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Abstract 27 
 28 

Peanut Oral Immunotherapy (POIT) holds promise for remission of peanut allergy, though 29 
treatment is protracted and successful in only a subset of patients. Because the gut microbiome 30 
is linked to food allergy, we sought to identify fecal microbial predictors of POIT efficacy and to 31 
develop mechanistic insights into treatment response. Longitudinal functional analysis of the fecal 32 
microbiome of children (n=79) undergoing POIT in a first double-blind, placebo-controlled clinical 33 
trial, identified five microbial-derived bile acids enriched in fecal samples prior to POIT initiation 34 
that predicted treatment efficacy (AUC 0.71). Failure to induce disease remission was associated 35 
with a distinct fecal microbiome with enhanced capacity for bile acid deconjugation, amino acid 36 
metabolism, and increased peanut peptide degradation in vitro. Thus, microbiome mechanisms 37 
of POIT failure appear to include depletion of immunomodulatory secondary bile and amino acids 38 
and the antigenic peanut peptides necessary to promote peanut allergy desensitization and 39 
remission.  40 
 41 
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Main 44 
Peanut protein allergy (PA) is a life-threatening condition affecting 2% of the population in 45 

industrialized nations1. A leading cause of food-induced anaphylaxis2, the condition was not 46 
treatable until the approval of peanut oral immunotherapy (PalforziaTM) by the U.S. Food and Drug 47 
Administration in 2020, with strict avoidance of peanuts and peanut-containing products 48 
representing the most effective disease management strategy3. Peanut oral immunotherapy 49 
(POIT) has emerged as a treatment that is widely utilized for PA4. Gradual oral introduction of 50 
increasing concentrations of peanut product induces desensitization, defined as an increase in 51 
reaction threshold while on treatment, in approximately 50-70% of treated patients. While POIT 52 
has demonstrated efficacy in desensitizing patients to peanut, the induction of remission, defined 53 
as the prolonged absence of clinical reactivity after treatment cessation, is observed in a smaller 54 
subset of approximately 20-30% of POIT-treated patients4-6. The cost, prolonged duration (years), 55 
and burden of daily treatment associated with POIT highlight the need for improved predictive 56 
biomarkers and adjunctive treatments to increase efficacy.  57 
 58 

 The IMPACT, Oral Immunotherapy for the Induction of Tolerance and Desensitization in 59 
Peanut-Allergic Children trial (NCT01867671) was the first randomized, double-blinded, placebo-60 
controlled, multicenter clinical trial to evaluate the efficacy and safety of POIT in peanut-allergic 61 
children ages 12-48 months old. While 71% of the children receiving POIT achieved 62 
desensitization, only 21% of children achieved remission following POIT discontinuation and 26-63 
weeks of peanut avoidance. The IMPACT trial yielded three clinical outcomes among peanut-64 
allergic children treated with POIT: i) those who achieved both desensitization and remission 65 
(D+R+), ii) those who achieved only desensitization but not remission (D+R-), iii) those who did 66 
not achieve desensitization or remission (D-R-). Notably, younger age and lower peanut-specific 67 
serum IgE concentrations at the outset of the trial were more likely to result in a D+R+ outcome7. 68 
Both age8 and allergic sensitization status9 are closely related with early life gut microbiome 69 
composition and metabolic activity10. Thus, we hypothesized that gut microbiome functional 70 
features at baseline are associated with both POIT-induced clinical outcomes and peanut IgE 71 
levels, and that longitudinal assessment of fecal microbiomes from children in this trial would 72 
reveal mechanisms underlying variance in POIT efficacy.  73 

 74 
Results 75 
 76 
Study Population and Clinical Trial Outcomes 77 
 78 

Details of the IMPACT trial design and outcomes have been published previously7. Briefly, 79 
at baseline, 146 peanut-allergic children were randomized (2:1) to either POIT or placebo 80 
treatment. After a dose escalation phase of 30-weeks, children in the POIT arm received 2,000 81 
mg peanut protein (lightly roasted, partly defatted [12% fat]) while the placebo group received oat 82 
flour for 104 weeks (total blinded treatment period 134 weeks). Participants who passed the 5-g 83 
peanut protein, double-blind, placebo-controlled, food challenge (DBPCFC) at the end of 84 
treatment (week 134) were categorized as desensitized (D+). Independent of the DBPCFC 85 
outcome at week 134, all participants avoided peanut consumption for 24 weeks (avoidance 86 
period), and those who passed the 5-g peanut protein DBPCFC at the end of this avoidance 87 
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period (week 160) were categorized as being in remission (R+). A total of 327 longitudinal fecal 88 
samples from 79 participants (Table S1) were collected at baseline (prior to POIT initiation), end 89 
of buildup (EoB), mid maintenance (MM), end of treatment (EoT), and the end of avoidance (EoA 90 
Fig. 1A; Table S1). Participant baseline characteristics including age, sex and study locations 91 
are reported in Table S2. Based on DBPCFC results at the end of treatment and end of 92 
avoidance, the IMPACT clinical trial yielded three outcome groups, Desensitized and Remission 93 
(D+R+), Desensitized and no remission (D+R-) and no desensitization and no remission (D-R-; 94 
Fig. 1A). 95 

  96 
Gut microbiota composition associates with peanut oral immunotherapy outcomes.  97 
 98 

The subgroup of IMPACT trial participants analyzed in our study (n=79 of 146) did not 99 
differ in age between POIT and placebo-treated groups (Extended Data Fig. 1A). Consistent with 100 
observations made in the parent clinical trial7, within the POIT-treated group, D+R+ participants 101 
were significantly younger compared to those within the two other outcome groups (D+R- and 102 
D-R-; Extended Data Fig. 1B). These data indicate that the subset of participants used in the 103 
current study is representative of the overall trial population. To identify potential confounding 104 
factors in our study, we initially examined relationships between variables captured in the study 105 
population and 16S rRNA sequencing-based gut microbiota profiles generated on all available 106 
longitudinally collected fecal samples (n=277 [Placebo, n=87; POIT, n=190] following quality 107 
filtering and rarefaction; see methods section for details). As expected, bacterial community α-108 
diversity (number of taxa and their distribution) increased with advancing participant age at 109 
screening (Pearson’s correlation, r=0.42, P<0.0001; Extended Data Fig. 1C). To identify other 110 
potential confounding factors, clinical and demographic variables were examined as independent 111 
terms at each time point using PERMANOVA based on an unweighted UniFrac distance matrix. 112 
Importantly, POIT outcomes (P=0.008, R2=0.07, n=47) and specifically remission outcome 113 
(P=0.003, R2=0.04, n=47) related to variance in gut microbiota composition only at baseline prior 114 
to POIT initiation, suggesting that gut microbiome composition prior to treatment associates with 115 
clinical outcomes. Additionally, age at screening, sample collection date, sex, and study site 116 
location significantly related to variance in gut microbiota composition at various time points 117 
throughout the trial (Table S3). Thus, subsequent statistical analyses performed were adjusted 118 
for these covariates (see method section for details).  119 
 120 
 121 
Children who develop POIT-induced remission exhibit a distinct gut microbiome 122 
throughout the course of the trial.   123 
 124 

