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Abstract

Objective: The relationship between sleep and epilepsy is important but imperfectly understood. We
sought to understand why children with epilepsy have altered sleep homeostasis.
Methods: We used neural mass models to replicate sleep EEG recorded from 15 children with focal
lesional epilepsies and 16 healthy age-matched controls.
Results: The models revealed that sleep EEG differences are driven by enhanced firing rates in the
neuronal populations of patients, which arise predominantly due to enhanced excitatory synaptic currents.
These differences were more marked in patients who had seizures within 72 hours after the sleep
recording. Furthermore, models inferred from patients resided closer in parameter space to models of a
typical seizure rhythm.
Significance: These results demonstrate that brain mechanisms relating to epilepsy manifest in the
interictal EEG in slow-wave sleep, and that EEG recorded from patients can be mapped to synaptic
deficits that may explain their predisposition to seizures. Neural mass models inferred from sleep EEG
data have the potential to generate new biomarkers to predict seizure occurrence or inform treatment
decisions.

1. Key Points

• The mechanisms that differentiate children with epilepsy from controls during slow-wave sleep can
be understood using a mathematical model.

• The observed spectral power shifts in patients are predominately explained by greater excitatory
synaptic currents.

• These differences in currents place patients’ models closer to seizure rhythms.

• Ultimately, this framework could help foster the development of biomarkers to guide intervention in
epilepsy.
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3. Introduction

The electroencephalogram (EEG) in deep sleep is dominated by slow waves of high amplitude, generated
by widespread neurons alternating in synchrony between depolarised and hyperpolarised states [1]. This
slow-wave activity (SWA) correlates closely with sleep need, building up with time spent awake and
dissipating with sleep [2]. It has been proposed that the decrease in global SWA across the night reflects
the process of synaptic renormalisation [3], a homeostatic mechanism which regulates cortical excitability
[4] and facilitates neural plasticity [5]. Further, it is theorised that the disruption of sleep homeostasis
may be the basis of sleep-related epilepsies with childhood onset, ranging from self-limited childhood
focal epilepsies to mesial temporal lobe epilepsy [6]. In support of this notion, Eriksson et al [7] recently
demonstrated that SWA dynamics are altered in children with epilepsy compared to age-matched healthy
controls. Moreover, these differences in SWA were found to be exacerbated in patients with a higher
propensity to seizures [7].

Understanding the physiological mechanisms that contribute to differences observed in the EEG in
disease is a challenging problem [8, 9]. Computational models can help: if we can match the simulations
generated by models to data recorded from human subjects, we can then examine which components,
parameters or settings of the model were crucial to allow it to generate the data of interest. Several
models of EEG have been developed and have been shown to generate dynamics similar to a variety of
resting and pathological states [10]. In particular, neural mass models parsimoniously capture synaptic
interactions between populations of excitatory and inhibitory neurons [11]. This allows for EEG brain
rhythms to be understood in terms of synaptic dynamics, connectivity and firing rates at the level of brain
tissue [10, 12, 13, 14].

An important technical challenge is how to match model dynamics to data. Various methods are available
for this, including routines within dynamic causal modelling [15]. Such approaches often use linear
models [16], combined with prior beliefs on parameter values. The latter are difficult to ascertain for
neural mass models, whilst the former does not capture the nonlinear dynamics of the brain and, in
particular, the nonlinear mechanisms of epileptiform EEG [17]. Recently, we have demonstrated the
promise of multiobjective optimisation as a global nonlinear approach that can be used to model resting
and pathological EEG [18]. This method enables the efficient search of parameter space to identify
parameter values in the model that, when simulated, produce an output that recapitulates desired features
of the data. This process can be applied to data from patients and healthy controls to understand the
mechanisms (neural mass model parameters) that are responsible for changes observed in the EEG.
Here, we apply this approach to decipher the mechanisms in the sleeping cortex [19] that contribute to the
differences in SWA observed in patients with epilepsy. We then explore perturbations to the model that
could potentially rectify the different dynamics observed in epilepsy. Finally, having identified mechanisms
underpinning differences in resting EEG, we link these mechanisms to the generation of seizures. Here
we do this by quantifying the proximity (in terms of similarity of recovered parameter values) of resting
dynamics to dynamics of an archetypal seizure rhythm. That is, we answer the questions: “Why would
patients have altered SWA?” and “Can this be normalised?”
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4. Materials and Methods

