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ABSTRACT 

Hormone-dependent cancers (HDCs) share several risk factors, suggesting a common aetiology. 

Using data from genome-wide association studies, we showed spatial clustering of risk variants across 

four HDCs (breast, endometrial, ovarian and prostate cancers), contrasting with genetically 

uncorrelated traits. We identified 44 multi-HDC risk regions across the genome, defined as 

overlapping risk regions for at least two HDCs: two regions contained risk variants for all four HDCs, 

13 for three HDCs and 28 for two HDCs. Integrating GWAS data, epigenomic profiling and high-

resolution promoter capture HiC maps from diverse cell line models, we annotated 53 candidate risk 

genes at 22 multi-HDC risk regions. These targets were enriched for established genes from the 

COSMIC Cancer Gene Census, but many had no previously reported pleiotropic roles. Additionally, 

we pinpointed lncRNAs as potential HDC targets and identified risk alleles in several regions that 

altered transcription factors motifs, suggesting regulatory mechanisms. Known drug targets were 

over-represented among the candidate multi-HDC risk genes, implying that some may serve as targets 

for therapeutic development or facilitate the repurposing of existing treatments for HDC. Our 

comprehensive approach provides a framework for identifying common target genes driving complex 

traits and enhances understanding of HDC susceptibility. 

 

AUTHOR SUMMARY 

While hormone-dependent cancers (HDCs) share several risk factors, our understanding of the 

complex genetic interactions contributing to their development is limited. In this study, we leveraged 

large-scale genetic studies of cancer risk, high-throughput sequencing methods and computational 

analyses to identify genes associated with four HDCs: breast, endometrial, ovarian and prostate 

cancers. We identified known cancer genes and discovered many that were not previously linked to 

cancer. These findings are significant because identifying genes associated with risk of multiple 

cancer types can enhance the gene mapping accuracy and highlight new therapeutic targets. 
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INTRODUCTION 

Breast, endometrial, ovarian and prostate cancers are hormone-dependent cancers (HDCs) that 

together account for up to 30% of new cancer diagnoses each year (1). These cancers share several 

environmental, behavioural and genetic risk factors, suggesting a common aetiology (2, 3). This 

premise is supported by genome-wide association studies (GWAS) which have identified hundreds 

of cancer-specific risk loci (4-7) and multiple pleiotropic loci associated with at least two HDCs (8-

11). The detection of pleiotropic loci suggests that shared genetic factors likely contribute to 

polygenic risk of HDCs and raises the possibility of common driver genes and biological pathways. 

 

A key aim of post-GWAS is to identify the target gene(s) that are affected at each GWAS region. 

This is complicated by the fact that most risk variants reside in noncoding regions of the genome 

making it difficult to interpret how they contribute to cancer susceptibility (12). Target gene mapping 

for pleiotropic loci typically relies on statistical approaches such as expression quantitative trait loci 

(eQTL) and transcriptome-wide association studies (TWAS) (9, 10, 13). However, these methods are 

limited by small sample sizes which reduces power, the use of steady-state gene expression and the 

lack of data from relevant tissues. Orthologous functional assays provide complementary mapping 

approaches to better define regulatory variants and connect them to their target genes.  

 

RESULTS AND DISCUSSION 

While most GWAS variants are dispersed across the genome, several genomic regions harbour 

variants for multiple cancer types, suggesting a common mechanism underlying susceptibility. 

Independent signals for HDC were obtained from large-scale GWAS, meta-analyses and fine-

mapping (196 breast (4), 17 endometrial (5), 60 ovarian (6) and 258 prostate cancer variants (7)). To 

assess whether HDC variants were more frequently positioned together than would be expected by 

chance, we defined “clusters” when variants associated with two or more HDCs were co-localized 

within the same 100 kb window. We compared observed cluster frequency to a null distribution, 
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generated by randomly shuffling variants one million times (see Methods), and recounted cluster 

occurrence in each random set. This resulted in a statistically significant increase in observed 

frequency (Fig 1A; P < 10-6, permutation test). As an additional comparison, index variants for four 

genetically uncorrelated traits (14) were obtained from the Open Target Genetics portal (179 for 

coronary artery disease, 22 lung cancer, 38 Alzheimer's disease and 94 Parkinson's disease (15)). 