Comparing bacterial phylogenetic diversity (a-diversity) and composition (β-diversity) over 125 
time revealed no significant difference between the POIT and placebo arms at any time point 126 
(Extended Data Fig. 1D and 1E), indicating that POIT does not appreciably alter fecal microbiota 127 
composition. However, within the POIT-treated group, the three distinct outcome groups exhibited 128 
significant differences in fecal microbiota a- (Fig. 1B) and β-diversity that were evident at baseline 129 
and sustained throughout the course of the trial (P<0.001, R2=0.029, n=127, Linear Mixed Effect; 130 
Fig. 1C). Specifically, the D+R+ group exhibited significantly lower a-diversity compared to D+R- 131 
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and D-R- groups (P=0.001 and 0.052, respectively; Wilcoxon rank-sum test); this finding 132 
remained significant following adjustment for age (P=0.043 ANOVA; Fig. 1B and Extended Data 133 
Fig. 1F and G). Additionally, throughout the course of the trial, participants who achieved 134 
remission (D+R+) exhibited significant differences in gut microbiota composition along the first 135 
principal component (axis 1) compared to those who did not (D+R+ vs D+R-, P=0.03; D+R+ vs 136 
D-R-, P=0.003, Linear Mixed Effect; Fig. 1C). This provided evidence that both gut microbiota 137 
composition and diversity are associated with POIT outcomes within the trial participants. 138 

 139 
In the parent IMPACT trial, baseline concentrations of peanut-specific serum 140 

Immunoglobulin E (IgE) were predictive of remission7.  We thus determined whether fecal 141 
microbiota features related to IgE levels in POIT-treated children. In age-adjusted analyses, 142 
significant positive correlations between a-diversity and serum levels of total IgE (Fig. 1D), 143 
peanut-specific IgE (Fig. 1E) and Ara h 2-specific IgE (Fig. 1F; P<0.05 Pearson correlation for 144 
all) were observed, suggesting that increased fecal diversity relates to higher IgE levels that are 145 
associated with reduced likelihood of remission following POIT. Since both younger age and lower 146 
baseline peanut-specific IgE levels predicted clinical remission in the IMPACT trial, we next 147 
identified baseline bacterial Sequence Variances (SVs) associated with both peanut-specific IgE 148 
level and remission status in age-adjusted analyses. Romboutsia ilealis/timonensis was 149 
associated with POIT-induced remission, while Ruminococcaceae along with Parabacteroides 150 
distasonis, and Oscillospirales members were associated with failure to develop remission 151 
(P.FDR<0.05. generalized additive mix models, adjusted for age. Fig. 1G). R. ilealis/timonensis 152 
was also negatively associated with peanut-specific IgE levels at baseline (P.FDR<0.05. 153 
generalized additive mix models, adjusted for age. Table S4 & Fig. 1H) and with all component-154 
specific Ara h-specific IgEs (Ara h 1, 2, 3 and 6 IgEs; Extended Data Fig. 1H). However, no 155 
significant difference in relative abundance of any SVs was observed when longitudinal analyses 156 
were performed to determine whether these findings in baseline samples were sustained through 157 
the course of the trial. Thus, 16S rRNA-based microbiota profiling provided initial evidence that 158 
gut microbiota phylogenetic diversity and composition prior to POIT initiation relate to treatment 159 
outcomes, and that the abundance of select gut microbial members associate with multiple 160 
measures of peanut allergic sensitization irrespective of participant age.  161 
 162 
Baseline bile acid profile associates with POIT efficacy outcomes 163 
 164 
 Distinct early-life fecal microbiome compositions associate with subsequent allergic 165 
disease development and exhibit discrete metabolic profiles that can induce allergic inflammation 166 
in vitro11. Additionally, relationships between fecal metabolite profile and food allergy have been 167 
previously described in humans12-15 and gut microbiomes are known to modulate host immunity 168 
through the production of metabolites, including those that can affect immunotherapy efficacy16,17. 169 
To determine whether the distinct fecal microbiota compositions associated with POIT outcomes 170 
exhibited divergent metabolic profiles, untargeted metabolomic analyses was performed on fecal 171 
samples collected at baseline, end of treatment, and end of avoidance from study participants 172 
(n=58 samples per visit) with sufficient available remaining sample for analysis at all three time 173 
points (Table S1 and Fig. 1A). Like gut microbiota composition, baseline fecal metabolite profile 174 
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was associated with POIT outcome groups (n=43, R2=0.07, P=0.01), and with remission status 175 
(n=43, R2=0.04, P=0.01; PERMANOVA, Euclidean distance matrix, Supplementary Table S5).  176 
 177 

To identify metabolites that relate to POIT outcomes, a data reduction approach, weighted 178 
gene correlation network analyses (WGCNA), was applied to identify modules of co-associated 179 
metabolites which were then related to POIT outcomes. Fifty metabolite modules (Untargeted 180 
Metabolite Modules [UMMs]; Table S6) were identified, 16 of which associated with POIT 181 
outcomes at baseline, end of treatment, or end of avoidance (P<0.05 ANOVA, adjusted for age; 182 
Fig. 2A). The majority of the outcome associated metabolic modules at baseline were elevated 183 
in those who did not achieve remission (Extended Data Fig. 2A) and included multiple lipid-184 
containing modules, in particular bile acid and amino acid containing modules that distinguished 185 
D+R+ from D+R- and D-R- groups (Fig. 2A). Further supporting these observations, bile acid 186 
profiles significantly differed between POIT-outcome groups at baseline (Fig. 2B; n=43, R2=0.10, 187 
P=0.015, PERMANOVA Euclidean distance matrix), but not at the end of treatment or avoidance 188 
(Extended Data Fig. 2B), suggesting that the specific profile of bile acids present at the initiation 189 
of POIT influences treatment outcomes.  190 
 191 

