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Abstract 

Body mass index (BMI) changes throughout life with age-varying genetic contributions. We 

aimed to investigate the genetic contribution to BMI across early life using repeated measures 

from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Random 

regression modelling was used to estimate the genetic covariance matrix (Kg) of BMI 

trajectories from ages one to 18 years with 65,930 repeated BMI measurements from 6,291 

genotyped ALSPAC participants. The Kg matrix was used to estimate SNP-based heritability 

(����� ) at yearly intervals from 1-18 years and genetic correlations across early life. We also 

performed an eigenvalue decomposition of Kg to identify age-varying genetic patterns of 

BMI. Finally, we investigated the impact of a polygenic score derived from adult BMI on the 

estimated genetic components across early life. The �����  was relatively constant across early 

life, between 23-30%. The genetic contribution to BMI in early childhood is different to that 

in later childhood, indicated by the diminishing strength of genetic correlation across 

different ages. The eigenvalue decomposition revealed that the primary axis of variation 

(explaining 89% of the genetic variance in Kg) increases with age from zero and reaches a 

plateau in adolescence, while the second eigenfunction (explaining around 9% of Kg) 
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represents factors with opposing effects on BMI between early and later ages. Adjusting for 

the adult BMI polygenic score attenuated the �����  from late childhood; for example, �����  is 

29.8% (SE=6.5%) at 18 years of age and attenuates to 14.5% (SE=6.3%) after adjusting for 

the adult BMI polygenic score. Although common genetic variation explains around 23-30% 

of BMI variability across early life, our findings indicate that there is a different genetic 

profile operating during infancy compared to later childhood and adolescence. 

 

Keywords: ALSPAC; body mass index; childhood; random regression model; genetic 

variance. 

 

Introduction 

Body mass index (BMI), defined as body weight (in kilograms) divided by the square of 

height (in meters), is a commonly used measure to estimate total body fat. Obesity, defined in 

adults by BMI exceeding 30kg/m2, poses a significant risk for the development of many 

diseases, particularly cardio-metabolic diseases 1. One of the strongest predictors of obesity 

in adulthood is high BMI during childhood 2. In the general population, BMI across 

childhood involves three distinct phases 3. First, there's a rapid increase in BMI from birth to 

around nine months, when children reach their adiposity peak (AP). Second, there is a rapid 

decline in BMI until around five or six years of age where children reach their adiposity 

rebound (AR), which is due to factors such as changes in body composition and increased 

physical activity. Finally, BMI gradually increases until early adulthood, reflecting ongoing 

body development through puberty. Increasing our understanding of the mechanisms 

influencing BMI across early life could lead to strategies to enable early prevention of 

obesity. 

 

Considerable strides have been made in understanding the genetic underpinnings of BMI 

throughout childhood and in adults.  The largest and most powerful studies have been 

conducted in adults including 700K individuals and identifying nearly a thousand 

independent loci through genome-wide association studies (GWAS) 4. The total amount of 

variation in adult BMI explained by all common genetic variants either on or tagged by 

GWAS arrays, also known as single nucleotide polymorphism (SNP) based heritability 

(����� ), was estimated by Yengo et al. (2018) as 22.4% (SE = 3.7%) 4.  This contrasts to 

family-based designs which estimate the heritability of BMI in adults to be about 44% (SE = 
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4%) 5, and twin-based estimates which are around 60-80% 6. The differences between the 

experimental designs relate to genetic variation not tagged by common SNP (e.g. rare 

variants), and potential overestimation of twin-based estimates through common 

environmental or other effects 5. Some studies have also suggested a genotype-by-age 

interaction for adult BMI for older age groups, implying that the genetic correlation (rg) for 

BMI between different ages is less than 1 5,7.   

 

Similar to studies in adults, the estimates of heritability of BMI in childhood differ not only 

on study design but also age. For example, twin studies estimate a heritability of around 40% 

at age four, presumably where there is a large shared environmental component to BMI 8. 

Estimated heritability from twin-studies increases to around 80% from the age of ten to 19 

years old 8-10, which is similar to twin-based estimates of heritability in adults (60-80%) 6. 

The estimated SNP-based heritability is 20-40% between one and ten years of age 9,11,12, 

again consistent with the estimate in adults of 22%4.  BMI in childhood also exhibits 

genotype-by-age interactions, often to a greater magnitude than is seen in adults.  

Silventoinen et al. pool data from 25 twin cohorts to show that the genetic correlation 

between BMI at age 4 and 18 years is 0.5 (95% CI 0.38 – 0.61) in males and 0.38 (95% CI 

0.24 – 0.50) in females 13. Low genetic correlations are also reported using SNP-based 

estimation where Helgeland et al. 12 estimated the genetic correlation between BMI at 5 years 

and in adults to be 0.45 (SE = 0.041) and with Couto Alves et al. who estimate the genetic 

correlation between BMI at the adiposity rebound and adult BMI to be 0.64 (SE = 0.08) 14. 

This means that although BMI is moderately to highly heritable in children and adults, the 

genetic factors contributing to the heritability are not consistent throughout time and the 

estimates of heritability in twin-based studies are prone to environmental or other 

confounders. SNP-based heritability estimates capture only about half the total additive 

genetic variance but are not as susceptible to confounders. 

 

Helgeland et al. identify 46 genomic loci that are associated with BMI in at least one of 

twelve time points from birth to 8 years of age. Around half of these loci influence BMI 

during infancy but have no effect after the AR, including no effect on adult BMI. One locus 

following this pattern of association is LEP/LEPR, which has been associated with BMI 

across early life and at the adiposity peak in numerous studies 11,12,14. Additionally, the 

genetic correlation between the BMI at the AP and adult BMI is lower than the correlation 

later in childhood (for example, rg= 0.26, SE = 0.07 between BMI at AP and adult BMI14 and 
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rg = 0.63, SE = 0.06 between BMI at 8 years and adult BMI12). The age-varying genetic 

effects at individual loci, along with the genetic correlations estimated to be less than one, 

indicate that there might be a unique genetic profile influencing BMI during the first few 

years of life that differs from the genetic profile affecting BMI in adulthood. However, all of 

these studies use cross-sectional data, which overlook individual-level changes and neglect to 

utilize the repeated measures data from longitudinal cohorts to explore the evolving genetic 

profile of BMI trajectories throughout early life.  