4.1. Participants and study design

Participants consisted of 15 children with drug-resistant focal structural (or presumed structural) aetiology,
and 16 age and sex-matched typically developing controls. Patients were recruited prospectively from the
EEG video telemetry unit at Great Ormond Street Hospital as described previously [7, 20]. Children were
aged between 6 and 16 years, and EEG was recorded continuously during planned four-night hospital
admissions. Control participants were recruited by advertisements directed at staff working at the UK
charity Young Epilepsy. Controls attended the EEG department of Young Epilepsy to be set up for a
single night ambulatory sleep study. Compared to the previous cohort ([7]), 4 patients and 2 controls were
excluded due to artefacts in the recordings. Group differences in demographic and clinical data were
examined using independent samples t-tests for continuous variables and chi-square tests for categorical
variables.

4.2. EEG data

EEG polysomnography acquisition, visual sleep scoring and the visual quantification and marking of
seizures have been described in previous work [20]. EEG data were recorded with the Xltek Trex system
(Natus Medical Incorporated, Pleasanton, CA, USA) at 512Hz using a 10-10 montage (Fz, Cz, Pz, Fp1,
Fp2, F3, F4, F7, F8, F9, F10, C3, C4, C5, C6, T5, T6, T7, T8, T9, T10, P3, P4, P9, P10, O1, O2)
in patients and at 256Hz using an 8 electrode montage (F3, F4, C3, C4, O1, O2, A1, A2) in controls.
Recordings were downsampled to 128Hz in Natus Sleepworks (Natus, USA) before exporting as a .edf
file for offline analysis. The full EEG recording (all available channels) was reviewed visually for artefacts
in EDFbrowser (version 1.88 https://www.teuniz.net/edfbrowser/), and channels marred by artefacts were
excluded. No artefact removal was performed.

To identify early night SWA, the recordings were viewed on a whole night timescale with colour density
spectral array to identify segments with high amounts of 1-4Hz with or preceded by high amounts of
10-12 Hz occurring within the first two hours of sleep. The identified segments were reviewed again at a
10-second per-page scale with all channels for visual identification of SWA before cropping. The mean
activity recorded from the frontal electrodes (F3, F4) was used for further analysis.

4.3. Parent-rated sleep disturbance

Parents were asked to rate the frequency of various sleep behaviours as they would occur in a typical
week using the Children’s Sleep Habits Questionnaire [21].

4.4. Modelling framework

A neural mass model was used to simulate the temporal dynamics of mean membrane potentials and firing
rates in a cortical region [22]. Specifically, we used a conductance-based neural mass model developed
to model non-rapid eye movement sleep EEG by Weigenand et al [19]. Here, neurons are grouped into
interacting excitatory and inhibitory populations, and excitatory, inhibitory, leak and sodium-dependent
potassium (KNa) synaptic currents (at the level of the neural mass) are tracked over time. We note that
excitatory synaptic currents exhibit efferent depolarization (labelled as AMPA in [19]) and inhibitory synap-
tic currents exhibit efferent hyperpolarization (labelled as GABA in [19]). Furthermore, sodium-dependent
potassium synaptic currents have been suggested as a mechanism for slow oscillations [19, 23]. We used
MATLAB [24] to numerically solve the model. Additional details of the model, including model equations,
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can be found in Supplemental 1.

The model comprises 32 parameters. These parameters describe the mean synaptic interactions be-
tween excitatory and inhibitory neuronal populations. These facilitate a mechanistic interpretation of the
neuronal activity analogous to an EEG recording, without explicitly modelling the activity generated by
single cells [10, 11]. However, parameters at this scale are difficult to constrain and simulating the model
with different parameter values results in different dynamics. Therefore, we implemented a previously
developed multiobjective genetic algorithm [18] to search model parameter space for combinations of
parameters that yield model simulations with properties similar to those of the EEG. Supplemental Table
1 defines the model parameters, gives a brief description of their interpretation and defines the lower and
upper parameter bounds that form the search space.