At baseline, two modules (UMM10 and UMM15) comprised primarily of unconjugated or 192 
conjugated secondary bile acids respectively, exhibited opposing relationships with POIT-induced 193 
remission (Fig. 2C & Fig. 2D). The module of unconjugated bile acids i.e. those lacking amino 194 
acid conjugates, was increased in those who did not achieve POIT-induced remission (Fig. 2F). 195 
A distinct group of secondary bile acids from UMM15 (Fig. 2G) and UMM4 (Fig. 2E & Fig. 2H) 196 
including tauroursodeoxycholic acid sulfate, glycoursodeoxycholic acid sulfate and 197 
taurolithocholate 3-sulfate were depleted in the feces of children who did not develop remission. 198 
Bile acids, produced by the liver are transformed into secondary bile acids exclusively by the gut 199 
microbiome18. They play crucial roles in dietary lipid absorption, regulation of lipid, glucose and 200 
xenobiotic metabolism19 and protect against bacterial overgrowth18. The secondary bile acids 201 
enriched in those who achieved remission are known to have anti-inflammatory properties and in 202 
the case of taurolithocholate, capable of down-regulating macrophage inflammatory response to 203 
antigenic stimulation20.  204 

 205 
Since bile acids are drivers of gut microbiota maturation in early life21,22, we next 206 

investigated whether relationships existed between the bile acid modules UMM10 and UMM15 207 
and gut microbiota features that associated with POIT outcomes. Specifically, the eigenvector (a 208 
measure of the joint abundance profile of a specific module) of UMM15, primarily comprised of 209 
bacterial-derived secondary bile acids (Supplementary Table S6), exhibited a significant 210 
negative relationship with fecal microbiota a-diversity (lower baseline a-diversity is associated 211 
with POIT-mediated remission; Fig. 1B) and a positive correlation with axis 1 of the baseline 212 
microbiota composition. In contrast the unconjugated bile acid module (UMM10) exhibited the 213 
opposite relationship, being positively correlated with fecal a-diversity and negatively correlated 214 
with axis 1 of the baseline microbiota composition (Extended Data Fig. 2C). These data suggest 215 
that at baseline, secondary bile acids associate with the lower gut bacterial diversity (Fig. 1B) and 216 
a distinct gut bacterial composition (Fig. 1C) that characterize children who develop POIT-induced 217 
remission.  218 
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 219 
Notably, bile acid modules that differentiated POIT outcome groups at baseline were not 220 

associated with clinical outcomes at the end of treatment or avoidance samples (Fig. 2A). 221 
Nonetheless, we rationalized that specific bile acids within these modules may continue to 222 
differentiate outcome groups at later time points. Leveraging generalized additive mixed models 223 
on longitudinal metabolomics samples, the UMM10 unconjugated bile acid, glycodeoxycholate 224 
was found to be in significantly higher concentrations in the feces of children for whom POIT-225 
failed to induce remission throughout the course of the trial (P=0.021; Supplementary Table S8). 226 
Notably, glycodeoxycholate promotes innate lymphoid cell 3 secretion of IL-2223, which can 227 
reduce systemic absorption of peanut allergens by increasing intestinal barrier integrity, resulting 228 
in reduced antigen presenting cell encounters with peanut antigens24. These data indicate that 229 
significant differences in bile acid profiles exist between POIT outcome groups, particularly in 230 
baseline samples, and that glycodeoxycholate, which is known to reduce antigen exposure 231 
remains significantly elevated over time in the feces of those who fail to achieve remission 232 
following POIT treatment.  233 

 234 
Fecal microbiomes of non-remitting patients exhibit increased gluconeogenesis, 235 
anaerobic energy metabolism and amino acid metabolism  236 
 237 
 To investigate gut microbial pathways associated with POIT outcomes, shotgun 238 
metagenomic sequencing was performed on baseline (n=76) end of treatment, (n=54), and end 239 
of avoidance (n=55) samples (Fig. 1A), including all samples that had undergone parallel 240 
untargeted metabolomic analysis. Application of WGCNA to shotgun metagenomic data identified 241 
45 shotgun metagenomic modules (SMMs; Supplementary Table S9), seven of which 242 
significantly associated with POIT outcomes (four at baseline and three at end of treatment 243 
(Fig. 3A, ANOVA, P<0.05, adjusted for age). At baseline, POIT-associated shotgun metagenome 244 
modules (SMMs) were primarily related to microbial growth (SMM6), energy metabolism 245 
(SMM26), peptidoglycan (SSM10), and phospholipid biosynthesis (SMM11), while at the end of 246 
treatment, long chain fatty acid production (SMM33) and gluconeogenesis and anaerobic energy 247 
metabolism (SMM43) differed across the three outcome groups (P<0.05, ANOVA, adjusted for 248 
age; Fig. 3A).  249 
 250 

The gluconeogenesis and anaerobic energy metabolism module (SMM43), which was 251 
enriched in children who failed to develop POIT-induced remission at the end of avoidance 252 
(Extended Data Fig. 2E), was significantly correlated with 12 of the 16 metabolite modules 253 
(module eigengenes) associated with POIT outcomes (Pearson correlation, P<0.05; Fig. 3B).This 254 
included a positive correlation with the module of unconjugated bile acids (UMM10) and negative 255 
correlations with the secondary bile acid module (UMM15) and three remission-associated amino 256 
acid modules (UMM4, UMM5, and UMM43; Fig. 3B) that were decreased in non-responders 257 
(Extended Data Fig. 2D). These data provide evidence that a fecal microbiome primarily 258 
engaged in alternate pathways of glucose production from non-carbohydrate sources and 259 
anaerobic metabolism contributes to the observed bile acid deconjugation and amino acid 260 
depletion in participants who fail to achieve POIT-induced remission.  261 
 262 
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To validate these observations, we performed a secondary, integrative data analysis on 263 
longitudinal metagenomic and paired metabolomic datasets using Multi-Omics Factor Analyses 264 
(MOFA2) which identified seven distinct factors (Extended Data Fig. 3A), five of which 265 
significantly differentiated POIT response groups (ANOVA, P<0.05; Fig. 3C & Extended Data 266 
Fig. 3B). Consistent with our findings, several of these factors included microbial pathways for 267 
amino acid biosynthesis that were enriched in those who achieved POIT-induced remission. One 268 
factor (Factor 2) included Gluconeogenesis and Anaerobic Energy Metabolism amongst the top 269 
five microbial pathways within this factor (Fig. 3C, Extended Data Fig. 3C), which were enriched 270 
in the fecal microbiome of children who did not develop POIT-induced remission (Extended Data 271 
Fig. 3B). In addition, secondary bile acid metabolites including 7-ketodeoxycholate, 7-272 
ketolithocholate, chenodeoxycholate were amongst the top 5 metabolites in Factor 2, all of which 273 
were depleted in the no remission group (Fig. 3E). Together, these data validate that microbial 274 
gluconeogenesis and anaerobic metabolism relates with changes in the profile of secondary bile 275 
and amino acids that associate with POIT efficacy.  276 

