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Abstract

Healthcare-associated infections (HAIs) due to multi-drug resistant organisms (MDROs) are a signif-
icant burden to the healthcare system. Patients are sometimes already infected at the time of admission
to the hospital (referred to as “importation”), and additional patients might get infected in the hospital
through transmission (“nosocomial infection”). Since many of these importation and nosocomial infection
cases may present no symptoms (i.e., “asymptomatic”), rapidly identifying them is difficult since testing
is limited and incurs significant delays. Although there has been a lot of work on examining the utility of
both mathematical models of transmission and machine learning for identifying patients at risk of MDRO
infections in recent years, these methods have limited performance and suffer from different drawbacks:
Transmission modeling-based methods do not make full use of rich data contained in electronic health
records (EHR), while machine learning-based methods typically lack information about mechanistic pro-
cesses. In this work, we propose NeurABM, a new framework which integrates both neural networks and
agent-based models (ABM) to combine the advantages of both modeling-based and machine learning-
based methods. NeurABM simultaneously learns a neural network model for patient-level prediction of
importation, as well as the ABM model which is used for identifying infections. Our results demonstrate
that NeurABM identifies importation and nosocomial infection cases more accurately than existing
methods.
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Introduction
Healthcare-associated infections (HAIs), especially those caused by multi-drug resistant organisms (MDROs)
pose a significant threat to patient safety and burden the healthcare system with increased costs due to
longer hospital stays and more expensive therapies [28, 26, 25, 30, 10, 15]. Approximately 3% of hospital-
ized patients in the United States acquire an HAI during their stay, resulting in more than 35,000 deaths
annually [3, 14, 7, 24]. Often, patients have already been infected but present no symptoms at admission
(i.e., importation cases). For instance, the European Centre for Disease Prevention and Control (ECDC)
estimates that importation cases contribute to 13% of HAI cases in Germany and 18.9% in Spain [29]. These
importation cases can spread HAI-causing pathogens and lead to nosocomial infection cases, which can also
be asymptomatic but further spread pathogens to additional healthy patients [27].

Despite the critical concerns associated with importation and nosocomial infection cases, identifying
them rapidly and accurately still remains a challenging problem. Current methods to identify them include
surveillance tests [22, 16], machine learning-based methods [23, 13], and transmission modeling-based meth-
ods [21, 11, 1, 19, 18, 31, 8]. However, they all suffer from unavoidable drawbacks. Surveillance tests such
as culture or PCR tests are common methods in hospitals to identify importation and nosocomial infection
cases. However, they are costly, require time to process, and are not 100% accurate [6]. Additionally, these
are typically only able to be used for a subset of MDROs, and therefore not applicable for all kinds of HAIs.
Machine learning and statistical techniques use patients’ electronic health record (EHR) data to predict the
probability of importation and nosocomial infection cases [23, 13]. However, the performance of machine
learning methods has not proven to be high enough due to many reasons, including imbalance (since HAI
cases form a very small fraction of the entire patient population), bias in the data (since testing is generally
not done in a systematic manner), and the fact that machine learning methods do not incorporate epidemi-
ological knowledge in their frameworks. Finally, modeling-based methods are based on detailed mechanistic
models (e.g., compartmental mixing models [18, 31] and agent-based models (ABMs) [1, 21, 11]) to capture
the transmission dynamics of HAIs within a healthcare facility. They are calibrated to infections in the
hospital and use projections from such models for prediction. Although ABMs have used information about
contact networks between patients and providers within healthcare facilities to model the infection status
of an individual patient, they still cannot directly incorporate the risk factor of each patient from the EHR
data, such as medications, lab results, vital signs, and device use history into modelling. As we will also show
in the later results section, the inability of leveraging EHR data of patients leads to suboptimal performance.