 

One method for investigating genetic effects on traits over time using repeated measures data 

is the random regression model (RRM) 15,16. The RRM offers flexibility in modelling the 

correlation structure of repeated measurements through the inclusion of random effects for 

each subject and accommodates missing or incomplete data. The method models population, 

genetic and individual effects as a continuous function of time (e.g. age), thus estimating the 

population average trajectory as well as random coefficients to describe each individual’s 

trajectory. Random effects can be partitioned into additive genetic and individual-specific 

effects, where the additive genetic effect can be estimated using a variance-covariance 

structure defined by a genetic relationship matrix constructed with common SNPs 17.  In 

contrast to previous studies using cross-sectional data, the random regression model increases 

power to identify patterns of genetic variation by considering the effect of all SNPs 

simultaneously and it does not attempt to identify individual SNPs associated with a 

particular time-point or feature of the trajectory.  The RRM also reduces the number of 

parameters estimated from the data compared to previous twin studies which use a series of 

pairwise comparisons across ages to estimate genetic correlations 13. Finally, it is flexible in 

that genetic correlations can be estimated at any given pair of ages (within the age range of 

the data).  

 

The aim of the current study is to use repeated measures data from a large birth cohort, the 

Avon Longitudinal Study of Parents and Children (ALSPAC) cohort, to investigate the 

genetic profile of BMI across early life and provide insights into whether it differs from BMI 

in adulthood. We estimate the SNP-based heritability and genetic correlations within the age 

range of one to 18 years, identify patterns of genetic variation in BMI and explore the 

influence of an adult BMI polygenic score on the genetic variance of childhood BMI. 

 

Subjects and methods 
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Study Sample 

ALSPAC is a population-based, prospective birth cohort conducted in region of Avon in the 

United Kingdom 18,19. Pregnant women resident in Avon with expected dates of delivery 

between 1st April 1991 and 31st December 1992 were invited to take part in the study. The 

initial number of pregnancies enrolled was 14,541, with 13,988 children who were alive at 1 

year of age. When the oldest children were approximately seven years of age, an attempt was 

made to bolster the initial sample with eligible families, resulting in an additional 913 

children joining the ALSPAC cohort. The total sample size for analyses using any data 

collected after the age of seven is therefore 15,447 pregnancies, resulting in 15,658 fetuses. 

Of these 14,901 children were alive at 1 year of age. ALSPAC collected extensive health-

related information from the mothers, fathers and their children at regular intervals from birth 

to early adulthood and blood samples from 9,115 children were collected at various follow-

ups for genotyping.  Using information supplied by ALSPAC, we restricted our analysis to 

singleton births and individuals of European ancestry (see details below) 18,19. The study 

website http://www.bristol.ac.uk/alspac/researchers/our-data/ ) contains details of all the data 

that is available through a fully searchable data dictionary and variable search tool 20.  

 

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee 

and the Local Research Ethics Committees. Informed consent for the use of data collected via 

questionnaires and clinics was obtained from participants or their mothers following the 

recommendations of the ALSPAC Ethics and Law Committee at the time. Data access of the 

ALSPAC cohort can be applied for by submitting a request to the study’s Data Access 

Committee. Requirements for data access are described at http://www.bristol.ac.uk/alspac/. 

This project received ethical approval from the Institutional Human Research Ethics 

Committee, University of Queensland (Approval Number 2019002705). 

 

Genetic Data  

Genotyping, quality control (QC) and imputation procedures were performed centrally by 

ALSPAC and described in detail elsewhere 18,19. In brief, the children were genotyped using 

the Illumina HumanHap550 quad genome-wide microarray and imputed to the 1000 

Genomes reference panel (Version 1, Phase 3, Dec 2013 Release, using haplotypes from all 

populations) 21 using IMPUTE2 (v2.2.2) 22,23. Quality control measures applied centrally by 

ALSPAC included checks for gender mismatches, heterozygosity levels, missingness rates, 

and Hardy-Weinberg equilibrium. Families who withdrew from the study were removed. 
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Population stratification was evaluated using multidimensional scaling analysis, which was 

then compared to HapMap II (release 22) reference populations 24, including individuals of 

European descent (CEU), Han Chinese, Japanese, and Yoruba. The study removed all 

participants with non-European ancestry centrally. After QC and retaining only individuals of 

European ancestry from singleton births, there were 8,635 genotyped children with 

26,048,419 SNPs. More details of centrally-performed QC are provided at the following 

webpage: https://proposals.epi.bristol.ac.uk/alspac_omics_data_catalogue.html#. 

 

We applied further QC steps to remove SNPs that displayed more than 5% missingness, a 

Hardy-Weinberg equilibrium P-value of less than 10-6, imputation quality INFO score less 

than 0.8, and minor allele frequency of less than 1%.  A total of 6,380,782 SNPs were 

retained. Using the cleaned genotype data, we generated a genomic relationship matrix 

(GRM) using GCTA (version 1.94.1) 17.  Individuals with a relatedness coefficient of greater 

than 0.05 were identified and one member of every related pair randomly removed using the 

‘--grm-cutoff 0.05’ option in GCTA. This resulted in a set of 7,791 unrelated individuals of 

European ancestry for further analyses. 

 

BMI Measurements 

The data collected in ALSPAC included height and weight at up to 32 follow-ups before 

children reached adulthood, including parent and child completed questionnaires, nurse 

reports from routine health care visits and clinic attendance.   

 

We used the growthcleanr package25 in R26  to compare each height and weight measurement 

with a weighted moving average of the individual’s other measurements to identify 

biologically implausible values in height and weight. Further details about the package are 

described elsewhere (https://carriedaymont.github.io/growthcleanr/articles/output.html) 25. 