To quantitatively compare model output with data, objectives that describe the difference between the
model and data were defined, and the algorithm was used to recover solutions that minimised these
objectives. Following our previous work [18], we defined two objectives: (1) the difference in normalised
power; and (2) the difference in node degree of the horizontal visibility graph. The latter objective maps
the EEG time series to a network and has been shown to be able to distinguish between stochastic
processes and nonlinear dynamics, including epileptiform rhythms [18, 25, 26]. The optimisation was
repeated 100 times for each subject to obtain a distribution of parameters that could describe the subject’s
EEG data. Figure 1 provides an overview of how parameters were recovered by comparing the model
output to the recorded EEG. For further details regarding the definition of objectives, and information on
how the model output is aligned to data, see Supplemental 2.

4.5. Comparison of resting activity to seizure activity

We additionally optimised the model to generate spike-wave discharges (SWDs). The SWD is the
archetypal waveform seen on surface EEG during a generalised seizure [27] and is thought to have a
cortical origin [28]. SWDs are activated in sleep across a spectrum of common childhood epilepsies,
such as self-limited epilepsy with centrotemporal spikes [29] and various genetic generalised epilepsies
[30], as well as in continuous spike-wave during sleep, where SWA is largely replaced by SWD [31]. In
animal models, SWDs have been observed to develop from sleep-like slow rhythms [32]. Optimising to
this rhythm therefore enabled us to compare (in silico) how the mechanisms of a resting state relate to
mechanisms of a seizure state.

4.6. In silico prediction for intervention

To understand how intervention may alter the dynamics observed on the EEG, we investigated the
sensitivity of the power spectrum to changes in model parameters. In particular, we recorded the
simulated power spectrum after individually adjusting the parameters governing each synaptic channel
conductance (excitatory, inhibitory, leak and KNa). We focused on perturbing the conductance parameters
because these parameters represent a key mechanistic target of antiseizure medications (for example,
see [33]). This includes benzodiazepines, which have been shown to increase the conductance of GABAA

(inhibitory) channels [34] and perampanel, which is known to block AMPA (excitatory) mediated synaptic
conductances [35]. Hence, to simulate the effects of treatment, we decreased the excitatory and leak
conductances and increased the inhibitory and KNa conductances in models derived from patient data.
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Figure 1: Illustration of the process of comparing model output with data to obtain parameters that explain the EEG. A) The mean
signal from the F3 and F4 electrodes of an EEG recording is used in the analysis. Note that a figure of an example patient EEG
recording during sleep has been removed here due to potentially identifying information. B) Schematic of the neural mass model
used, consisting of interacting excitatory and inhibitory populations of neurons. The output of the model is a 30s time series of
simulated EEG. C) Model output is compared to the data by defining objectives to recapitulate in the simulations. Model parameters
are adjusted to find simulations that aim to minimise the objectives (see Methods). D) Several properties of the neural mass model
are analysed, including firing rates and synaptic currents.
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Cohort Patients (N=15) Controls (N=16) p
Male (female) 11 (4) 7 (9) 0.0953
Age, mean (SD; years) 11.4 (2.97) 9.86 (2.72) 0.132
CSHQ, mean (SD; years) 49.9 (9.14) 37.5 (3.62) <0.001
Full Scale IQ, mean (SD) 85.6 (11.0) 111 (9.66) <0.001
Epilepsy characteristics
Age at onset of seizures, mean (SD; years) 5.21 (3.92)
Duration of epilepsy, mean (SD; years) 6.23 (2.57)
MRI positive (negative) 10 (5)
Nocturnal seizures
Every night 3
Sometimes 8
Never 4

Reported seizure frequency
Daily 3
Weekly 6
Monthly 3
<1 per month 3

Seizure focus
Frontal 3
Temporal 3
Frontotemporal 4
Parietal 1
Occipital 1
Undetermined 3

Number of antiseizure medications
None 1
One 8
Two 4
Three 2

Seizure(s) during admission, yes (no) 7 (8)

Table 1: Population demographics. P-values were generated from independent samples t-tests for
continuous variables and chi-square tests for categorical variables.