In this work, we propose a new framework, NeurABM, to identify HAI importation and nosocomial
infection cases by coupling a neural network and an ABM and training simultaneously. We use Methicillin-
resistant Staphylococcus aureus (MRSA) as an example HAI in later sections. Figure 1 shows an overview
of our framework. As shown in the figure, the neural network estimates the importation probability for
each patient using EHR data, while the ABM incorporates MRSA dynamics and is used to estimate the
MRSA infection probability. After training, NeurABM runs as a discrete time process; at each time step
t, the following two steps are performed: (1) the neural network estimates the importation probability (i.e.,
identifies importation cases) for each new patient who enters the hospital, and (2) the ABM (which keeps
track of the disease states of all patients in hospital till time t−1) runs the next step of the disease simulation
to estimate all disease states (i.e., identify nosocomial infection cases, including those are asymptomatic) at
time t. The parameters of NeurABM consist of two parts: those of the neural network and those of the
ABM (e.g., general parameters such as transmission and recovery rates, and patient-specific parameters such
as importation probabilities in this paper); these parameters are learned by minimizing a loss function that
considers the errors in the ABM projections and ground truth incidence data from EHR. Since the dynamics
of MRSA transmission depend on the importation model (and conversely, through this kind of training
process), this approach couples the neural network and ABM and is trained end-to-end, which mitigates
the issues in using either of them individually. NeurABM significantly extends the work of [4], which was
the first method to consider such a joint deep learning and ABM approach, by introducing approximation
techniques to scale the disease model and incorporating rich patient-level EHR data.

We demonstrate the performance of NeurABM using EHR data for patients at the University of Virginia
(UVA) hospital intensive care units (ICUs). Our results show that NeurABM identifies not only importation
cases but also nosocomial infection cases better than other machine learning or modeling-based baselines.
Note that our NeurABM is a general framework that integrates both neural networks and mechanistic
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Figure 1: Our NeurABM framework involves 4 steps: (1) The neural network takes the patients’ risk factor
data collected from EHR as input, and outputs both the agent-based model (ABM) parameters, denoted
by θM (which are applicable to every patient), and patient-specific parameters, denoted by θp (importation
probabilities in this paper, darker red means higher probability), for each patient p. (2) These parameters
and the adjacency matrices for contact networks of each day collected from EHR are then fed into the ABM
simulator for simulation for T days, and the output will be the probability that each patient p is in the
Carriage state ŷp,t for each day t (darker red means higher probability). (3) We then compare this ŷp,t with
the ground-truth observation of patients in Carriage state (via lab testing), denoted by yp,t, and compute the
loss L(ŷp,t, yp,t). (4) We backpropagate this loss to the neural network to tune the neural network parameters
ϕ.

models in an end-to-end way, one which can be easily extended to other ABMs or EHR data and study other
clinical problems.

Results
Here, we show the performance of our NeurABM in identifying MRSA importation and nosocomial infection
cases in the ICUs of the UVA hospital in 2019. We used EHR data from the UVA hospital to construct
patient contact networks (used by the ABM) and collect patient risk factors (used by the neural network).
We use the SIS-ABM model [12, 5] as the ABM for disease transmission in NeurABM. Ground-truth
MRSA infections are identified from lab test results for each patient in the EHR. For each week k, we used
the contact networks, patient risk factors, and lab test results until week k − 1 to train the NeurABM
and identify importation cases before week k − 1. We then ran the SIS-ABM model for 7 more days to
infer the infection states of patients for week k, which correspond to nosocomial infections (see Materials
and Methods section). Note that only data prior to week k are used in this process—this is same as the
setting considered in [21] for detection of asymptotic cases (though their ABM is different); further, they
do not consider the importation problem. We also compared NeurABM with other baselines in machine
learning categories (feedforward neural network [20], decision tree [9], naive bayes [2]), modeling categories
(the SIS-ABM model [12, 5], SILI-ABM model [21]), and clinical heuristic categories (length of stay [21]).
Note that SILI-ABM model [21] is not designed to identify importation cases, we only compare with them
for identifying nosocomial infection cases. We also ran experiments where test results are only available until
week k − 2 (see Supporting Information), and the results show that NeurABM still performs better than
other baselines.
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(d) Identifying MRSA importation cases
Method Precision Recall (Sensitivity, F1 score AUPRC False positive rate Negative predictive value AUC-ROC

True positive rate) (1-Specificity) (NPV)

0.25 0.74 0.37 0.18 0.98
NeurABM 0.50 0.66 0.57 0.60 0.05 0.97 0.86

0.75 0.47 0.58 0.01 0.96

0.25 0.01 0.02 0.01 0.93
SIS-ABM 0.25 0.01 0.01 0.07 0.01 0.93 0.49

0.75 0.01 0.01 0.01 0.93

0.25 0.40 0.31 0.10 0.95
Feedforward neural network 0.50 0.24 0.33 0.36 0.02 0.94 0.77