This flagged 5,480 measurements (weight or height [2.1% of the total number of 

measurements]), from 3,667 individuals, as outliers and we removed them from subsequent 

analyses. Then, we only retained individuals of European ancestry with genotype information 

(see Genetic Data). We only used data collected between 1 and 18 years.  This avoids the 

adiposity peak of around 9 months in most individuals meaning that individual trajectories 

should approximately follow a 3rd order (cubic) polynomial27. We excluded measurements 

after 18 years because the cubic polynomial model indicates a downward curve during early 

adulthood, where it is expected to remain stable or slightly increase.  Finally, we only 
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included individuals with at least four measurements, ensuring there is adequate data per 

individual to fit the cubic polynomial. The final dataset consisted of 65,930 BMI 

measurements from 6,291 unrelated individuals (Table 1, an average of 10.5 (SD=3.8) 

measures per individual).  All BMI phenotypes were natural log-transformed for analyses due 

to skewed distribution of BMI. All data cleaning procedures were performed in R (version 

4.2.1). 

 

 

Table 1 Descriptive statistics of the final dataset in ALSPAC cohort used for RRM analysis  

Categories ALSPAC follow-up name 
N 

(Male/Female) 

Mean age (SD) 

[years] 

Median of BMI (IQR) 

[kg/m2] 

Nurse reports 

Child health database 2 40 (13/27) 1.08 (0.07) 17.14 (2.26) 

Child health database 3 
4454 

(2219/2235) 
1.7 (0.23) 16.8 (1.91) 

Child health database 4 
4255 

(2132/2123) 
3.71 (0.2) 16.15 (1.75) 

Child in Focus 

(CIF) * 
CIF 12 months 730 (368/362) 1.03 (0.02) 17.84 (1.83) 

 
CIF 18 months 721 (372/349) 1.53 (0.03) 17.84 (1.83) 

 
CIF 25 months 683 (358/325) 2.08 (0.02) 17.09 (1.75) 

 
CIF 31 months 728 (376/352) 2.59 (0.02) 16.74 (1.73) 

 
CIF 37 months 723 (374/349) 3.08 (0.02) 16.61 (1.61) 

 
CIF 43 months 706 (367/339) 3.59 (0.02) 16.45 (1.55) 

 
CIF 49 months 706 (369/337) 4.07 (0.03) 16.36 (1.59) 

 
CIF 61 months 694 (361/333) 5.16 (0.07) 16.15 (1.55) 

Clinic 

measurements 

Focus@7 
5350 

(2710/2640) 
7.56 (0.29) 15.81 (2.15) 

Focus@8 
4651 

(2332/2319) 
8.68 (0.29) 16.62 (2.64) 

Focus@9 
5181 

(2566/2615) 
9.91 (0.31) 17.02 (3.35) 

Focus@10 
5228 

(2581/2647) 
10.68 (0.24) 17.5 (3.73) 

Focus@11 
5072 

(2498/2574) 
11.78 (0.23) 18.26 (4.24) 
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Teen Focus1 
4735 

(2316/2419) 
12.84 (0.22) 19.05 (4.17) 

Teen Focus2 
4404 

(2151/2253) 
13.88 (0.2) 19.63 (4.03) 

Teen Focus3 
3885 

(1867/2018) 
15.48 (0.3) 20.71 (3.88) 

Teen Focus4 
3052 

(1376/1676) 
17.44 (0.25) 21.81 (4.37) 

Questionaries 

My School Boy/Girl 

(KN) 

2829 

(1458/1371) 
5.81 (0.09) 15.5 (2.06) 

My Daughter/Son 

Growing up (KP) round 1 
803 (396/407) 6.37 (0.35) 15.63 (2.02) 

My Daughter/Son 

Growing up (KP) round 2 
123 (64/59) 6.34 (0.41) 15.72 (1.87) 

Your Son/Daughter at 9 

(KU) round 1 
783 (397/386) 9.31 (0.75) 16.69 (3.23) 

Your Son/Daughter at 9 

(KU) round 2 
151 (65/86) 8.81 (0.7) 16.4 (2.18) 

Your Son/Daughter at 9 

(KU) round 3 
102 (50/52) 9.08 (0.71) 16.62 (3.85) 

Your Son/Daughter at 9 

(KU) round 4 
59 (27/32) 9.46 (0.54) 16.7 (3.35) 

My Teenage 

Son/Daughter (TA) 

2706 

(1343/1363) 
13.18 (0.16) 19.07 (3.89) 

Your Son/Daughter at 

16+ (TC) 

2375 

(1220/1155) 
16.87 (0.36) 20.9 (3.35) 

 

* Ten of the clinic follow-ups before 7 years of age were designed to focus on a 10% subset 

of individuals (termed the “Child in Focus”). N: sample size, SD: standard deviation, IQR: 

Interquartile range 

 

 

Statistical Model 

Our random regression models the change in BMI with age as a polynomial in age in which 

the curve for each person is the sum of an overall age effect, common to everybody, and an 

individual departure from this curve described by a random genetic effect and a random 

effect specific to that person. We used Legendre polynomials of standardized age in the 

RMM 28. Legendre polynomials are a system of orthogonal polynomials over the interval [-1, 
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1] that reduce the correlation among the random regression coefficients, making them 

computationally efficient for longitudinal modelling. We therefore standardized age (m) 

using the following equation: 

��� � �1 � 2�
�	
�� � �����	



�����	
� � �����	



 Equation 1 

 

where ageij is the age of individual � at the measurement j, �����	

 is the youngest age 

(i.e 1 year) and �����	

 is the oldest age (i.e. 18 years) in the data. This rescales the age 

range from -1 to 1 (rather than 1 to 18) to facilitate the use of the Legendre polynomials. 

 

We used the standardized age to generate a matrix of Legendre polynomials evaluated at 

specified ages, �: 

 

� � �� Equation 2 

  

 

where � is a matrix of dimension t × k, where t is the standardized age and k is the degree of 

the polynomial plus one (in our case, k = 4; for example, coefficients for the overall mean 

[intercept], linear, quadratic and cubic polynomials of standardized age). � is a matrix of 

order t × k containing the standardized age values in their mk form (i.e. m0, m1, m2, m3).  � is 

a matrix of Legendre polynomial coefficients of order k × k, taking the form 29: 

 

� � �0.7071 0 �0.7906 00 1.2247 0 �2.80670 0 2.3717 00 0 0 4.6771 � 

 

Equation 3 

Note we used � in two different contexts below.  First, rows from � were used in the 

design matrices of the RRM model when � contains the observed ages where BMI was 

collected. Second, we used regularly spaced ages along the interval [-1, 1] for � when 

transforming variance components from the RRM back onto the observed age-scale.  
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The following RRM was fitted to the observed data: 