5. Results

5.1. Clinical characteristics of participants

Participant demographics and patient clinical characteristics are summarised in Table 1. In particular,
no significant differences in age or sex were recorded between the cohorts. Further information on the
epilepsy characteristics of patients is provided in Supplemental Table 2.

5.2. Normalised power spectra in controls and patients

Spectral analysis of the normalised EEG revealed that patients had less relative power in the higher delta
range (1.5Hz-4Hz) than controls (Figure 2A). Patients who had a seizure during their hospital admission
(referred to herein as ‘patients with seizures’) had even less power in this range than those who did
not (referred to herein as ‘patients without seizures’); Figure 2B. The mean and standard error (SE)
normalised power from model simulations are shown in Figures 2C-D. It can be seen that the simulations
qualitatively recreate the normalised power of the data and the difference observed between each of the
groups. Furthermore, for an example control and patient subject, normalised power and time series from
the model output are given in Supplemental 4.
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Figure 2: A) Normalised power from control and patient data (mean and SE across subjects). B) Normalised power across patients
after splitting patients who had a seizure during their admission (patients with seizures) and patients who did not have a seizure
during their admission (patients without seizures). C-D) Shows the same as A-B), but for model simulations after optimising the
dynamics to data. Differences in the mean and SE normalised power between groups were recapitulated in the model simulations.
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5.3. Comparison of model simulations recovered from controls and patients

Parameter distributions recovered from optimising to control and patient data are shown in Supplemental
Figure 5. Significant differences were found in synaptic time scales (γe and γi), excitatory connectivity to
excitatory and inhibitory neuronal populations (Nee and Nei), firing rate thresholds (θe and θi) and the
excitatory synaptic reversal potential (Ee). These parameters contribute to differences in the emergent
properties of the membrane potential and excitability. To interpret the differences observed, we analysed
the mean firing rates and mean synaptic currents obtained from the model simulations that best fit
the data (Figure 3). It can be seen that patients, and specifically patients who had seizures during
their admission, had higher mean firing rates in the excitatory and inhibitory neuronal populations
(Figure 3A and B). Patients had significantly larger excitatory synaptic currents onto the excitatory
neuronal population than controls (Figure 3C). These differences were driven by the subset of patients
who had a seizure during their admittance. Patients with seizures also displayed significantly larger
(more negative) inhibitory synaptic currents onto excitatory neurons than controls (Figure 3D). We note
that no significant differences were observed in the leak and KNa synaptic currents on the excitatory
neuronal populations (Supplemental Figure 6), nor any of the synaptic currents on the inhibitory neuronal
populations (Supplemental Figure 7).

Figure 3: A) Excitatory and B) inhibitory mean firing rates obtained from model simulations. Patients had greater mean excitatory
and inhibitory firing rates than controls, as did the subset of patients with seizures during their admission. The mean firing rate of
patients without seizures during their admission was not significantly different to controls. C) Excitatory and D) inhibitory synaptic
currents on the excitatory neuronal population, obtained from model simulations. In each case, each point on a violin plot gives the
mean value of a subject. Using a Mann-Whitney U test, * p < 0.05 after Bonferroni correction, NS = not significant.
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5.4. In silico predictions for intervention