0.75 0.17 0.28 0.01 0.94

0.25 0.32 0.28 0.08 0.94
Decision tree 0.50 0.23 0.31 0.32 0.02 0.94 0.77

0.75 0.20 0.32 0.01 0.94

0.25 0.29 0.27 0.07 0.94
Naive bayes 0.50 0.09 0.16 0.21 0.02 0.93 0.79

0.75 0.05 0.09 0.01 0.93

0.25 0.16 0.20 0.04 0.94
Length of stay 0.50 0.11 0.18 0.12 0.03 0.93 0.63

0.75 0.05 0.10 0.02 0.93

Figure 2: The performance in identifying importation cases includes: (a) The precision-recall curves (PRC).
The x-axis represents precision, and the y-axis represents recall. The red and other color curves represent
NeurABM and other baselines. A larger area under the precision-recall curve (AUPRC) indicates better
performance. AUPRC values are listed in the legends, and NeurABM has the highest AUPRC value. (b)
The negative predictive value (NPV) with different thresholds. The x-axis is the threshold for classification,
and the y-axis is the NPV value. Circles, squares, and triangles correspond to the thresholds and NPV values
where precision is 0.25, 0.5, and 0.75, respectively. A higher NPV value indicates fewer missing importation
cases that are not identified and therefore better performance, and NeurABM has the highest NPV values.
(c) The receiver operating characteristic (ROC) curves in identifying MRSA importation cases. The x-axis
is the false positive rate, and the y-axis is the true positive rate. A larger area under the ROC (AUC-ROC)
indicates better performance. AUC-ROC values are listed in the legends, and NeurABM has the highest
AUC-ROC value. (d) The recall, F1 score, AUPRC, false positive rate, NPV, and AUC-ROC under different
precisions (0.25, 0.5, 0.75). The best AUPRC and AUC-ROC are in bold.

Identifying importation cases
In Figure 2a, we show the precision-recall curves for NeurABM and other methods. Note that in clinical
practice, very low precision is not very useful, since this means too many tests and treatments do not help
to identify and treat MRSA cases. Therefore, we always expect high recall with not-too-low precision.
Following previous work [17], we consider precision smaller than 0.25 as clinically inapplicable and focus on
three important precision levels: 0.25, 0.5, and 0.75 (dashed grey lines).

NeurABM always achieves the highest recall when precision is 0.25, 0.5, and 0.75, indicating that our
framework is effective. Besides, the area under the precision-recall curve (AUPRC) for NeurABM is the
largest (0.60) among all methods. In Figure 2b, we show how the negative predictive value (NPV) changes
with threshold changes (when the estimated probability is higher than the threshold, we classify this patient
as a MRSA importation case, and vice versa). The negative predictive value is the fraction of the number
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(d) Identifying nosocomial infection cases
Method Precision Recall (Sensitivity, F1 score AUPRC False positive rate Negative predictive value AUC-ROC

True positive rate) (1-Specificity) (NPV)

0.25 0.77 0.38 0.22 0.97
NeurABM 0.50 0.65 0.56 0.58 0.06 0.97 0.86

0.75 0.50 0.60 0.02 0.95

0.25 0.02 0.04 0.02 0.91
SIS-ABM 0.50 0.01 0.03 0.09 0.01 0.91 0.52

0.75 0.01 0.01 0.01 0.91

0.25 0.34 0.29 0.10 0.94
Feedforward neural network 0.50 0.26 0.34 0.35 0.03 0.93 0.65