� � �� � ��� � ��� � � Equation 4 

 

 

where � is a n × 1 column vector of log-transformed BMI observations (n is the total number 

of observations). � is a n × (kf + c) design matrix for the fixed effects, where kf is the degree 

of the polynomial plus one in the fixed effects, and c is the number of covariates. The fixed 

effects include overall mean (or intercept), linear, quadratic and cubic Legendre polynomials, 

and covariates: sex, interaction terms between sex and the Legendre polynomials, and 

measurement source (whether the BMI measure was collected via questionnaire or at the 

clinic [including both the nurse report and ALSPAC clinic visits]). � is a (kf + c) × 1 vector of 

estimated fixed regression coefficients. �� and �� are n × (kg × N) and n × (ki × N) design 

matrices, respectively, for the random effects, where N is the number of individuals and kg 

and ki is the degree of the polynomial plus one in the random effects (kg and ki are less than or 

equal to kf). ��  and ��  contain rows of �, for the relevant Legendre polynomials at the 

observed age for an observation. We have specified two unique design matrices, �� and ��, to 

allow the degree of the polynomial (and therefore the value of kg and ki) to differ between the 

additive genetic and unique individual effects. � is a (kg × N) × 1 vector of random additive 

genetic polynomial effects, and 	 is a (ki × N) × 1 vector of random individual-specific effects 

(i.e., individual-specific effects on BMI not captured by SNP genotypes such as, maternal 

effects, environmental effects, and genetic factors that are not tagged by common SNPs). 

Finally, e is a n × 1 vector of residuals, with the assumption that the variance of the residual 

term remains constant over time. 

 

The distribution of random effects, g, i and e, follow a normal distribution with mean zero 

and variance given by:  var��� � � � �� var��� �  �� � �� var��� �  ��σ	
� 

Equation 5 

 

where 
 is the genomic relationship matrix constructed with SNP genotypes, as described 

above, � denotes the Kronecker product, ��  and ��  are the kg × kg and ki × ki variance-
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covariance matrices for the additive genetic and unique individual effects, respectively; and 


� and 
� are identity matrices with appropriate order for the respective random effects, σe
2 is 

the variance of residuals.  The model was fit using ASReml-SA version 4.2.1 

(https://vsni.co.uk/software/asreml), with the ASReml model specification file (.as file) 

provided in Supplementary Note 1. 

 

Model fitting 

We began by fitting cubic Legendre polynomials as fixed effects, and for both the additive 

genetic and unique individual effects. We examined model fit visually in a subset of 

randomly selected individuals (Supplementary Figures 1 and 2) and inspected the estimated 

variance components with standard errors.  We used the Akaike Information Criterion (AIC) 

and a likelihood-ratio test (LRT) to formally determine the appropriate degree of polynomial 

function for the random effects, ensuring an accurate fit to the data (Supplementary Table 

1). 

 

Transformation of variance components from the polynomials to the observed scale of 

one to 18 years 

 

The genetic variance estimated by the RRM, Kg, is a kg × kg variance-covariance matrix 

where the elements relate to the genetic variance of the intercept (or mean), slope and 

quadratic terms (when kg = 3). To aid in interpretation, these polynomial terms can be 

transformed back onto the original scale of age using �, a matrix of Legendre polynomial 

coefficients (equation 2). As noted above, we can use any arbitrary number of values along 

the interval [-1, 1] for � when calculating � during this transformation as the variance 

components from the RRM are defined on a continuous scale. Thus, the estimates of the 

additive genetic (��
� ) and unique individual (��

� ) variance-covariance matrices on the 

observed scale are: 

 

 

��
� � ����� Equation 6 

��
� � ����� Equation 7 
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where ��
�  and ��

� are of order t × t, and t is the number of ages across the BMI trajectory of 

interest for evaluation. For simplicity, we chose 18 equally spaced values along [-1,1] for � 

corresponding to ages of 1 to 18 years, and thus t = 18.  The estimates for the phenotypic 

variance (��
� ), SNP-based heritability (����� ), and genetic and phenotypic correlation 

between time points t1 and t2 [���t1, t2
  and ���t1, t2
 , respectively] were calculated as: 

 

��� � ���	��
 ! ���� Equation 8 

����� � diag���
� /��� ),  Equation 9 

���t1, t2
 � !�	t1,t2�
 /"!�	t1,t1�

 !�	t2,t2�
  Equation 10 

���t1, t2
 � !
	t1,t2�
 /"!
	t1,t1�

 !
	t2,t2�
  Equation 11 

 

where !�	t1,t2�
  is the (t1, t2) element from the estimated additive genetic variance-covariance 

matrix ��
�  and !
	t1,t2�

 is the (t1, t2) element from the estimated phenotypic variance-

covariance matrix ��
� . Standard errors for the variance components, SNP-based heritability 

and genetic correlations were calculated using a Taylor series expansion following Fischer et 

al. 30.  

 

Patterns of genetic variation 

We use eigenvalue decomposition on "� to examine the patterns of genetic variation over the 

age space 28,31. These patterns could be observed in ��
�  but the eigenvalue decomposition on 

"� has the advantage of being independent of the choice of the ages to evaluate in �.  Then, 

 

"� � #$#% Equation 12 
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where the matrix "� (Equation 5) is partitioned into its eigenvalues $ and eigenvectors #, 

using eigen() function in R. The eigenvectors are transformed into eigenfunctions (of age) as 

��, where � is a matrix of Legendre polynomials (given in Equation 3), and each column of 

��  represents the coefficients for each eigenfunction ( # ). Eigenfunctions can also be 

evaluated at a specific set of ages as ��.  

Since each eigenvector has an associated eigenvalue, we can test whether each eigenfunction 

explains more than zero genetic variance by using their eigenvalues 28. The coefficient matrix 

(�) is restricted by setting q testing eigenvalues (e.g. eigenvalue 3) in D to zero, resulting in 

$� and ��

 � #$�#�.   The approximation can then be tested using a χ2 test with q(q+1)/2 

degrees of freedom as: 

$% � ��� � ��

�& '����� � ��


� Equation 13 

 

where '�� is the inverse of the sampling variance-covariance matrix for �� from the fitted 

model (and can be obtained from the .vvp file from ASReml).  We constructed 95% 

confidence intervals for the eigenvalues using numerical simulation (see Supplementary 

Note 2).  