These traits showed similar genomic distributions to randomly generated background regions (Fig 

1A), which provided support that HDC risk regions co-localize in the genome and that these regions 

likely contain pleiotropic variants and common target genes.  

 

To identify candidate multi-HDC risk (mHDCR) regions, variants for each HDC were extended by 

0.5 Mb on both sides, resulting in cancer-specific risk regions. mHDCR regions were then defined as 

overlapping cancer-specific risk regions for at least two HDCs (Fig 1B). In total, 44 mHDCR regions 

were identified across the genome (Fig 1C and Table S1). Two mHDCR regions contained risk 

variants for all four HDCs, 13 mHDCR regions for three HDCs (seven breast-ovarian-prostate, four 

breast-endometrial-prostate and two endometrial-ovarian-prostate) and 28 mHDCR regions for two 

cancer types (twenty breast-prostate, four breast-ovarian, two ovarian-prostate, one endometrial-

ovarian and one endometrial-prostate) (Fig 1D). Due to much larger sample sizes and fine-mapping 

analyses (4, 7) most breast and prostate mHDCR regions contain at least three independent signals 

per cancer type (Fig 1E). 
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Fig 1. GWAS variants from four HDCs cluster in mHDCR regions. (A). Boxplots show the null 
distribution of z-scores from 106 random permutations of the positions of variants associated with 
four HDCs (breast, endometrial, ovarian and prostate cancers), and four genetically uncorrelated traits 
(coronary artery disease, lung cancer, Alzheimer's disease and Parkinson's disease). The true cluster 
count score is indicated with a diamond, boxes represent the median and interquartile range and 
whiskers represent upper and lower quartiles of the null distribution. (B). Schematic of a hypothetical 
mHDCR region (red arrow) containing variants for breast cancer (pink) and prostate cancer (blue) 
which were extended to generate the cancer-specific risk regions. (C). Circus plot providing an 
overview of the association results. Dots in the four coloured rings correspond to genome-wide 
significant (-log10 (5 x 10-8)) GWAS variants identified for breast, endometrial, ovarian and prostate 
cancers, ordered by chromosomal position. The black ring denotes chromosomes (chr) 1-22 and the 
black dots specify the 44 mHDCR regions. (D). Upset plot to illustrate the number of mHDCR regions 
shared between the four HDCs. The vertical barplot represents the total number of mHDCR regions 
in each HDC combination. Points and lines in the matrix visualize these connections, and the colored 
horizontal bars are the total number of mHDCRs in each HDC. (E). Heatmap showing the number 
(N) of GWAS variants in each mHDCR region per cancer type.  
 

 

Candidate mHDCR gene(s) within the 44 mHDCR regions were identified using a multistep 

computational approach (Fig 2A). For endometrial, ovarian and prostate cancers, each variant was 

expanded to include all candidate variants (r2 ≥ 0.8; 1000 Genomes phase 3 version 5 reference) 

(Table S2). For breast cancer, the candidate causal variants from the recent fine-mapping study were 

used (4). We annotated each mHDCR region with protein-coding genes from GENCODE (v37 basic) 

and intersected all candidate variants with genomic annotations (exons, promoters defined as 

transcription start site (TSS) ± 2 kb and intronic and intergenic regions; Fig S1A). Exonic variants 

were filtered using Ensembl variant effect predictor (VEP) (16) which identified one frameshift and 