0.75 0.26 0.39 0.01 0.93

0.25 0.45 0.32 0.13 0.94
Decision tree 0.50 0.33 0.39 0.40 0.03 0.94 0.69

0.75 0.32 0.45 0.01 0.94

0.25 0.19 0.21 0.06 0.93
Naive bayes 0.50 0.18 0.27 0.22 0.02 0.93 0.50

0.75 0.18 0.29 0.01 0.93

0.25 0.21 0.23 0.06 0.93
Length of stay 0.50 0.15 0.24 0.17 0.03 0.92 0.62

0.75 0.08 0.14 0.01 0.92

0.25 0.12 0.16 0.03 0.92
SILI-ABM 0.50 0.02 0.04 0.13 0.01 0.92 0.53

0.75 0.01 0.02 0.01 0.91

Figure 3: The performance in identifying nosocomial infection cases includes: (a) The precision-recall curves.
The red and other color curves represent NeurABM and other baselines. Higher AUPRC is better, and
NeurABM has the highest AUPRC value. (b) The negative predictive value with different thresholds.
Circles, squares, and triangles correspond to the thresholds and NPV values where precision is 0.25, 0.5,
and 0.75, respectively. Higher NPV value is better, and NeurABM has the highest NPV values. (c) The
receiver operating characteristic curves in identifying MRSA nosocomial infection cases. Higher AUC-ROC
is better, and NeurABM has the highest AUC-ROC value. (d) The recall, F1 score, AUPRC, false positive
rate, NPV, and AUC-ROC under different precisions. The best AUPRC and AUC-ROC are in bold.

of true negative cases over predicted negative cases. Intuitively, a higher NPV means that when we predict
a patient as negative, he or she is less likely to be a false negative patient that we fail to identify. We
can see that NeurABM’s NPV rate is always higher than 0.95 and other baselines, indicating that our
NeurABM can identify the importation cases well with fewer missing/undetected patients. We also show
the receiver operating characteristic (ROC) curve in Figure 2c. Here, the area under the curve (AUC-ROC)
for our framework is still the largest (0.86) compared to other baselines. In the table in Figure 2d, we also
list the recall, F1 score, and false positive rate corresponding to different precision values. We can see that
NeurABM always achieves the highest recall and F1 score with a given precision, indicating the effectiveness
of our framework in identifying MRSA importation cases.

Identifying nosocomial infection cases
As shown in Figure 3a, the x-axis and y-axis represent precision and recall, respectively. The red curve
represents the results for NeurABM. As shown in the figure, the area under the precision-recall curve for
our framework is the largest (0.58) compared to other baselines. The dashed grey lines correspond to the

Cui. et al · 5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.14.24310393doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.14.24310393
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 20 40 60 80 100
Percentage of screened patients (%)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f o
bs

er
ve

d 
ca

rri
er

s (
%

)
NeurABM
SIS-ABM
Feedforward neural network
Decision tree
Naive bayes
Length of stay
SILI-ABM

Figure 4: Percentage of identified MRSA cases by screening "high-risk" patients. For each patient in the
UVA ICUs, we use each method to estimate their MRSA infection probability and rank them according to
this probability from high to low. We then screen different percentages of patients (x-axis) and see how
many actual MRSA cases can be identified (y-axis). As seen in the figure, NeurABM can always identify
more MRSA cases than other baselines.

precision of 0.25, 0.5, and 0.75. Again, NeurABM always achieves the highest recall with precision equal
to 0.25, 0.5, and 0.75, indicating that our framework is effective. In Figure 3b, we show how the negative
predictive value (NPV) changes with the threshold for classification. We can see that the NPV rate is
always higher than 0.9 and other baselines, indicating that NeurABM can identify nosocomial infection
cases well with fewer missing/undetected patients. We also show the ROC curve in Figure 3c. Here, the area
under the ROC curve for our framework is the largest (0.86) compared to other baselines. In the table in
Figure 3d, NeurABM always achieves the highest recall and F1 score with a given precision, demonstrating
the effectiveness of our framework in identifying nosocomial MRSA infection cases.

Identification of high-risk MRSA cases
This can help in implementing better infection control methods within the hospital. We consider the strategy
of testing patients based on the ranked infected probability estimated by NeurABM and other baselines,
and determine what percentage of MRSA cases can be identified. This is shown in Figure 4, where we rank
all patients according to the estimated infected probability of each method from high to low, and test patients
in this order. Here, we observe that NeurABM can always identify more nosocomial MRSA infection cases
(y-axis) given the same test budget (x-axis), which suggests that our framework is effective and practical in
identifying MRSA cases in clinical settings.