 277 
To assess whether the top five secondary bile acids from Factor 2, which were all 278 

increased in the remission groups at baseline, could serve as a predictive marker for POIT-279 
induced remission, a machine learning approach with logistic regression model was employed. 280 
The baseline abundance of these five metabolites produced a moderate predictive ability (area 281 
under the curve (AUC) from 100 times repeated five-fold cross-validation, measured as mean 282 
AUC ± standard deviation (s.d.: AUClogistic_regression: 0.712 ± 0.081; Fig. 3F). To confirm our findings, 283 
a second machine learning model with random forest was employed and demonstrated similar 284 
performance (Extended Data Fig. 3E).  285 
 286 
Enhanced Microbiome Amino Acid Metabolism Associates with Failure to Induce 287 
Remission.    288 

 289 
At the end of avoidance, the majority of POIT-associated metabolite modules (five out of 290 

eight) were primarily comprised of amino acids (Fig. 2A, Supplementary Table S6). Several of 291 
these (UMM4, 5, 17 and 42) were decreased in children for whom POIT failed to induce 292 
desensitization and remission (D-R-; Extended Data Fig. 2D). Notably, amino acid profiles were 293 
significantly different among POIT outcome groups at baseline (n=43, R2 = 0.08; P = 0.006; Fig. 294 
4A) and end of avoidance (n=43, R2 = 0.07; P = 0.039, Fig. 4B), but not at the end of treatment 295 
(PERMANOVA analyses, Extended Data Fig. 3F), suggesting that differences in dietary amino 296 
acid intake and/or microbial amino acid metabolism differentiate those who do or do not develop 297 
remission in response to POIT.  298 

 299 
Moreover, at end of avoidance, POIT response-associated metabolite modules contained 300 

a total of 117 amino acids and their derivatives, 68 of these belonged to UMM4 (Table S6), which 301 
was significantly reduced in the D-R- group (Extended Data Fig. 2D). The majority of these amino 302 
acid metabolites’ abundances were decreased in relative concentration in the feces of children 303 
who failed to achieve remission (Fig. 4C) Notably, increased concentrations of microbial-derived 304 
branched-chain amino acid fermentation end products such as skatol and indole25 were evident 305 
in both the D+R- and D-R- groups (Fig. 4C) indicating that the observed reduction in amino acid 306 
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concentrations is due to increased microbial amino acid utilization capacity in those who failed to 307 
achieve POIT-induced remission.   308 

 309 
Amino acids represent a major energy source for anaerobic gut bacteria26, and select 310 

microbes are capable of harvesting amino acids by deconjugating primary bile acids27. Decreased 311 
fecal amino acid concentrations and increased anaerobic energy and gluconeogenesis 312 
metabolism in POIT-treated children who failed to achieve remission prompted us to investigate 313 
whether their gut microbiomes encoded a distinct or enhanced capacity for amino acid utilization. 314 
Using generalized additive mixed models on longitudinal microbial pathway abundance data, we 315 
found that the microbial pathways associated with amino acid metabolism including L-histidine 316 
degradation, anerobic energy metabolism, L-citrulline biosynthesis (Arginine degradation), and 317 
gluconeogenesis (which uses non carbohydrate sources, including amino acids for energy 318 
production28) were enriched in the gut microbiomes of children who did not achieve remission. In 319 
contrast, and consistent with metabolite modules associated with remission, D+R+ children 320 
possessed fecal microbiota that encoded pathways involved in amino acid biosynthesis 321 
(generalized additive mix model, P<0.05, but P.FDR>0.05; Fig. 4D & Table S8). These data 322 
indicate that gut microbiomes with enhanced capacity for gluconeogenesis and amino acid 323 
metabolism, result in depletion of immunomodulatory amino and secondary bile acids that 324 
associate with POIT failure.  325 
 326 

Because peanut antigen exposure is critical to develop immunological tolerance to 327 
peanut3,29 and children who failed to achieve remission exhibited a gut microbiome with enhanced 328 
capacity for amino acid metabolism (Fig. 4D), we hypothesized that their gut microbiome may 329 
also have increased capacity for peanut metabolism, effectively reducing available antigen. To 330 
test this, stabilized in vitro fecal microbiome cultures from participants in each of the outcome 331 
groups (D+R+, n=12, D+R-, n=12, D-R-, n=12) were developed as previously described30 and co-332 
incubated with peanut extract under anaerobic conditions prior to Ara h 2 quantification by ELISA. 333 
Fecal microbiomes of all participants, regardless of remission outcome, exhibited the capacity to 334 
metabolize Ara h 2 peptides, one of the most proteolysis-resistant peanut protein antigens31. 335 
However, the microbiome of those who failed to achieve remission exhibited a significantly 336 
increased capacity to metabolize Ara h 2 peptides compared to those who achieved remission, 337 
indicating that enhanced microbial metabolism of allergenic peanut peptides associates with POIT 338 
failure (Fig 4E).  339 
 340 
Discussion  341 
 342 

Integrated analyses of 16S rRNA data generated from fecal samples longitudinally 343 
collected from IMPACT participants (Placebo, n=87; POIT, n=190) provide evidence that 344 
microbial activities in the fecal microbiome prior to POIT initiation relate to treatment outcomes. 345 
The data also indicate that the composition of the gut microbiome is distinct over a three-year 346 
treatment period in those who do or do not experience peanut allergy remission following POIT, 347 
suggesting that microbial-mediated changes in immune function are associated with distinct 348 
trajectories of microbiome development and POIT outcomes in study participants. Functional 349 
analyses of fecal microbiomes indicate that bile acids, specifically secondary bile acids enriched 350 
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in baseline samples, associate with POIT-induced remission. Microbial-derived secondary bile 351 
acids serve as hormones that regulate cholesterol metabolism and influence energy balance via 352 
nuclear and G-protein-coupled receptors32,33 that also shape innate immune response34,35. 353 
Studies have demonstrated that the bile acid pool regulates colonic FOXP3+ regulatory T (Treg) 354 
cells that express the transcription factor RORγ36. Bile acids found to be increased in baseline 355 
samples of participants who experienced peanut allergy remission in our study are known to have 356 
allergy protective effects; for example, tauroursodeoxycholic acid attenuates allergic inflammation 357 
by inhibiting unfolded protein response transducers37.  358 