33 moderate-impact missense and untranslated region (UTR) variants (Fig S1B and Table S3). Seven 

potential splicing variants were also detected with SpliceAI (17) and MaxEntScan (18). The promoter 

and intronic variants were further explored for regulatory functions using RegulomeDB (19). Sixty-

seven variants had strong regulatory potential (score > 0.5, Fig S1C and Table S4), suggesting these 

variants are more likely to be functional. Previous studies have performed functional assays for some 

of the noncoding variants in individual HDCs (20-23). For example, Lawrenson et al used 3D 

mapping and reporter assays to show that breast and ovarian cancer risk variants at 19p13 influence 

distal enhancers, which in turn regulate ABHD8 expression (21). Furthermore, Stegeman et al used 
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reporter assays to show a prostate cancer risk variant alters microRNA binding to the MDM4 3’UTR 

(22). These studies provide additional support that the variants can impact target gene expression 

through various mechanisms.  

 

A first-pass analysis identified 17 candidate mHDCR genes (at 11 mHDCR regions) that have exonic, 

promoter or potential splicing variants associated with two or more HDCs (Fig 2B, Fig S1D and  

Table S5). Of these, six are cancer genes based on information from the Catalogue of Somatic 

Mutations in Cancer (COSMIC (24)), the remaining genes are potentially new pleiotropic HDC risk 

genes. One example is the PAX9 transcription factor (TF; mHDCR region 18) (25) which has a 

missense breast cancer risk variant plus promoter and intronic breast and prostate cancer risk variants 

(Fig 2C). Rs2236007 (breast) and rs12882923 (prostate) were the top-ranked variants on 

RegulomeDB and mapped to transcriptionally active open chromatin (defined by H3K4me3 marks 

and DNase-seq) in breast and prostate cells. Previous studies in breast cells showed that the rs2236007 

risk g-allele reduced PAX9 promoter activity (26), via recruitment of the suppressive TF EGR1 and 

increased breast cancer cell growth (27). Furthermore, rs12882923 maps to a POL2RA binding site 

and the DNA motif of multiple TFs in prostate epithelium (Fig 2C), suggesting the variant has 

functional impact.  

 

 

Fig 2. Identification of candidate mHDCR genes. (A). Schematic of the stepwise computational 
pipeline used to identify candidate mHDCR genes. (B). Summary of candidate mHDCR genes after 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.14.24310389doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.14.24310389
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

overlap with variants in gene exons, promoters and splice sites that are associated with two or more 
HDCs (pink-breast cancer; orange-endometrial cancer; teal-ovarian cancer; blue-prostate cancer). 
The left y-axis shows the annotated gene names, the right y-axis denotes the mHDCR region. The red 
text highlights known cancer genes (from COSMIC) at the mHDCR regions. The x-axis provides the 
location and/or functional annotation of the HDC risk variants. Frameshift, missense, synonymous-
variants located in gene exons; 3UTR/5UTR-variants; Promoter-variants located in gene promoters 
defined as TSS ± 2 kb; Splicing-variants in gene introns that are predicted to alter splicing. (C). 
WashU genome browser (hg38) showing GENCODE annotated genes (blue). The risk variants are 
shown as pink (breast cancer) and blue (prostate cancer) vertical lines. The DNase-seq and H3K4me3 
tracks from breast and prostate cells are shown as black histograms. The dashed gray outlines 
highlight the functional variants. Insets: RegulomeDB v2.2 analysis for rs2236007 and rs12882923 
including heuristic ranking scores, presence in promoters or enhancers (chromatin state) and 
sequences affecting the binding of TFs (TF ChIP-seq) and DNA motifs.  
 