 

Evaluating BMI trajectories using the eigenfunctions 

To further assess the eigenfunctions, we calculated a polygenic score (PGS) for each 

eigenfunction and evaluated the BMI trajectory for low (<1 SD from the mean), average 

(within 1 SD of mean) and high (>1 SD from the mean) eigenfunction PGS. In this context, 

the PGS evaluates the sum of additive genetic effects tagged by common SNP for the primary 

or secondary axes of genetic variation (i.e. eigenfunction). The PGS for eigenfunctions on the 

original (age) scale as: 

 

(
^

� �
^

�  Equation 14 

 

where �
^

 is a N × kg matrix of the polygenic scores of the N individuals for eigenfunction i (i 

= 1 or 2), �
^

 is a N × kg matrix of estimated random regression coefficients for the Legendre 

polynomials for the additive genetic effects and � is the matrix of eigenvectors (Equation 12).  
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All analyses and plotting were performed in R (version 4.2.1). P values of fixed effects and 

random variances were calculated using the the chi-squared distribution function with one 

degree of freedom (Supplementary Table 2 and 3). 

 

Adjusting for adult BMI PGS 

Next, we explored whether the SNP-based heritability across childhood was explained by the 

genetic variants known to be associated with adult BMI. We downloaded the SNP effect size 

estimates on adult BMI for approximately 7 million common SNPs generated from a 

SBayesRC32 analysis of GWAS data of adult BMI in unrelated individuals of European 

ancestry (N= 347,800, age > 40 years) from the UK Biobank33,34  

(https://sbayes.pctgplots.cloud.edu.au/data/SBayesRC/share/v1.0/PGS/). We constructed the 

adult BMI PGS in our cohort using the quality-controlled genetic data (see Genetic Data 

section) and the --score sum option in Plink v 1.9 35, which creates a sum of SNPs weighted 

by the adult BMI effect size. Subsequently, we integrated the adult BMI PGS and its 

interaction with age (i.e.  interaction terms between PGS and the linear, quadratic, and cubic 

Legendre polynomials) as covariates in the fixed effects part of our RRM. The ASReml 

model specification file (.as file) is provided in Supplementary Note 3. 

 

Secondary analyses 

We conducted secondary analyses to ensure our interpretation of the SNP-based heritability, 

genetic correlations and genetic profiles estimated using the RRM were consistent with other 

approaches. 

 

First, we estimated SNP-based heritability and genetic correlations in GCTA (version 1.94.1) 
17 using selected measurements of BMI at cross-sectional follow-ups (i.e. average ages are 

0.8 (closest cross-sectional time point to one year available), 1.7, 7.6, 10.7, 13.9, 15.5, and 

17.5 years). Each analysis included only one measurement per individual, and included sex 

and age at measurement as covariates. We mostly used the BMI measurements of the same 

individuals included in the RRM analyses but included some additional records from the 

Child health database 2 (mean age =0.8 year, N=4799) and Teen Focus 4 (mean age =17 

years, N=3373), which were excluded from the RRM as they were outside 1-18-year age 

range. 
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Second, our RRM (Equation 4) assumes that the variance of the residual term is constant over 

ages. However, the phenotypic variance of BMI increases with age, and therefore the 

variance of the residual term may also vary with age. This may introduce bias into the 

estimation of both additive genetic and unique individual variances. In order to address this 

concern, we conducted a secondary analysis in which we assigned different residual terms for 

each year in our model allowing them to be estimated (i.e. fitting 17 residual terms in the 

random regression model). The ASReml model specification file (.as file) is provided in 

Supplementary Note 4.  

 

Third, we performed eigenvalue decomposition using the genetic correlation matrix of BMI 

obtained from the previously published COADTwins project 13, which was described in 

Supplementary Note 5.  

 

Results 

 

In the RRM analysis, model comparison indicated that the model with a quadratic slope in 

additive genetic component (kg = 3) was the superior fit to the data, over fitting a cubic or 

linear slope (Supplementary Table 1). The fixed effects, which are all associated with 

log(BMI) (P <0.05), are presented in Supplementary Table 2, and the estimated covariance 

matrices for random effects ( "�  and "� ) and residual variance (σ	
� ) are presented in 

Supplementary Table 3. The examination of estimated trajectories and actual measurements 

of randomly selected individuals (Supplementary Figures 1 and 2) indicates model is a 

good fit in general. Since the cubic polynomial term for the additive genetic effects were not 

significant, we used AIC and LRT to formally compare models with (up to) cubic or 

quadratic degree of the polynomials for the additive genetic effects. The final model retained 

quadratic polynomials in additive genetic component (kg = 3), cubic polynomials to model 

random individual-specific effects (ki = 4), and cubic polynomials for each sex to model the 

overall population BMI trajectory. 

 

Genetic variance and SNP-based heritability 

Additive genetic variation was observed for the intercept ( "� �,� =0.0073, SE=0.0013, 

Supplementary Table 3), linear slope ("� �,�=0.0017, SE=0.0003), and quadratic slope 
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("� �,� �0.0004, SE=0.0001), indicating that genetics influence on average BMI as well as 

the shape of BMI trajectory over time.  We detected a positive genetic correlation between 

the intercept and the linear slope (0.682, SE=0.072), and a negative genetic correlation 

between quadratic slope and both the intercept (-0.678, SE=0.132) and the linear slope (-

0.473, SE= 0.174).   The estimated SNP-based heritability of the intercept (28.4%, 

SE=4.8%), linear slope (23.8%, SE=4.2%) and quadratic slope (9.8%, SE=3.1%) were all 

significantly different from zero (P < 0.05).  

 

We estimated phenotypic, additive genetic and unique individual variance over time between 

one and 18 years of age on the observed age-scale (Figure 1). We observed that variance 

components tended to increase with age. The SNP-based heritability was significantly greater 

than zero and ranged between 23-30% across all ages, which is consistent with the SNP-

based heritability estimate for the intercept (i.e. average age 9.5 years, Figure 1 and 

Supplementary Table 4).  
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Figure 1: Estimated phenotypic, SNP-based additive genetic and unique individual 

variance components (a) and SNP-based heritability (b) from one to 18 years of age in 

the ALSPAC cohort. The error bars indicate 95% confidence intervals.  