Case study: Explanation of neural network
We further investigate which patient risk factors are considered as having a high risk of being importation
cases by NeurABM. As shown in Figure 5, each dot represents a patient, and the color of the dot represents
the risk factor value (red means higher, and blue means lower). Dots with a higher impact value (to the right
of the control line) mean that NeurABM tends to classify this patient as having a higher probability of
being an importation case (and vice versa). Here, we can see that patients who have had contact with more
MRSA patients in the past 7/14 days prior to ICU admission are considered the most dangerous. Besides,
we notice that patients with a device usage history, who come from or were discharged to other healthcare
facilities last time, and emergency patients are more likely to be considered as importation cases.
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Figure 5: The patient risk factors that are considered as having a high risk of being importation cases by
the trained neural network. Color of the dots represent risk factor values, with red indicating higher values.
A higher impact means that NeurABM is more likely to consider the patient as an importation case.

Discussion
NeurABM is a novel framework for supporting a diverse class of HAI surveillance and control questions.
This framework allows the use of diverse data sources from EHRs by deep learning methods and ABMs.
While joint deep learning and ABMs have been considered before, as in [4] (which our work builds on), our
approach is distinct in that the deep learning method for prediction of importations and the ABM run in
lock-step, allowing the ABM to directly incorporate the predictions of importation. Additionally, the detailed
contact network used in the SIS-ABM model in NeurABM also plays an important role, and justifies the
utility of detailed contact representations for surveillance and control of HAIs.

Our experiments show that NeurABM identifies not only MRSA importation cases but also nosocomial
infection cases in UVA ICUs, with performance that can be considered clinically useful; in contrast, prior
methods using EHR data haven’t achieved this level of performance. Moreover, the negative predictive value
(NPV) for our method is always higher than 0.95, indicating that NeurABM can identify these cases well
with fewer missing/undetected patients. Our case study also reveals the risk factors that are highly related
to MRSA importations, which allows clinicians to better respond to potential MRSA importation cases in
their hospital.
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However, our framework is not without limitations. One limitation is that the SIS-ABM model may
oversimplify MRSA carriage by defining just two states: susceptible and carriage. There are different forms of
MRSA carriage, including various clinical infection types such as skin abscess or bloodstream infection, which
may confer different levels of risk for transmission. Similarly, the SIS-ABM model does not have an explicit
“colonization” state. However, our framework is quite general and can be extended to use more complex
ABMs that incorporate these states separately. We also did not take false negative or false positive MRSA
tests into consideration, although the sensitivity and specificity of the nares MRSA tests are considered
quite good. Another potential limitation is that MRSA surveillance has several biases, and NeurABM is
not trained to specifically mitigate these biases.

Nevertheless, NeurABM opens up a new direction of research for using both rich patient risk factors
from EHR data as well as agent-based models designed with epidemiological knowledge and can be used
for many other questions about HAI spread in hospitals. The specific architecture of our method, which
runs the deep learning method and ABM step at each time allows us to add predictors at different stages
within this framework to address other kinds of questions. For instance, the framework can be adapted
to forecast nosocomial infections and severe outcomes by adding a predictor for these outcomes after the
ABM. The ABM can also be enriched with representations of interventions implemented in the hospital.
For patient-specific parameters, we focus on importation probabilities in this work. However, many other
parameters such as recovery rate can also be patient-specific and our NeurABM framework can be easily
extended to it. The performance of these variations depends on data availability, and is a promising topic
for future research. It can also be adapted to other healthcare-associated infections, such as C.diff. The fact
that NeurABM is amenable to such adaptations quite easily is an indication of its generality.

Methods

Dataset
We extract three different types of patient data based on the electronic health records (EHR) from the
University of Virginia hospital: patient demographic information and risk factors (e.g., comorbidities, medical
history), lab testing, and contact network data.

Patient risk factor data

This dataset consists of risk factors for all patients in ICUs. From the EHR dataset, we collected 19 different
risk factors for each patient, all of which are available before ICU admission. From July 1, 2019, to December
31, 2019, there were 2470 patients in UVA ICUs, and 157 of them were MRSA importation cases (all patients
received an MRSA test within (t− 3, t+ 3) days of being admitted into one of the ICUs, and patients who
tested positive for MRSA within this range are considered as importation cases). A list and description of
each risk factor are provided in the Supporting Information.