 

Most HDC risk variants are noncoding (Fig S1A), and a subset will map to DNA regulatory elements 

that modulate gene transcription through long-range chromatin interactions (28). To compile a 

comprehensive list of candidate mHDCR genes, we next intersected the distal intronic and intergenic 

HDC variants with the 44 mHDCR regions. High-resolution promoter capture HiC (PCHiC) was used 

to assign distal regulatory variants to their target gene promoters (Fig 3A). PCHiC probes were 

designed to 2774 HindIII fragments containing 3096 GENCODE gene promoters that fall within the 

44 mHDCR regions (Table S6). PCHiC data was derived from twelve breast, endometrial, ovarian 

and prostate non-tumorigenic and cancer cell lines, as described previously (29) (Fig S2A and Table 

S7). Using an interaction score threshold (CHiCAGO score ≥ 5) we detected 8-19,000 high-

confidence interactions per cell type across the 44 mHDCR regions with strong correlation between 

replicates (Fig 3B and Fig S2B). We prioritised the PCHiC interactions based on topologically 

associating domain (TAD) boundaries (30). To show that a published set of TAD annotations marked 

regions of increased regulatory activity, we examined the relationship between our PCHiC 

interactions and TAD boundaries. We observed a significant enrichment of PCHiC interactions within 

TAD boundaries, compared to randomly placed TAD boundaries (P = 0.0297, permutation test), 

suggesting that the published TAD boundaries mark the limits of most PCHiC interactions in our 

HDC cell lines (Fig 3C).  
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Fig 3. PCHiC in HDC cell lines. (A). Schematic of PCHiC experimental approach. (B). 
Agglomerative hierarchical clustering for the PCHiC in the twelve cell lines. (C). Enrichment of 
PCHiC interactions within TADs. The boxplot shows the null distribution z-scores generated from 
randomly permuting the TAD boundary positions within mHDCR regions (n = 105) and counting the 
number of interactions which fall within randomized TAD boundaries. The diamond indicates the z-
score of the count of interactions which fall within observed TAD boundaries. The box represents the 
median and interquartile range, whiskers represent upper and lower quartiles of the null distribution.  
 

 

The combination of variant intersection, PCHiC and TAD boundaries identified 53 candidate 

mHDCR genes (at 22 mHDCR regions) associated with two or more HDCs (Fig 4A and Table S5). 

Ten candidate mHDCR genes were associated with three cancer types (seven breast-ovarian-prostate 

and three endometrial-ovarian-prostate) and 43 candidate mHDCR genes with two cancer types 

(seventeen breast-ovarian, fifteen breast-prostate, eight endometrial-prostate and three ovarian-

prostate) (Fig 4B). The expression of all candidate mHDCR genes in the relevant tissue or cancer 

type was estimated using GTEx and TCGA RNA-seq data (Fig S3). Twelve are cancer genes from 

COSMIC, doubling the number of candidate HDC cancer genes when regulatory variants are taken 

into account (Fig 4A). As one example, TCF7L2 (transcription factor 7 like 2) has 5UTR, promoter 

and intronic prostate cancer variants that are associated with the risk of developing aggressive prostate 

cancer (31) (Fig 4C). However, our combined analysis showed that TCF7L2 also has intronic breast 

and ovarian cancer risk variants plus distal breast cancer risk variants which loop to and may regulate 

an alternate TCF7L2 isoform (Fig 4C).  
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Notably, two-thirds of the genes in the final list required the inclusion of distal variants and PCHiC 

data to classify them as candidate mHDCR genes. Some are known pleiotropic cancer genes (e.g 

MYC, CCND1; Fig S4) supporting the validity of our approach, but many have only been statistically 

and/or functionally associated with individual HDCs and may represent new mHDCR genes. One 

example is NWD1 (NACHT and WD repeat domain containing 1) at 19p13 (Fig 4D). Previous studies 

have detected variants at this region associated with breast and ovarian cancer risk and identified 

ABHD8 and ANKLE as the likely target genes (21). Here we show that NWD1, located ~580 kb from 

ABHD8, has distal ovarian and prostate cancer variants, some of which fall in regulatory elements 

that loop to and may regulate the NWD1 promoter (Fig 4D). Overexpression of NWD1 is reported to 

promote prostate tumor progression by modulation of androgen receptor (AR) signaling (32). There 

is limited information about NWD1 function in ovarian cancer, but evidence suggests AR signaling 

also contributes to initiation and progression of this disease (33), providing a potential mechanism.  

