correlation with increased T2D risk at colocalizing index 733 

variants. c) Decreased phosphatidylcholine has consistent correlation with decreased T2D risk 734 

at index variants. d) Subnetwork of all colocalizations mapped to a Phosphatidylcholine-mapped 735 

T2D-associated index variant. Green nodes represent genes from an eQTL or pQTL, orange 736 
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nodes represent metabolites, purple nodes represent traits, and yellow nodes represent T2D 737 

index variants. Size of the nodes indicate the number of colocalizations observed in the full 738 

network.  739 

Figure 6: Type 2 Diabetes Clusters Match Trait Colocalizations. a) left panel: Color 740 

indicates the percentage of total SNPs with a colocalization in each cluster; each row was a trait 741 

used for clustering. Final rows list total number of SNPs in each cluster and the total % of SNPs 742 

in the cluster with at least one colocalization. right panel: Color indicates the percentage of 743 

colocalizing SNPs who have the same (red) or opposite (blue) effect direction as the linked T2D 744 

SNP, with white indicating that SNPs are split 50/50 for direction, and gray indicating there were 745 

no colocalizations between that trait and any SNPs in that cluster. Text in each square indicates 746 

the total number of SNPs in that cluster that colocalize with that trait. b) Upset plot of all 747 

colocalizing SNPs with 2 or more trait group colocalizations showing trait group overlaps, with 748 

bars colored by cluster membership. c) Upset plot showing trait group overlaps for colocalizing 749 

SNPs in the lipodystrophy cluster, with gold bars highlighting overlaps that include 4 or more 750 

trait groups (n=19 out of 27 colocalizing SNPs). 751 

Figure 7: Identification of novel drug targets for T2D. a) Forest plot of chi2 enrichment 752 

results between drugs targeting colocalizing genes identified in at least one dataset (all), only 753 

from an eQTL, only from a pQTL, and only from a trans-pQTL with drugs having an approved 754 

indication of diabetes in Open Targets. b) Forest plot of enrichment results using drugs having 755 

an indication of diabetes. c) Locus compare plot of FXYD2, identified from a colocalization 756 

observed only with pancreatic islet eQTL data. d) Violin plot of FXYD2 expression per rs529623 757 

genotype. e) Violin plot of FXYD2 expression among people with T2D and non-diabetes (ND) 758 

stratified by weight status in bulk pancreatic islet data. f) Violin plot of FXYD2 expression from 759 

human donor single-cell pancreatic islet data stratified by cell-type. Adjusted P-values <0.001 760 

are indicated with “**”, and adjusted P-values <0.05 with “*”. Due to the low number of cells per 761 

sample, the differential expression test was not performed for some cell types (Methods). 762 
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 763 

Extended Data Figure 1: eQTL colocalizations correlate with sample size. Scatter plot of 764 

the number of colocalizations between the T2D multi-ancestry meta-analysis and different eQTL 765 

datasets compared to the sample size of the eQTL datasets. 766 

Extended Data Figure 2: Enrichment of pancreatic islet colocalizing effector transcripts 767 

in differential gene expression data. GSEA plots of colocalizing effector transcripts with 768 

differentially expressed genes from the bulk human pancreatic islet dataset, stratified by 769 

whether the T2D index variant risk allele is associated with increases (same direction) or 770 

decreases (opposite direction) of gene expression. 771 

Extended Data Figure 3: IGFBP2 associations with T2D are highly consistent genome-772 

wide. a) Joint scatterplot of proteins comparing the number of T2D-associated index variants 773 

they are mapped to compared to the association of pQTL effect sizes to T2D effect sizes across 774 

the variants. Points are colored and sized by Benjamoni-Hochberg adjusted p-value. b) 775 

Decreased plasma protein levels of insulin growth factor binding protein 2 IGFBP2 has 776 

consistent correlation with increased T2D risk at colocalizing lead variants. 777 

Extended Data Figure 4: Overlap of T2D clusters with trait, eQTL, and metabQTL 778 

colocalizations. Heatmaps of the percent of index variants per cluster mapped to a 779 

colocalization with a metabolite group, eQTL dataset, and additional related trait GWAS. 780 

Extended Data Figure 5: Colocalizations between index variants and trait groups per T2D 781 

genetic cluster. Upset plots of colocalizations between T2D index variants from different T2D 782 

genetic clusters with related cardiometabolic trait groups.  783 

Extended Data Figure 6: Permutations of overlaps from T2D colocalizing genes with 784 

drugs from Open Targets. Ratios of approved diabetes drugs of detected drugs compared to 785 

100k random samples (histogram) for a) genes from all T2D colocalizations, b) genes only 786 

identified from a T2D coloclization with eQTL, c) genes only identified from a T2D coloclization 787 

with pQTL, and d) genes only identified from a T2D coloclization with trans-pQTL. P-values 788 
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indicate difference in the approved proportion of diabetes indications per drug for colocalizing 789 

query genes relative to random permutations. 790 

Extended Data Figure 7: FXYD2 expression in islet progenitor cells. a) Heatmap of FXYD2 791 

expression throughout various stages of iPSC differentiation into beta-like cells, where colors 792 

correspond to the log2(TPM+1) expression level of an individual sample (1-5). The differentiation 793 

stages include definitive endoderm (DE), pancreatic progenitor (PP), stem cell-derived islets at 794 

stage 7 (SC-islets) and the islets following grafting into immune deficient mice for 4 months 795 

(graft). b) Dot plot showing mean gene expression of FXYD2 and INS in the endocrine cell 796 

clusters in the integrated dataset of 46,261 stem-cell-derived endocrine cells and adult human 797 

islet cells (Krentz et al. 2018, Xin et al. 2018, and Balboa et al. 2022). Dot size is relative to the 798 

fraction of cells within a cluster expressing the gene. Endocrine Prog., Endocrine progenitors; 799 

SC-EC, Stem-cell-derived enterochromaffin-like cells; SC-Beta, Stem-cell-derived beta cells; 800 

SC-Alpha, Stem-cell-derived alpha cells. 801 
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