Lab testing data

This dataset consists of infection data for each patient. There were two different types of tests to diagnose
MRSA: culture tests and polymerase chain reaction (PCR) tests. However, since a negative culture test
cannot disqualify an individual from MRSA infection, we focused on only positive culture tests and both
positive and negative PCR tests. For a given patient p on a given day t, yp,t = 1 represents that the patient
was tested positive on day t or if their most recent test in the past was positive. Likewise, yp,t = 0 if this
patient was tested negative on day t or if their most recent test was negative.

Contact network data

This dataset consists of a series of contact networks At comprising three different entities: patients, health-
care workers (HCWs), and locations, and each network is for one specific day. From the EHR dataset, we
can collect the movement information of patients and HCWs (e.g., the ward that a patient stayed, and when
the doctors and nurses visited a specific ward). Note that these movement information also includes start
and end times; we can infer whether these patients and HCWs were co-located (i.e., time overlapped) at
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any specific location. Specifically, if two patients or HCWs v1, v2 colocated at location l on day t, we would
create edges between v1 and v2, v1 and l, v2 and l on day t in At. However, because of the nature of this
data, individuals such as support staff or patient guests are not tracked, and thus are not included in the
network. Additionally, HCW-HCW colocations are not tracked in rooms where care is not administered,
such as break rooms.

Problem setup
We use the trained NeurABM model to identify importation and nosocomial infection cases. For im-
portation cases, the patient-specific parameter θp in this work is importation probability for each patient.
Specifically, for each week k, we used the contact networks, patient risk factors, and lab testing results until
week k − 1 to train the NeurABM, and our task is to identify the importation cases from them until week
k− 1. Note that NeurABM framework do not access to the ground-truth importation cases data. Instead,
we only use the ground-truth importation cases data for evaluation. For nosocomial infection cases, we follow
the setup of a previous work [21]: For each week k, we used the contact networks, patient risk factors, and
lab testing results until week k − 1 to train the NeurABM, and then ran the SIS-ABM model for 7 more
days to infer the infection states of all patients for week k. We followed a real-world step-forward scenario
that made weekly predictions. For example, if we were at the end of week 40 (beginning of October), we
would train on the data from week 28 (beginning of July) to week 39 to estimate both the importation
cases between week 28 and week 39 (end of September) and nosocomial infection cases in week 40 (i.e., no
information after week 40 is used). Then, at the end of week 41, we would train on the data from week 29
to 40 and identify the nosocomial infection cases for week 41. We repeated this procedure until we were at
the end of week 52.

Transmission model
In this work, we use the SIS-ABM model to capture the MRSA spread dynamics in UVA ICUs [12]. SIS-
ABM is a pathogen load-based model that keeps track of pathogen load on all people and locations using a
load vector lt. For each patient i, they can either be in the Susceptible (S) or Carriage (C) state. Specifically,
the probability of transitioning from S to C is proportional to the amount of pathogen on this patient lt(i),
which can be formulated as a linear dose-response function βlt(i) (β is the disease infectivity parameter).
Once in the carriage state, the patient keeps shedding more pathogen loads at each step, which can later be
transferred to its neighbors (including both people and locations). Such a shedding process continues until
the patient recovers with a recovery probability δ.

For the pathogen load transfer, as described in the previous text, the SIS-ABM model uses daily contact
networks At to capture the exchange of pathogens among patients, HCWs, and locations. Specifically, we
construct a transfer matrix Rt for each day t, where Rijt = τijtAijt. Here, At is the adjacency matrix of
contact networks on day t, and τijt is the transfer ratio parameter (the ratio of pathogen being transferred
(or remaining if i = j) from j to i on day t). Using this Rt and lt(i), the SIS-ABM model updates the
pathogen loads every day as a linear operation. We also restrict the column-sums of Rt to be less than or
equal to 1, which implies that the total amount of pathogen cannot increase after transfer (i.e., |Rtlt| ≤ |lt|).
Note that susceptible patients may still carry a small amount of pathogen loads and spread them to others,
and HCWs and locations are always in the susceptible state, which means that they can spread the MRSA
pathogen loads but are non-infectable. We provide more details in the Supporting Information.

NeurABM framework
As shown in Figure 1, our NeurABM is composed of two components: a neural network and an agent-based
model (ABM) simulator. The neural network is used to estimate both patient-specific parameters and ABM
parameters.