 359 
Children for whom POIT failed to induce remission exhibit a significantly distinct gut 360 

microbiome, enhanced for gluconeogenesis and anaerobic metabolism, indicating that these gut 361 
microbiomes derive energy from alternative non-carbohydrate substrates. Our data indicate that 362 
the gut microbiome of these children is enhanced for amino acid metabolism. Evidence for this 363 
comes from the increased pools of deconjugated (primary) bile acids and a significant depletion 364 
of secondary bile and amino acids in the feces of these children. Primary bile acids are most 365 
commonly conjugated to the amino acids glycine and taurine to produce glycocholic and 366 
taurocholic acids respectively18, which are subsequently converted to immunoregulatory 367 
secondary bile acids by colonic bacteria18. Primary bile acids, specifically chenodeoxycholic acid, 368 
was recently shown to promote food sensitization via activation of a retinoic acid response 369 
element in dendritic cells, to promote food allergen specific IgE and IgG138. Enhanced colonic 370 
microbial capacity to harvest amino acids from conjugated bile acids results in increased 371 
concentrations of the deconjugated forms, essentially reverting them back to their primary bile 372 
acid state. Thus, our findings indicate that a gut microbiome that primarily derives energy from 373 
amino acid fermentation results in the depletion of immunomodulatory amino and secondary bile 374 
acids both of which associate with POIT remission failure.  375 

 376 
 It is well established that peanut allergen exposure is critical to build tolerance and prevent 377 
allergy development3. Our data suggests that a second microbial-derived mechanism of POIT 378 
failure appears to involve reduced peanut antigen exposure. Food allergies and intolerances are 379 
typically driven by specific protein motifs in foods such as Ara h peptides in peanuts, casein and 380 
beta-lactoglobulin in cow’s milk and tropomyosin proteins in shellfish39. Ingested allergens 381 
typically undergo enzymatic breakdown in the oral cavity, stomach, and small intestine40 prior to 382 
interacting with antigen-presenting cells41. However, certain key antigenic peanut peptides e.g. 383 
Ara h 2 peptides, are highly resistant to proteolysis42, making it likely that they survive transit 384 
through the upper gastrointestinal tract to the distal colon. The extent of peanut protein digestion 385 
determines the concentrations and profile of antigenic peptides available for presentation by 386 
antigen presenting cells. Our data indicates clear differences in amino acid metabolism capacity 387 
and peanut degradation in participants who did or did not achieve remission suggesting that 388 
differences in distal gut microbial protein catabolism may impact the quantity and profile of 389 
antigenic peanut peptides available to promote tolerance development.  390 
 391 

Gut microbial protein metabolism has never been explored in the context of food allergy, 392 
particularly related to treatment-induced efficacy outcomes. Elucidating the impact of gut 393 
microorganisms on allergic food proteins may pave the way to develop more effective 394 
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immunotherapeutic approaches either by targeting gut microbiome functions or by protecting 395 
immunotherapeutic peanut proteins from microbial metabolism by encapsulating them in food-396 
grade colloidal systems. A similar encapsulation system for gluten immunotherapy is currently 397 
being tested in several clinical trials43,44, which so far have demonstrated safety and efficacy. Our 398 
study highlights the potential role of the gut microbiome in POIT efficacy outcomes and suggests 399 
that it could serve as both a prognostic biomarker to identify those for whom POIT may be most 400 
successful and as a therapeutic target to improve rates of POIT-induced remission. 401 
 402 
 403 
Materials and Methods 404 
 405 
Clinical trial description and study population 406 

 407 
Full details of the IMPACT clinical trial (NCT01867671) have been previously described45. 408 

 409 
Sample collection, DNA extraction, 16S rRNA library preparation and sequencing 410 
 411 

Stool samples were collected from participants at home and stored at clinical collection 412 
sites at -80 °C. Three hundred twenty-seven samples (n=327) were shipped to the University of 413 
California San Francisco (UCSF), on dry ice, where they were also stored at -80 °C until 414 
processed. Investigators of this study were blinded and did not have access to the metadata until 415 
initial 16S rRNA data generation. Thus, all 327 samples were included for 16S rRNA sequencing. 416 
Three hundred two (302) samples generated 16S rRNA data since some samples failed PCR 417 
amplification or did not pass quality filtering and rarefaction during 16S rRNA analyses. Two 418 
hundred seventy-seven (277) out of 302 samples belonged to participants that completed the 419 
POIT trial until the end of the avoidance, and therefore, they were used in 16S rRNA data 420 
analyses.  421 
 422 

DNA was extracted from all stool samples using a modified cetyltrimethylammonium 423 
bromide (CTAB) buffer extraction protocol as previously described11,46. The variable region 4 (V4) 424 
of the 16S rRNA gene was amplified using 1 ng μl−1 of DNA template using 515F and 806R primer 425 
pairs as previously described47. Amplicon concentrations were normalized using SequalPrep™ 426 
Normalization Plate Kit (Thermofisher Scientific), quantified using the Qubit 2.0 427 
Fluorometer and the dsDNA HS Assay Kit (Life Technologies) and pooled at 5 ng per sample 428 
which was purified using AMPure SPRI beads (Beckman Coulter). 2 nM of library was spiked with 429 
30% of PhiX control v3 (Illumina). The denatured libraries and PhiX were diluted to 20 pM, and 430 
1.5 pM were loaded onto the Illumina NextSeq 500/550 v2.5 High Output cartridge. 431 

 432 
Sequence data was processed as previously described48. Forward and reverse reads 433 

were demultiplexed by using Quantitative Insights Into Microbial Ecology (QIIME 1.9.1)49. 434 
Samples sequences with more than two bases having a Q-score less than 30 were truncated. As 435 
recommended by the Divisive Amplicon Denoising Algorithm 2 (DADA2) v1.16 protocol in R with 436 
the following modifications: Reads were maintained if they exhibited a maximum expected error 437 
of two and a read length of at least 150 base pair (bp) using the filterAndTrim function in the dada2 438 
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package
50