To further understand the influence that each of the synaptic currents has on the power spectrum, we
adjusted the conductance of each synapse and simulated the resulting power spectrum. We adjusted
each conductance by 40, 50 or 60 percent of its bound (see Supplemental Table 1), starting from the
baseline recovered from simulating patient EEG. Note that the parameters governing the excitatory and
leak synaptic conductance were reduced, whilst the parameters governing the inhibitory and KNa synaptic
conductance were increased, in line with the trends observed in Figure 3. Also note that whereas the
results of Figure 3 were specific to synaptic currents on the excitatory neuronal population, here we
adjust the excitatory synaptic conductance in general. This allows for the simulation of the effects that
drugs (such as antiseizure medications) have on the power spectrum. Figure 4 shows that reducing the
excitatory synaptic conductance produced the largest change in the power spectrum. In fact, a 50 percent
reduction in the excitatory conductance was sufficient to shift the mean patient power spectrum towards
the mean control power spectrum, simulating a “normalisation” of the sleep dynamics of patients (see
Figures 4A and 4E). Moreover, the sensitivity of the power spectrum to changes in synaptic conductance
was found to be significantly higher for the excitatory conductance than all of the other conductances in
the model (Figure 4F-H).
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Figure 4: A-D) Normalised power spectra of model simulations from all patients, along with the normalised power spectra obtained
after adjusting the excitatory, inhibitory, leak and KNa synaptic conductances by 50% of their range, respectively. E) Normalised
power spectra of recorded control and patient EEG, for reference. F-H) Change in normalised power spectra after adjusting the
synaptic conductance parameter for 40%, 50% and 60% of the specified parameter bounds (see Supplemental Table 1), respectively.
Using a Mann-Whitney U test, *p < 0.05, **p < 0.01 and ***p < 0.001.
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Hitherto, we used the model to reveal hidden firing rates and synaptic dynamics underlying SWA. We
found that alterations to the interactions between excitatory and inhibitory neuronal populations could
be revealed from this resting EEG, which was free of overt pathological rhythms. We next sought to
understand how these differences might be related to the generation of seizures, which is the defining
characteristic of the patient group. To do this, we performed another in silico experiment, matching the
model output to a prototypic seizure dynamic, the spike-wave discharge (SWD). Figure 5A shows a 2.5s
data segment during a SWD, along with a typical model simulation generated using parameters that were
recovered by fitting the model to this rhythm (henceforth called SWD models). We compared the mean
excitatory synaptic currents of SWD models to patient and control models (which were inferred from
resting SWA). We observed that, compared to controls, patients (and in particular the subset of patients
that had a seizure during their admission) had excitatory synaptic currents more similar in magnitude to
the mean excitatory synaptic currents recovered from SWD models (Figure 5B). This implies that smaller
changes to excitatory synaptic currents would cause patient models to generate SWDs, compared to
controls. Hence, the models inferred only from SWA dynamics revealed a hidden ictogenicity, as well as a
mechanistic explanation (enhanced excitatory synaptic currents and excitability).
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Figure 5: A) SWD data segment and example model simulation obtained after optimising the model dynamics to SWD data. B)
Comparison of the absolute difference in excitatory synaptic current obtained from control and patient models (inferred from SWA),
compared to the excitatory synaptic current from SWD models. This formed a continuum of seizure susceptibility, as shown on the
left of B). Patients, and in particular the subset of patients that had a seizure during their admittance, had excitatory synaptic current
more similar to SWD models than controls. Using a Mann-Whitney U test, *p < 0.05 and **p < 0.01 and NS = not significant.
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6. Discussion

We have used a neural mass model to recapitulate the EEG during deep sleep in children with epilepsy
and age-matched healthy controls. These models encapsulate essential features of the system of interest
and, by optimising their parameters to data, allow for inferences to be made about the mechanisms
that are altered in disease. In the cohort studied, optimising the model parameters for each subject
revealed that the differences observed in sleep homeostasis ([7]) at the group level were explained by
hyperexcitability in patients, driven predominantly by greater firing rates and excitatory synaptic currents.
This indicates that mechanisms can be revealed by neural mass models, and demonstrates that sleep
could be a critical paradigm in which mechanistic differences in the epileptic brain manifest during a
resting state. Additionally, by comparing the excitatory synaptic current obtained from the resting sleep
data with the excitatory synaptic current obtained from simulating a spike-wave discharge, we showed
that patients were closer to a seizure state than controls. That is, a smaller adjustment to the patient
model could lead them to have seizures in silico. These differences were exacerbated in patients who
had a seizure within 72 hours after the recording. Thus the propensity of the brain to generate seizures,
which is hidden from a visual analysis of the EEG, can be revealed by mathematical models. Crucially,
by modifying the parameters governing various channel conductances in the model, we were able to
simulate the effects of clinical intervention.