For the neural network component, we take the risk factors f (where fp is for patient p) as input and
then estimate both the patient-specific parameters θp (which is a vector and each element θp is for patient
p and only influenced by the patient itself’s risk factors fp, in this work it is importation probability for
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each patient) and ABM parameters θM (i.e., the general parameters that apply to every patient in the SIS-
ABM model, like disease infectivity parameter β or recovery probability δ) together. The neural network is
parameterized by ϕ and we use θp,θM = NN(f ;ϕ) to represent it.

For the ABM simulator, we implement the simulation process of the SIS-ABM model using matrix
operations in a differentiable way. ABM simulator takes the adjacency matrices of contact networks At

and the parameters learned by neural networks (θp,θM ) as input, and simulates MRSA spread in T days
to estimate patient states on each day ŷ (where ŷp,t is for patient p on day t). Specifically, the simulation
process of the SIS-ABM model can be decomposed into three substeps: (1) pathogen load transmission
where the load transfers via contact edges, (2) updating the states for each patient based on their pathogen
loads and recovery probability, and (3) updating the timestep from day t to day t+ 1. This process can be
repeated for arbitrary steps to simulate the MRSA spread over T days. We use ŷ = ABM(A;θp,θM ) to
represent it.

With both the neural network and the ABM simulator, we can then integrate both components together
to train simultaneously. Specifically, one training epoch comprises the following four steps.

Step 1

We feed the risk factor data f into the neural network as the input to estimate the patient-specific parameters
θp. In this work, θp is the probability of being importation cases for each patient p. It is a vector of size N ,
where N is the number of patients in the contact network. Meanwhile, the neural network will also give the
general ABM parameters θM that are applied to all patients (e.g., β, α, · · · ).

Step 2

We then feed θp, θM , and the contact networks At into the ABM simulator and simulate for T steps. The
output will be the vector ŷ of size N × T , in which ŷp,t represents the probability of being in the state
carriage for patient p on day t.

Step 3

We compare the estimated carriage probability ŷ with the corresponding ground-truth observations (i.e.,
known carriage patients based on lab testing) y. We use the weighted binary cross entropy loss (BCE loss)
L(ŷ,y) =

∑
p

∑
t wposyp,t log(ŷp,t)+wneg(1−yp,t) log(1−ŷp,t) as the loss function. Here wpos and wneg are the

weights for positive and negative observations. We set wpos : wneg ∝
∑

p

∑
t 1[yp,t = 0] :

∑
p

∑
t 1[yp,t = 1],

where 1[·] is the indicator function, which is 1 if the condition is true, and 0 otherwise.

Step 4

With the BCE loss L(ŷ,y), and the differentiable ABM simulator, we can calculate the gradient of the loss
with respect to the neural network parameters ϕ via backpropagation. This allows us to better tune the
neural network and learn more reasonable parameters as the input for the ABM simulator.

The four steps are repeated until the loss L(ŷ,y) converges. More details are provided in the Supporting
Information.

Baselines
To compare our NeurABM with current modeling or machine learning-based methods, we also compare
with other baselines including machine learning-based methods (neural network [20], decision tree [9], naive
bayes [2]), mechanistic modeling-based methods (SIS-ABM model [12, 5], SILI-ABM model [21]), and
clinical heuristic methods (length of stay [21]).

For machine learning based methods, we train two models: one for identifying importation cases and
another for identifying nosocomial infection cases. For importation cases, we train on the ground-truth
importation cases from January 2019 to June 2019 and test on July to December (i.e., the same time period
for NeurABM). For identifying nosocomial infection cases in each week k, we train on data until week k−1
and test on week k. For modeling-based methods, we run their models following their original papers [21, 12]
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and take the average infected probability of 100 simulations as the probabilities of being importation cases
and nosocomial infection cases. For clinical heuristic methods, the length of stay will consider patients
staying longer in the hospital to have higher probabilities.

Data Availability
The outputs of our model are available on GitHub via link: https://github.com/AdityaLab/NeurABM. The
electronic health record (EHR) data used in developing the models is not available since it is highly sensitive,
and we do not have permission to release it. However, we provide the code, a demo, and a synthetic dataset
on GitHub.
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