. Reads were dereplicated and errors were learned on 1 × 108 reads, from samples 439 
chosen at random. Finally, chimeras were identified using the ‘‘consensus’’ method. Paired reads 440 
were merged with a minimum overlap of 25 bp, and reads were aggregated into a count table. 441 
Any V4 sequences abnormally short or long (±5 bp from the most frequently observed bp length; 442 
here: 253 bp) were also removed. We assigned taxonomic classifications to Sequence Variants 443 
(SVs) using assignTaxonomy in the dada2 package and an 80% bootstrap cutoff, utilizing the 444 
SILVA v132 database51, and species identification with assignSpecies at 100% identity. All 445 
species achieving an exact match were recorded, and the first in the list was used for descriptive 446 
purposes. Once these steps were completed for each run, all runs were combined into a complete 447 
SV table. A phylogenetic tree was constructed using phangorn52,53 and DECIPHER packages54. 448 
The SV table was then filtered only to variants belonging to the kingdom Bacteria. Variants were 449 
also removed if they were present in less than 0.001% of the total number of observed sequences 450 
reads. Next, we employed methods to remove potential contaminants based on SVs present in 451 
negative controls. Specifically, SVs were removed if they were present in greater than 15% of the 452 
negative controls and less than 15% of the samples48 (primarily Pseudomonas SVs). For the 453 
remaining sequence variants in negative controls, the mean of the read count for each was 454 
calculated, rounded upward to the nearest whole number and subtracted for each of these SVs 455 
in the dataset.	Any remaining negative control SVs were subtracted from samples using the 456 
maximum read count across negative controls. Data was representatively rarefied at 35,000 reads 457 
per sample, a level selected to optimize sample count and community coverage.  458 
 459 
Metagenomic processing and data analysis 460 

 461 
One-hundred eighty-five samples (n=76 Baseline, n=54 EoT, n=55 EoA, Fig. 1A), were 462 

chosen among the DNA samples extracted for 16S rRNA sequencing including samples that went 463 
through untargeted metabolomic analyses. Fecal samples selected had sufficient remaining 464 
material for paired metagenomic and metabolomic profiling. Extracted DNA was sent to the 465 
Omega Bioservices Sequencing Laboratory (Norcross, GA, USA) for shotgun metagenome 466 
sequencing. DNA concentration was measured using the QuantiFluor dsDNA System on a 467 
Quantus Fluorometer (Promega, Madison, WI, USA). A Kapa Biosystems HyperPlus kit (Kapa 468 
Biosystems, Wilmington, MA, USA) was used for library construction. Briefly, 50 ng of genomic 469 
DNA was enzymatically sheared according to the manufacturer’s instructions. DNA fragment 470 
ends were repaired, 3’ adenylated, and ligated to adapters. The resulting adapter-ligated libraries 471 
were PCR-amplified. PCR product was cleaned up from the reaction mix with magnetic 472 
beads. Then, Illumina libraries were quantified using the Qubit 2.0 Fluorometer with the dsDNA 473 
High Sensitivity Assay Kit (Life Technologies, Grand Island, NY) and pooled at equal molar 474 
concentrations. The final pooled libraries were submitted to the Center for Advanced Technology 475 
(CAT) at the University of California San Francisco. The pooled libraries were sequenced using 476 
the Illumina NovaSeq 6000 in a 2×150 bp paired-end run protocol targeting minimum 60,000,000 477 
raw reads per sample in total.  478 

 479 
Raw sequences from all lanes were merged into a concatenated file for each sample. Raw 480 

FASTQ files underwent FASTQC55 and quality and contaminant filtering using bbTools v38.73. 481 
Specifically, bbduk trimmed Illumina adapters, removed any PhiX contamination, filtered low-482 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.15.24309840doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.15.24309840


quality sequences, and employed trimming after a Q score less than 15 from both the 3′ and 5′ 483 
directions. Finally, bbmap removed reads mapping to the human genome using GRCh3856 as the 484 
reference database. The median number of raw reads per sample was 97,502,238 (IQR 485 
30,132,152). The median number of reads following Q15 quality trimming and filtering human 486 
DNA using Bbduk v38.73 (https://sourceforge.net/projects/bbmap/) was 13,367,212 (IQR 487 
2,073,330). All analyses were performed on quality-filtered reads. HUMAnN 3.0 pipeline was used 488 
to identify genes57, level4ECs and functional MetaCyc pathways from the short-reads, and to 489 
normalize outputs into copies per million (CPM).  490 
 491 
Untargeted Metabolomics Analyses 492 

 493 
Among the samples that went through shotgun-metagenome analyses, 174 (n=58 494 

Baseline, n=58 EoT, n=58 EoA, Fig. 1A) matching samples were available for untargeted 495 
metabolomics analyses. Two hundred milligrams of stool per sample was submitted to Metabolon 496 
Inc. (Durham, NC) for ultrahigh performance liquid chromatography/tandem mass spectrometry 497 
(UPLC–MS/MS) and gas chromatography–mass spectrometry (GC–MS) using their standard 498 
protocol (http://www. metabolon.com/). Briefly, samples were homogenized and subjected to 499 
methanol extraction then split into aliquots for analysis by ultrahigh performance liquid 500 
chromatography/mass spectrometry (UHPLC/MS) in the positive (two methods) and negative (two 501 
methods) mode. Metabolites were then identified by automated comparison of ion features to a 502 
reference library of chemical standards followed by visual inspection for quality control (as 503 
previously described58. Compounds were compared to Metabolon’s in-house library of purified 504 
standards, which includes more than 3,300 commercially available compounds. For statistical 505 
analyses and data display, any missing values are assumed to be below the limits of detection; 506 
these values were imputed with the compound minimum (minimum value imputation). For network 507 
and statistical analyses, normalized, imputed, and log transformed area under curve dataset was 508 
used.  509 

 510 
In vitro Fecal Microbiome Metabolism of Peanut  511 
 512 

Stool samples from IMPACT participants were prepared for culture as described 513 
previously30. Briefly, stool samples from 36 patients (D+R+, n=12, D+R-, n=12, D-R-, n=12) with 514 
sufficient paired baseline and end of treatment material for the experiment were thawed on ice. 515 
All fecal processing was completed under aerobic conditions. Stools were resuspended in Brain 516 
Heart Infusion (BHI) media at a ratio of 10 ml/g stool prior to vigorous vertexing for 5 min and 517 
filtering with a 50 µm cell strainer and storage at -80°C following 25% (volume/volume) glycerol 518 
addition. A total of 10 µL of prepared feces was used to inoculate 1 mL of BHI medium 519 
supplemented with 8 µL peanut extract (1/10 weight/volume in 50% glycerin, Hollister-Stier) and 520 
incubated for 48 hours at 37°C under anaerobic conditions. Following 48 hours incubation, 521 
microbiome cultures were centrifuged at 3,200 g for 10 min and filtered through 0.22 µm filters. 522 
Ara h 2 peptide concentrations were determined using an Enzyme-Linked Immunosorbent Assay 523 
(ELISA) according to manufacturer instructions (Indoor Biotechnologies, Charlottesville, VA).  524 
 525 
 526 
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Statistical analyses 527 
 528 