 

It is established that drug targets with genetic support (such as well-powered GWAS) are twice as 

likely to lead to approved drugs (34). To determine whether the candidate mHDCR genes were 

enriched for known drug targets, we mined the Citeline Pharmaprojects database (35). We found 

twelve candidate mHDCR genes that encode known preclinical, clinical phase and approved drug 

targets for various diseases (Fig 4E and Table S8). The overlap between known drug targets and the 

candidate mHDCR genes was statistically significant (Fig 4F; OR = 2.2, P = 0.028, Fisher's Exact 

Test), indicating the value of using our pipeline to identify candidates for drug repositioning.  
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Fig 4. Annotation of candidate mHDCR genes. (A). Summary of all candidate mHDCR genes that 
are associated with two or more HDCs (pink-breast cancer; orange-endometrial cancer; teal-ovarian 
cancer; blue-prostate cancer). The left y-axis shows the annotated gene names, the right y-axis denotes 
the mHDCR region. The red text highlights known cancer genes (from COSMIC) at the mHDCR 
regions. The x-axis provides the location and/or functional annotation of the HDC risk variants. 
Frameshift, missense, synonymous-variants located in gene exons; 3UTR/5UTR-variants; Promoter-
variants located in gene promoters defined as TSS ± 2 kb; Splicing-variants in gene introns that are 
predicted to alter splicing; Other intronic-variants located in gene introns and RegulomeDB scores 
indicate the variants are regulatory; Reg + within TAD-variants located outside any genes, 
RegulomeDB scores indicate the variants are regulatory, our PCHiC data show chromatin interactions 
between the variant and gene promoters and the interactions are within defined TAD boundaries. (B).  
Upset plot to illustrate the number of candidate mHDCR genes shared between the four HDCs. The 
vertical barplot represents the total number of candidate mHDCR genes in each HDC combination. 
Points and lines in the matrix visualize these connections, and the colored horizontal bars are the total 
number of candidate mHDCR genes in each HDC. (C). WashU genome browser (hg38) showing 
TADs as horizontal gray bars above GENCODE genes (blue). The risk variants are shown as blue 
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(prostate cancer), teal (ovarian cancer) and pink (breast cancer) vertical lines. The H3K4me3 and 
H3K27ac tracks from breast cells are shown as black histograms. CHiCAGO-scored interactions are 
shown as colored arcs. The dashed gray outlines highlight distal breast cancer variants and the target 
gene (TCF7L2). (D). WashU genome browser (hg38) showing TADs as horizontal gray bars above 
GENCODE genes (blue). The risk variants are shown as teal (ovarian cancer) and blue (prostate 
cancer) vertical lines. The DNase-seq and H3K27ac tracks from ovary and prostate cells are shown 
as black histograms. CHiCAGO-scored interactions are shown as colored arcs. The dashed gray 
outlines highlight the likely functional variants and the target gene (NWD1). (E). Summary of 
identified candidate mHDCR genes at the 44 mHDCR regions for HDCs. Filled boxes represent 
presence of the feature according to the row title. (F). Enrichment of COSMIC genes and genes which 
encode known drug targets in candidate mHDCR genes. The boxplots represent the null distribution 
z-scores following 105 random permutations of category labels (COSMIC or drug target) of genes at 
mHDCR regions, then recounting the number of predicted mHDCR genes belonging to the category. 
The z-scores for the true observed counts are shown as red diamonds. Boxes represent the median 
and interquartile range and whiskers represent upper and lower quartiles of the null distribution. 
 