 

Phenotypic and genetic correlations 

The genetic correlation (rg) between BMI at two different ages decreases as the difference 

between the ages increases (Figure 2, Supplementary Figure 3, Supplementary Table 5). 

For example, the genetic correlation between one and two years of age was 0.948 (SE = 

0.015), whereas the genetic correlation between one and 10 years was not significantly 

different from zero (rg = -0.009, SE = 0.142). Additionally, the genetic contribution to BMI 

in early childhood (up until approximately 6 years of age) appears to be independent of 

genetic influences in later childhood and adolescence. This can be seen by the 95% 

confidence intervals around the estimates of genetic correlation of BMI between age one and 

from age seven crossing zero. In contrast, the phenotypic correlation of BMI between age one 

and the subsequent ages decays quicker but remains non-zero (Supplementary Figure 4, 

Supplementary Table 6). For example, the phenotypic correlation between one and two 
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years of age was 0.67 (SE=0.01), whereas the phenotypic correlation between one and 10 

years was 0.19 (SE=0.01). Interestingly, the genetic correlations at subsequent ages are 

higher than the phenotypic correlations, indicated by the relatively smooth curves in the 

genetic correlation figures (Figure 2 and Supplementary Figure 3) but the sharp peaks in 

the phenotypic correlation figures (Supplementary Figure 4).   

 

 

Figure 2: Estimates of genetic correlation (rg) of BMI between different ages from one 

to 18 years.  

Each plot represents the genetic correlations (y-axis) between a single age (described above 

the panel) and all other ages between 1 and 18 years (x-axis).  Error bars represent the 95% 

confidence intervals. The grey horizontal line indicates zero genetic correlation.  

 

Patterns of genetic variation 

We conducted an eigenvalue decomposition on Kg to obtain the eigenvalues 1-3 (i.e. , 

) and their associated eigenfunctions ( , , ), where the eigenfunctions represent 

independent (uncorrelated) axes of genetic variation.  The eigenvalues showed that the 1st 
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eigenfunction, ��, accounts for the majority of the variance in Kg (approximately 89%).  The 

2nd eigenfunction, ��,  explains approximately 9% of the variance in Kg, while the 3rd third 

eigenfunction, ��, explains around 2% of the variance in Kg. The chi-squared test showed 

that the 3rd eigenvalue was not significantly different from zero (��
� = 2.65, P = 0.10), but that 

the 2nd eigenfunction did explain a significant proportion of the variance in Kg (��
� = 5.55, P 

= 0.02).  Numerical simulation of the 95% CI for the eigenvalues supports these findings 

(Supplementary Figure 5).  The first and second eigenfunctions were given by: 

����� � 0.77 
 0.43� 
 0.36�� 

��
��� � 0.29 
 1.15� 
 0.14�� 

Equation 16 

 

where t is the standardized age.  From the coefficients above, we can see a relatively large 

weight of the intercept and quadratic slope in �� in comparison to the corresponding weights 

for ��. While �� is dominated by a relatively large negative weight on the linear slope term. 

 

Evaluation of the eigenfunction across the 1-18 age range shows that �� monotonically 

increases from zero over time until it reaches an approximate plateau at around 10 years of 

age (Figure 3). It should be noted that the eigenfunctions indicate an axis of genetic 

variation, and the key feature of the eigenfunction is its relative change and its relationship to 

zero.  Thus, �� is always above the x-axis, indicating that it represents positive genetic 

covariance in BMI across all ages, increasing in strength through childhood and then plateaus 

at adolescence. In contrast,  ��  decreases approximately linearly and crosses zero at 

approximately 11.5 years. This indicates �� represents genetic variation with strong positive 

genetic covariance in infancy, but negative genetic covariance between infancy and later life. 
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Figure 3: Eigenfunctions of additive genetic effects on BMI evaluated at 1 to 18 years of 

age.  

This figure illustrates the eigenfunctions representing the additive genetic effects on BMI as 

age changes. The x-axis denotes age in years, while the y-axis represents the value of the 

eigenfunctions. Eigenfunctions 1, 2, and 3 are represented in lines in grayscale (black, dark 

and light grey, respectively).  

 

To investigate the properties of the eigenfunctions further, we generated PGS for 

eigenfunctions 1 and 2 and used them to categorise individuals into three clusters: those 

within one standard deviation of the mean PGS, and the remaining individuals with either 

high (greater than one standard deviation above the mean) or low (greater than one standard 

deviation below the mean) PGS scores. Figure 4 illustrates the mean BMI at each age and the 

distribution of individual trajectories for these three clusters using the PGS of eigenfunction 

1. Individuals with high PGS for eigenfunction 1 have a higher mean BMI, a steeper slope 

and a lack of adiposity rebound (usually around 6 years in non-obese children) in comparison 

to those with average PGS. In contrast, individuals with low PGS for eigenfunction 1 seem to 
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follow more closely to a typical trajectory for BMI, but with a lower mean BMI and a slower 

increase in BMI after adiposity rebound.   

 

A similar clustering analysis using PGS for eigenfunction 2 (Supplementary Figure 6) 

shows individuals with high PGS have a higher mean BMI at one year, but a flatter trajectory 

across childhood resulting in a lower mean BMI at 18 years compared to the average PGS 

and low PGS groups. This reflects the positive genetic effect on BMI represented by 

eigenfunction 2 in early developmental stages but the opposing effect in later stages.  

 

 

 

 

Figure 4: Mean body mass index (BMI) from one to 18 years of age for three clusters 

based on a polygenic score (PGS) of eigenfunction one.  

The upper plot illustrates the mean BMI from age one to 18 years for each of the three 

clusters classified by PGS of eigenfunction one: the top tier are those individuals greater than 

one standard deviation higher than the mean PGS, the middle tier are those individuals within 

one standard deviation of the mean PGS, and the bottom tier are those individuals greater 
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than one standard deviation lower than the mean PGS. The lower plots display the same 

mean BMI as in the upper plot from one to 18 years for the cluster (grey lines) and BMI 

trajectories for each individual within the three clusters (black lines). 