Statistical analyses were performed in the R statistical programming language version 529 
4.3.2. Phylogenetic diversity (Alpha diversity) was calculated in QIIME and was expressed as 530 
Faith's phylogenic diversity metric, using the vegan and picante packages in R. Wilcoxon tests 531 
were calculated in R. For beta-diversity (microbiome composition), distance matrices based on 532 
unweighted UniFrac for 16S rDNA data and Euclidian for metabolomics dataset were generated 533 
using the distance function from phyloseq v1.30.059 and ordinated into two-dimensional space 534 
using the pcoa function from the ape v5.3 package60. Permutational Analysis of Variance tests 535 
(PERMANOVA; R2 and P values) were generated for independent terms with 1000 permutations 536 
using adonis2 from the vegan package v2.5-661. Pearson correlations and P values were 537 
calculated and corrected for potential confounding factors such as age at screening, using the 538 
cor.test function in R. When samples were used from multiple time points, for example, in Linear 539 
Mix Effect (LME) models on longitudinal samples, only age was adjusted, and stated in figure 540 
legends. 541 

 542 
Generalized Additive Mix Model 543 
 544 

Generalized Linear Mix Models were used on longitudinal microbiome data to determine 545 
differences in microbial taxa, microbial pathways, metabolites between POIT outcome groups 546 
(D+R+, D+R-, D-R-) and remission outcome (Yes or No), using Linear Model, Compound Poisson 547 
Linear Model, Poisson, Negative Binomial, Zero-Inflated Negative Binomial, and Tweedie models 548 
depending on data distribution. False-discovery corrections were made using the Benjamini-549 
Hochberg method.  550 

 551 
Weighted Gene Correlation Network Analyses 552 
 553 

Co–occurrence networks of microbial pathways and metabolites were constructed using 554 
weighted correlation network analysis (WGCNA) with the R package WGCNA62 to find modules 555 
of highly interconnected, mutually exclusive metabolites. Pearson correlations were used to 556 
determine inter–metabolite and inter–microbial pathway relationships, where modules are 557 
composed of positively correlated metabolites. We constructed a signed network using specific 558 
parameters (power = 7, reassignThreshold = 0, mergeCutHeight = 0.25), by applying hierarchical 559 
clustering and topology overlap measures (TOM). The minimum module size was set to five for 560 
metabolomics and one for metagenomics data. Module eigengenes (MEs) were defined as the 561 
first principal component of a given module and considered as a representative measure of the 562 
joint abundance profile of that module. Each module eigengenes was used to test the association 563 
between its respective module and POIT-outcomes using ANOVA. Module membership was used 564 
to determine the interconnectedness of each metabolite or microbial pathways to its assigned 565 
module and to identify “hub” metabolite or microbial pathways: this was defined as the correlation 566 
between each metabolite or microbial pathways and the Module eigengenes (MEs) (strong 567 
positive values indicate high interconnectedness) as previously described9.  568 
 569 
 570 
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Multiomics Factor Analyses (MOFA2) 571 
 572 

MOFA uses multi-omics data from the same set of samples as input and generates a 573 
model that infers a set of “Factors” that best explain patterns of covariation across samples63. 574 
Details of methodology can be found in the original publication64. As input for the MOFA model, 575 
we used untargeted metabolomics (1538 metabolites) and shotgun metagenomics datasets (518 576 
features). All inputs were normalized by centralized log normalization. When fitting the model, we 577 
selected for the top factors ordered by the mean fractional variance explained across omic 578 
modalities (that is, factor 1 contributed the most, and factor 7 contributed the least to mean 579 
fractional variation; Extended Data Fig. 3A). When testing factor values for statistically significant 580 
differences between POIT outcome groups we used a two-tailed Mann–Whitney U-test. 581 
Extended Data Fig. 3B). Top five features of metagenome and metabolome datasets from 582 
significant factors were displayed (Extended Data Fig. 3C).  583 
 584 
Machine Learning Model with Logistic Regression and Random Forest 585 
 586 

For the predictive metabolite analysis, normalized abundance of top five metabolites from 587 
Factor 2 of the MOFA2 analyses were processed with the mikropml R package (https://CRAN.R-588 
project.org/package=mikropml)65. We used Random Forest (rf) and Logistic Regression functions 589 
(glmnet) with Remission (Yes versus No) as an outcome using 50% of the samples as training 590 
set and 50% as the test set. Model performances were evaluated with repeated k-fold cross-591 
validation (tenfold, 10 repetitions) and parameters were tuned by choosing mtry and values 592 
between 1 and the square root of the total number of variables. Model training was accomplished 593 
with the caret R package (https://topepo.github.io/caret/), mtry and lambda values that determined 594 
the highest model accuracy were chosen as input to Random Forest and Logistic Regression 595 
analysis, respectively. Variable importance was assessed with permutations (100 iterations). Full 596 
results are reported in Supplementary Table S10.  597 
 598 
 599 
Availability of data and materials 600 
 601 

The sequencing data generated from untargeted metabolomics, shotgun metagenomes 602 
and amplicon sequencing for this study will be deposited to the NCBI SRA database. Additional 603 
data can be shared upon request.  604 
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Figures and Figure Legends 642 