6.1. Limitations

Limitations of our study include the small sample size and retrospective sample. Conversely, this meant
that all seizures had been recorded as part of continuous study with the period of deep sleep used for
analysis. The age range of subjects spanned the developmental period where SWA peaks then falls
[36, 37]. We minimised bias by ensuring that the control and patient groups were matched for age, though
it is not possible to exclude that delays in the maturation of sleep homeostasis unrelated to seizure burden
may have contributed to the observed differences.

6.2. Digital twinning to facilitate personalised antiseizure management

EEG remains the key investigation for the diagnosis and monitoring of epilepsy, with interpretation in
the clinical setting by visual pattern recognition. However, recent advances in technology are improving
biomarkers towards the goals of seizure localisation [38] and forecasting [39]. A further important question
concerns the efficacy of treatment; a daily dilemma facing the clinician is how to select the best treatment
for a specific patient, which can be conceptualised as an n-of-1 trial.

Building virtual simulations and integrating them with data to make inferences about clinical operations
has been termed ‘digital twinning’ [40]. Applying the modelling framework presented, the parameters
optimised for each subject could serve as an in silico ‘twin’ on which pharmacological, as well as non-
pharmacological, interventions could be trialled virtually to aid clinical decision-making. As an example,
the findings at the group level from this cohort suggest that utilising antiseizure medication that specifically
modulates excitatory synapses, such as perampanel (a known AMPA receptor antagonist [41, 35]),
could be beneficial for seizure control in children with focal lesional epilepsies. Further work will include
assessing the use of the model on prospective data to see if it can predict the effects of interventions with
known mechanisms. In this approach, within-patient comparisons would counter bias due to variations in
the maturity of SWA dynamics for age.
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6.3. Perspectives for guiding stimulation protocols

A further promising area of research concerns the manipulation of slow waves using targeted stimulation
protocols. This approach has been implemented through various non-invasive methods, such as transcra-
nial magnetic [42], transcranial direct current [43] and acoustic [44] stimulation. Deep brain stimulation
could also be used with enhancement of SWA as a target outcome [45]. Studies exploring stimulation
to modulate activity have shown varied levels of success, from no systematic effect on the occurrence
of spike-wave activity [46] to some significant improvements in patients with benign epilepsy [47]. In
future, stimulation protocols could be tested by implementing them in a mathematical model, such as the
one discussed herein. Using a model to help systematize stimulation by guiding the optimal parameters
required could be crucial to help improve success rates for the non-pharmacological treatment of epilepsy.

7. Conclusions

By recovering parameters of neural mass models from data, we demonstrate the feasibility of using
mathematical models to elucidate mechanisms which may contribute to seizure burden in patients with
epilepsy. Our results suggest that hyperexcitability underpins the discrepancies observed between
children with epilepsy and healthy controls during slow-wave sleep. Furthermore, by simulating seizures
in the model, we provide evidence that the observed differences in this resting state may have a
causative association with seizure propensity. This approach could generate new biomarkers for seizure
susceptibility. Finally, by adjusting synaptic conductances in silico, we demonstrate a proof-of-concept
for using mathematical models to hypothesise about the most efficacious interventions needed to rectify
differences observed on the EEG, with the ultimate goal of improving patient outcomes.
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[4] Huber R, Mäki H, Rosanova M, Casarotto S, Canali P, Casali A, et al. Human cortical excitability
increases with time awake. Cereb Cortex. 2013;23(2):1–7.

[5] de Vivo L, Bellesi M, Marshall W, Bushong E, Ellisman M, Tononi G, et al. Ultrastructural evidence
for synaptic scaling across the wake/sleep cycle. Science. 2017;355(6324):507–510.
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