 

Adjustment of childhood BMI for adult BMI polygenic score (PGS) 

In the RRM analyses adjusting for an adult BMI PGS, we investigated whether different 

genetic factors influence BMI in early life compared to mid-to-late adulthood. 

(Supplementary Tables 7 and 8, Supplementary Figure 7). By age 18, the SNP-based 

heritability roughly halved after adjusting for the adult BMI PGS, reducing from 0.298 

(SE=0.065) at 18 in the unadjusted analysis to 0.145 (SE=0.063) (Figure 5 and 

Supplementary Table 9).  The 95% confidence intervals at all ages from one to 18 years 

differed from zero but decreased with increasing age. 

 

 

Figure 5: SNP-based heritability and genetic variances with and without adjusting for 

polygenic score of adult body mass index (BMI).  
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(a) additive genetic variance by age, with (grey) and without (black) adjusting for a polygenic 

score (PGS) of adult BMI in the fixed effects of the RRM; (b) heritability estimates of BMI 

by, with (grey) and without (black) adjusting for a PGS of adult BMI in the fixed effects of 

the RRM.  

 

Secondary analyses 

Cross-sectional analysis 

The estimated SNP-based heritability from the RRM were consistent with those from cross-

sectional genetic analyses in GCTA, which ranged from 0.28 (SE=0.07) at 0.8 years to 0.37 

(SE=0.10) at 17.5 years; however, the standard errors were larger in the cross-sectional 

analysis than in the RRM model, as expected (Supplementary Table 10). Similarly, the 

genetic correlations estimated using the cross-sectional data in GCTA were similar to the 

decreasing age-to-age genetic correlations pattern seen in the RRM analyses 

(Supplementary Table 11). For instance, the estimated genetic correlation between Child 

health database 3 (mean age = 1.7 years) and Focus@7 (mean age = 7.6 years) was estimated 

at 0.68 (SE=0.15), which was not different to the RRM estimated genetic correlation between 

2 and 8 years (rg = 0.4, SE=0.12). 

 

Heterogeneous error variance 

Estimates of the unique individual and additive genetic variance using the RMM model 

assuming heterogeneous error variance were similar to those obtained from primary analysis 

(i.e. assuming homogenous error variance), that is the estimates fall within each other's 95% 

confidence intervals (Supplementary Figure 8, Supplementary Tables 12-14). This 

indicates that while there may be some variation in the residuals over time, it does not appear 

to significantly impact our overall conclusions. 

 

Validation of growth patterns 

In the eigenvalue decomposition of the genetic covariance matrix of BMI from the 

COADTwins project, the top eigenfunctions exhibit a similar pattern from one to 18 years old 

to our findings in ALSPAC in terms of variance explained in BMI (for example, 

eigenfunction 1 explained ~89% of the variance in both the ALSPAC and COADTwins) and 

the shape of the eigenfunctions (eigenfunction 1 was monotonically increasing and 

eigenfunction 2 decreases over time and crosses zero during adolescence) (Supplementary 

Figure 9).  
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Discussion 

In the current study, we used a RRM to characterise the genetic profile of BMI from infancy 

to early adulthood using the ALSPAC cohort. We found significant additive genetic variation 

affecting the shape of the BMI trajectory from one to 18 years.  In other words, there was 

genetic variation in the mean (or intercept, i.e ����
�  intercept = 28.4%, SE=4.8%) of the BMI 

trajectory as well as the parameters describing its shape (i.e. ����
�  linear slope = 23.8%, SE= 

4.2%; and ����
�  quadratic slope = 9.8%, SE= 3.1%).  Since the interpretation of these shape 

parameters can be tricky, we transformed our estimates back onto the observed age-scale. 

There was a simultaneous increase in both additive genetic variance and unique individual 

variance over time, resulting in relatively constant SNP-based heritability (�
���

� ) across early 

life, ranging from 23 – 30%, and not significantly different from the heritability estimated for 

the intercept.  Genetic correlations found that BMI in early childhood is genetically different 

to BMI in later childhood. Additionally, the SNP-based heritability in early childhood was 

relatively unaffected by adjusting for an adult BMI PGS, whereas the SNP-based heritability 

in later childhood attenuated, indicating further that there is a unique genetic profile operating 

in early life. Finally, the eigenvalue decomposition of the genetic variance-covariance matrix, 

Kg, indicated that the main axis of the genetic variation in BMI throughout childhood is 

strongly influenced by the mean (or intercept) BMI and progressively amplified over time. 

 

Our study demonstrates genetic variation contributing to childhood BMI trajectories.  In 

clinical settings, pediatricians are primarily concerned with individuals who are underweight 

(often defined as being less than the 5th percentile on the Centers for Disease Control and 

Prevention (CDC) percentile charts36) or obese (often defined as being greater than the 95th 

percentile 36) The CDC BMI-for-age percentile chart shows that the higher percentiles also 

have a greater rate of growth from two to 18 years of age. Here, we ascribe some of the 

variability in growth curve percentiles to genetic factors. We also note a relatively strong 

genetic correlation between the mean and linear rate of change (i.e. the genetic correlation 

between the intercept and slope in our RRM is 0.682 [SE=0.072)), which suggests that the 

correlation between BMI at mean age (i.e. 9.5 years) and rate of change in BMI across 

childhood can be partly explained by genetics. 
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Our observed SNP-based heritability estimates (����
�  ~ 23 – 30%) were consistent with the 

SNP-based heritability for adult BMI 4 (����
� = 22.4% SE= 3.7%) and also the Norwegian 

Mother, Father and Child Cohort Study (MoBa) in infancy and early childhood 11,12 (h2
SNP ~ 

30 – 40%).  In the CODATwins study 8, they observed an increase in the heritability from 4 

years (42%, 95% CI 37 – 47% in boys; and 41%, 95% CI 35 – 46% in girls) to 19 years of 

age (75%, 95% CI 67 – 80% in boys; and 75%, 95% CI 67 – 82% in girls). Although we 

expect the heritability estimates from twin designs to be 3-4 times the SNP-based estimates5, 

our data does not support an increase in heritability throughout this period.  These differences 

could arise from a relative increase in the importance of rare genetic variants influencing 

BMI, i.e. variants not captured by common SNPs, or other factors associated with twin 

designs 5.  We observed that the additive genetic variance captured by common SNPs 

increased throughout childhood from 0.0020 (SE=0.00047) at year one to 0.0074 (SE= 

0.0016) at 18 years. However, there was also a simultaneous increase in unique individual 

variance and, thus, no significant change in the SNP-based heritability over time.  