 

Our approach was unable to identify candidate mHDCR genes at 22 regions. There are several 

possible explanations for this, the simplest being that the genetic effects at these mHDCR regions are 

only associated with risk of a specific HDC. Furthermore, we focused on identifying protein-coding 

genes, but studies by ourselves (and others) show that long noncoding RNAs (lncRNAs) are also 

transcribed from cancer risk regions and can have important roles in tumorigenesis (36-40). Indeed, 

when we intersected the HDC risk variants with annotated lncRNAs at the 44 mHDCR regions, we 

identified 21 lncRNAs associated with two or more HDCs, including two cancer-related lncRNAs 

that were the only targets identified at mHDCR regions 27 and 32 (Fig S5) (41, 42). Given most cell-

type specific lncRNAs are not annotated in current databases, we expect that additional novel 

lncRNAs will contribute to risk at other mHDCR regions. We acknowledge that some distal gene 

interactions may have been missed due to intrinsic biases in the PCHiC. For example, false negatives 

may result from the lack of suitable baits for selected promoters, the reduced resolution for short-

range interactions or due to the transient and cell type-specific nature of chromatin interactions. It is 

also important to note that interactions between risk variants and gene promoters do not infer causality 

and that follow-up studies are required to interpret GWAS results. 
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In summary, our study expands the repertoire of risk regions and candidate risk genes for HDCs, 

providing further insights into the complex genetic architecture and biology underpinning HDC 

susceptibility. The candidate mHDCR gene list was enriched for known cancer genes and drug 

targets, which provides support that other, less-well-characterized genes at mHDCR regions may play 

important roles in HDC development. Our approach highlights the value of performing integrative 

analyses of genetics and functional genomics to enhance pleiotropic cancer gene identification. 

Combined with future research that investigates functional mechanisms, our results may serve to 

redirect efforts to more promising targets for new drugs or allow drug repurposing for HDC treatment.  

 

MATERIALS AND METHODS 

Genomic interval operations 

Genomic interval analyses were performed with BEDTools version 2.29.0 (43). To assess the 

genomic distribution of genetic signals, the cluster sub-command was used to assign IDs to GWAS 

variants overlapping 100 kb windows. Co-located variants for two or more traits were designated as 

clusters. For comparison, positions of the HDC variants were shuffled while maintaining 

chromosomal distribution using BEDTools shuffle sub-command, and clusters counted for each 

permutation. To explore the relationship between PCHiC loops and TADs, boundary positions within 

multi-cancer regions were overlapped with loops using the BEDTools intersect sub-command. For 

comparison, we generated null distributions by shuffling TAD boundary positions within MCRs and 

repeating 10,000 times. TAD size was maintained by circularising the MCR, such that if a TAD 

boundary was randomly placed beyond the MCR limits, it was moved to the start of the MCR. The 

background count was performed by intersecting loops with each iteration of randomly permuted 

boundary sets. The significance of these tests were defined by the number of times the count from 

random permutations was greater or equal to the observed overlap, divided by total number of 

permutations. For presentation, the null distribution was standardised to produce z-scores and shown 

as box plots. 
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Variant annotation  

Candidate causal variant rsIDs were submitted to the Variant Effect Predictor (VEP) web interface. 

Coding variants annotated as frameshift, missense, 3UTR, 5UTR or synonymous were prioritized as 

potentially functional with an impact on the associated transcript. Intronic variants with the potential 

to alter splicing were identified using 1) SpliceAI Delta scores ≥ 0.2, where delta can be interpreted 

as the probability that the variant is splice altering; or 2) absolute MaxEntScan maximum entropy 

scores > 0. The regulatory effects of all variants were assessed using RegulomeDB. Variants with a 

probability score greater than the median (0.55) were considered as potential functional. Genomic 

coordinates for topologically associating domains (TADs) were obtained from a recent publication 

(44). Annotation of variants with respect to genomic intervals (exons, introns, TADs, and promoters) 

and to link with candidate distal target genes were performed with the GenomicRanges and 

GenomicInteractions BioConductor packages. Genes with known roles in cancer were obtained from 

the COSMIC Cancer Gene Census, version 99 (24). Information about drug targets and indications 

was obtained from (35). 