 643 
Figure 1. a, Schematic overview of IMPACT trial fecal microbiome study9. b, At baseline, prior to 644 
POIT initiation, the D+R+ group exhibit significantly lower phylogenetic diversity (α-diversity) 645 
compared to either the D+R- and D-R- groups. Wilcoxon signed-rank test, n=16 (D+R+), 23 646 
(D+R), and 8 (D-R-). c, The D+R+ group exhibit a significantly distinct gut microbiota composition 647 
compared with either the D+R- or D-R- groups throughout the IMPACT trial. Linear Mixed Effect 648 
Model (P<0.05, not significant when adjusted for age). d, e, f, Baseline gut bacterial phylogenetic 649 
diversity positively correlates with baseline total IgE, peanut-specific IgE, and Ara h 2-specific IgE 650 
levels, respectively. Pearson correlation, adjusted for age at screening. g, Baseline differentially 651 
abundant bacterial taxa between children who achieved remission versus no remission. 652 
Generalized Mixed Model (P.FDR<0.05, adjusted for age). h, Baseline Peanut-IgE associated 653 
bacterial taxa. Generalized Mixed Model (P.FDR<0.05). Error bars represent standard deviation. 654 
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 655 
Figure 2. a, Association between untargeted metabolomics module (UMM) eigengenes and POIT 656 
outcomes (ANOVA, adjusted for age). b, Ordination of baseline secondary bile acid metabolites 657 
(n=43, R2 = 0.10; P < 0.015, adjusted for age), PERMANOVA analyses based on Euclidian 658 
dissimilarity metrics.  c, Difference in baseline Module Eigengenes (ME), which were determined 659 
based on WGCNA analyses (see Method Section) and represents a measure of the joint 660 
abundance profile of a specific module, of UMM10, d, UMM15 Unconjugated BAs module, and e, 661 
UMM4 between POIT-outcome groups (Wilcoxon signed-rank test). f, Z-scores of each bile acid-662 
related metabolites of UMM10, g, UMM15 and, h, UMM4 in each POIT-outcome groups (D+R+, 663 
D+R-, and D-R-). Blue colors represent low z-scores thus low abundance and red colors represent 664 
high z-score and higher abundance. Error bars represent standard deviation. 665 
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 666 
Figure 3. a, Association between shotgun metagenomic module (SMM) eigengenes and POIT 667 
outcomes (ANOVA, adjusted for age). b, Heatmap showing Spearman correlation results 668 
between POIT-associated Untargeted Metabolomics Modules (UMMs) and Shotgun 669 
Metagenomics Modules (SMMs). Asterisk “*” represents P<0.05, and double Asterisk “**” 670 
represents P<0.01. c, Factor 2 from MOFA analyses is the most significantly differential Factor 671 
between POIT response groups and weighted significantly higher in no remission groups 672 
compared to D+R+ group (P<0.05, Wilcoxon signed-rank test). d, Top 5 microbial pathways 673 
contributing the Factor 2 weight contains Gluconeogenesis and anaerobic energy metabolism 674 
pathways. e, Top 5 metabolites contributing the Factor 2 weight contains bile acid metabolites. f, 675 
The model’s predictive ability expressed as the AUC computed from 100 times repeated five-fold 676 
cross-validation. Blue line shows the average across the 100 times repeated five-fold cross-677 
validations with the shaded area representing the 95% CI (mean AUC ± standard deviation). The 678 
dashed diagonal line represents random chance. Error bars represent standard deviation. 679 
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 680 
Figure 4. Fecal amino acid metabolite composition is distinct between POIT outcome groups at 681 
a, baseline (n=43, R2 = 0.08; P = 0.006), and b, end of avoidance (n=43, R2 = 0.07; P = 0.039). 682 
The colors representing the POIT outcome groups are as follows: green for D+R+, orange for 683 
D+R-, blue for D-R-. c, Z-scores of all amino acid metabolite abundance in eight modules-684 
associated end of avoidance POIT outcome. d, Gut microbial pathways enriched in microbiome 685 
of children who developed remission (blue bars) versus no remission (orange bars). Generalized 686 
Mixed Models (P<0.05, P.FDR>0.05). e, Fecal microbiome of children who did not achieve POIT-687 
induced remission have a higher capacity to metabolize peanut proteins compared to children 688 
who achieved POIT-induced remission (Wilcoxon signed-rank test). Data presented in this plot is 689 
the average of two independent experiment. Control group refers to BHI medium supplemented 690 
with peanut extract and incubated 48 h with other samples without the microbiome inoculation. 691 
Error bars represent standard deviation. 692 
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Extended Data Figure 1. a, There was no significant difference in age between Placebo and 697 
POIT groups at baseline (ANOVA, P>0.05). b, Participants who achieved POIT-induced 698 
remission in the current study were significantly younger compared to participants in D+R- and 699 
D-R- groups, similar to the original study (ANOVA, P<0.05). c, Phylogenetic diversity positively 700 
correlates with participant age. (P<0.05; Pearson correlation). d, Phylogenetic diversity was 701 
similar between Placebo and POIT arms throughout the IMPACT trial (Linear Mix Model, adjusted 702 
for age). e, D+R+ has a lower bacterial phylogenetic diversity at baseline compared to D+R- and 703 
D-R- groups (P=0.043, Linear Mix Model, adjusted for age). f, Gut bacterial composition is similar 704 
between Placebo and POIT groups throughout the IMPACT trial (LME n=277; Placebo=87, 705 
POIT=190). g, Gut bacterial composition is distinct between POIT outcome groups (n=190; D+R+ 706 
=54, D+R- =106, and D-R- =30; LME).  h, Abundance of Romboutsia ilealis negatively correlates 707 
with all measured peanut-specific and component specific IgE levels; Ara h 1, Arah 2, Ara h 3, 708 
and Ara h 6 (Pearson correlation, adjusted for age, P<0.05). LME: Linear Mix Effect.  Error bars 709 
represent standard deviation. 710 
 711 
 712 
 713 
 714 
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Extended Data Figure 2. a, Difference in baseline module eigengenes (ME) of POIT outcome-716 
associated untargeted metabolomics modules (Wilcoxon signed-rank test). b, Fecal bile acid 717 
metabolite composition is not different between POIT-outcome groups at the end of treatment 718 
and avoidance. Ordination of end of treatment and avoidance secondary bile acid metabolites, 719 
PERMANOVA analyses based on Euclidian dissimilarity metrics (P> 0.05). c, The bile acid 720 
modules (UMM10 and UMM15), which are significantly associated with POIT-outcome, correlate 721 
with phylogenetic diversity and gut microbiome composition (P<0.05, Pearson Correlation, 722 
adjusted for age). d, Difference in end of treatment and avoidance module eigengenes (ME) of 723 
POIT outcome-associated untargeted metabolomics modules (Wilcoxon signed-rank test). Error 724 
bars represent standard deviation. 725 
 726 
 727 
 728 
 729 
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Extended Data Figure 3. a, MOFA2 analyses, variance explained by each omics datasets; 731 
metabolomics and metagenomics. b, Seven MOFA2 factors were identified, five of which (Factors 732 
1-5) were significantly different between POIT outcome groups (P<0.05, (Wilcoxon signed-rank 733 
test). c, Top five microbial pathways contributing to weight of each factor. d, Top five metabolites 734 
contributing to weight of each factor. e, Comparison of average AUC between logistic regression 735 
and random forest models in predicting remission outcome based on five metabolites from Factor 736 
2. f, Fecal metabolite composition is not different between POIT outcome groups at the end of 737 
avoidance (Euclidian distance matrix. n=43, R2 = 0.02; P = 0.25). Orange and blue lollipop colors 738 
represent negative and positive effect on factor weight, respectively. Error bars represent 739 
standard deviation. 740 
 741 
 742 
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