 

Our results show decreasing age-to-age genetic correlations as the difference between ages 

increased from one to 18 years, which is consistent with the CODATwins study 13. These 

results suggested independent genetic influences affecting BMI in infancy and early 

childhood compared to later childhood and adolescence.  Our findings align with the transient 

genetic effects of SNPs detected in early life but not later life, as found in previous studies 

(e.g., LEPR 12,14), which suggests that larger GWAS are needed to finely map the genetic 

profile of BMI during early stages. 

 

While genetic correlation focuses specifically on shared genetic influences between ages, 

phenotypic correlation captures overall associations between ages, regardless of their 

underlying causes. Previous studies investigating phenotypic risks for childhood obesity, 

such as Geserick et al. 2018 37, have highlighted weight gain between two and six years as a 

key predictor of obesity in adolescence.  Our study found that the phenotypic correlation 

between BMI at 18 years of age and all earlier ages progressively increased from rp = 0.16 

(SE=0.021) at age one to rp = 0.88 (SE=0.003) at age 17, indicating that high BMI between 

ages two and six years might not be the only key time point for predicting obesity in 

adolescence. Interestingly, the phenotypic correlations were weaker than the (SNP-based) 

genetic correlations among nearby ages (rp=0.67 [SE=0.01], rg=0.95 [SE=0.02] between one 
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to two years) but demonstrated greater strength in ages further apart (rp=0.16 [SE=0.02], rg=-

0.14 [SE=0.17] between one to 18 years). The genetic correlations are higher than phenotypic 

correlations between ages that are close together but lower for ages that are far apart. As the 

age difference narrows, the model predicts that the genetic correlation approaches 1.0 

whereas the phenotypic correlation does not because all measurements are subject to a 

residual effect and these are all independent. The lower genetic correlation than phenotypic 

correlation when the ages are far apart implies that genetic effects on BMI are more age 

specific than environmental effects on BMI.  

 

The eigenvalue decomposition of the genetic variance-covariance matrix allows us to explore 

the proposed model by Couto Alves et al. of genetic influences on childhood BMI14.  This 

model, based on GWAS of key BMI trajectory features such as BMI at the adiposity peak 

and rebound, proposes two distinct biological factors underlying childhood BMI.  The first 

acts primarily in infancy until roughly 8 years of age, and the second acts from birth with 

increasing strength until 18 years.  Our results confirm that the majority of genetic variance 

in childhood BMI (~89%) is associated with a factor strongly influenced by the BMI at the 

mean age (i.e. age 9.5), and which is progressively amplified throughout childhood and 

adolescence.  This factor does not have a strong influence on BMI during infancy.  Our 

results also indicate a second (orthogonal) axis of variation that acts primarily during infancy 

with decreasing importance during childhood, and a negative covariance during adolescence.  

Therefore, by using eigenvalue decomposition on our RRM, we were able to provide stronger 

evidence for the proposed model of Couto Alves et al. (2019) by defining two statistically 

independent axes of variation influencing childhood BMI and determining the degree of 

genetic variance associated with each axis.  

 

Finally, we performed an analysis adjusting for an adult BMI PGS to (partially) account for 

genetic factors influencing adult BMI in our analysis. Zheng et al. found the PGS explained 

16% of the variance in adult BMI 32. We observed a similar magnitude of attenuation in the 

estimated SNP-based heritability at 18 years old (by about 15%) after adjustment of the PGS, 

which is consistent with the adult PGS being an imperfect predictor of the genetic variance 

tagged by common SNP in adults. These results were also in line with the genetic correlation 

and eigenvalue decomposition results, whereby adjustment for the adult BMI PGS did not 

influence the variance components or SNP-based heritability during infancy (< 3 years). This 

indicates that the genetic contribution to BMI during childhood to adolescence is shared with 
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that of mid-to-late adulthood and highlights the unique genetic underpinnings of BMI during 

the infancy period.   

 

The strengths of the current study include the utilisation of ALSPAC, a comprehensive long-

term birth cohort that provides valuable insights into BMI trajectories across childhood 

development. The use of the RRM allowed us to estimate the genetic variance components at 

any age on the trajectory. It also leveraged the large number of repeated measurements per 

individual (an average of 8 BMI measures per individual), improving the precision of our 

estimates over a traditional cross-sectional approach. Additionally, by applying eigenvalue 

decomposition of the RRM, we revealed patterns of genetic variation in BMI that change 

over time and for the first time validated the proposed model of childhood BMI by Couto-

Alves and colleagues. However, there are several limitations in our study also. Firstly, our 

estimates of the variance components and SNP-based heritability might be imprecise due to 

sample size, in comparison to those by the larger MoBa12 and CODATwins cohorts8, and we 

were therefore unable to identify fluctuations in SNP-based heritability across childhood. 

However, RRM estimates have narrower confidence intervals for genetic variation than 

cross-sectional studies with the same cohort size and can estimate genetic variation at any 

time point, even without direct data collection. Secondly, the non-significant low or negative 

genetic correlation in BMI between ages further apart should be interpreted with caution, as 

genetic correlations are estimated with lower accuracy compared to phenotypic correlations, 

especially when the age intervals are large. Thirdly, although the overall fitting of the 

Legendre polynomial function is satisfactory, improvements in model fitting may be possible 

by exploring other functions for age within the random regression framework (e.g. splines).  

 

In summary, the current study shows that there is a strong genetic drive regulating BMI 

during childhood and adolescence. Investigating the genetics of BMI during infancy is likely 

to identify genetic variants that differ from loci associated with adult BMI.  Our findings 

provide justification for exploring the genetics of childhood BMI (e.g. through GWAS), as it 

is likely to discover genetic variants distinct from those loci associated with adult BMI. It 

also highlights the presence of age-varying genetic effects on BMI, emphasising the need to 

consider these factors when studying the genetics of childhood BMI, its relationship to adult 

BMI and obesity risk.   

 

Appendices 
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See supplementary materials.  
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