 

Cell lines and culture conditions 

MCF7 cells were cultured in RPMI medium with 10% (vol/vol) fetal bovine serum (FBS, Gibco), 1% 

(vol/vol) antibiotic/antimycotic (a/a, Gibco), 1mM sodium pyruvate (Gibco), 0.02M Hepes (pH 7.0-

7.4) and 10 µg/mL human recombinant insulin (Gibco). MDA-MB-231 cells were grown in RPMI 

medium with 10% (vol/vol) FBS, 1% (vol/vol) a/a, 1 mM sodium pyruvate, 0.02M Hepes (pH 7.0-

7.4). B80T5, ARK1, LNCAP and OVCAR4 cells were grown in RPMI medium with 10% (vol/vol) 

FBS and 1% (vol/vol) a/a. E6E7hTERT, Ishikawa and COV362 cells were grown in DMEM medium 

with 10% (vol/vol) FBS and 1% (vol/vol) a/a. PC3 cells were grown in DMEM:F12 medium with 

10% (vol/vol) FBS and 1% (vol/vol) a/a. RWPE1 cells were grown in Gibco Keratinocyte-SFM 

Combo (Cat# 17005042) with 1% (vol/vol) a/a. FT282 cells were grown in DMEM:F12 (no Hepes) 
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medium with 5% USG (serum replacement supplement). Cell lines were maintained at 37°C and 5% 

CO2, routinely tested for Mycoplasma and profiled for short tandem repeats. 

  

Biotinylated RNA bait library design and HiC libraries capture 

To generate target regions for PCHiC, mHDCR regions were extended by 1Mb on either side, so that 

all possible promoter-enhancer interactions involving regions containing HDC risk variants were 

captured. All HindIII fragments containing annotated promoters within each extended region were 

identified. HindIII fragments previously captured by Javierre et al (45) were labelled ‘group1’ and 

those not captured but overlapping Ensembl annotated promoters (46) were labelled ‘group2’. 

Capture probes were designed to both ends of group1 and group2 HindIII fragments (2783 fragments 

and 4023 probes, respectively).  

  

Promoter capture HiC (PCHiC) library preparation and sequencing 

PCHiC was performed on nine immortalized HDC cell lines. For prostate: one normal cell line 

(RWPE1), one androgen-dependent (LNCAP) and one castration-resistant (PC3) cell line. For 

ovarian: one normal ovarian cancer precursor cell line (FT282) and two high-grade serous ovarian 

cancer cell lines (OVCAR4 and COV362). For endometrial: one normal endometrial cell line 

(E6E7hTERT), one ER+ (Ishikawa) and one type II EC line (ARK1). For breast: we remapped our 

published PCHiC data to mHDCR regions [29]. PCHiC libraries were prepared from 4-5 x 107 cells 

per library (two biological replicates per cell line using in-nucleus ligation (47)). The HiC libraries 

were amplified using the SureSelectXT ILM Indexing pre-capture primers (Agilent Technologies) 

with 8 PCR amplification cycles. Each HiC library (750 ng) was hybridized and captured individually 

using the SureSelectXT Target Enrichment System reagents and protocol (Agilent Technologies). 

After library enrichment, a post-capture PCR amplification step was carried out using SureSelectXT 

ILM Indexing post-capture primers (Agilent Technologies) with 14–16 PCR amplification cycles. 

PCHiC libraries were multiplexed and sequenced on NovoSeq 6000 S4 (Novogene, Singapore).  
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PCHiC analysis 

PCHiC reads were analysed with HiCUP (version 0.5.9). Raw sequencing reads were aligned to the 

hg38 human reference genome with Bowtie2 version 2.2.9 and filtered to remove experimental 

artefacts (e.g. re-ligated, circularized, unligated fragments or fragments separated by less than 20 kb). 

Chromatin interactions were identified using CHiCAGO following generation of genome indices, 

HindIII restriction fragment digest files, and the bait map. The CHiCAGO pipeline was run 

independently for each library for quality control, followed by merging of replicates for subsequent 

analyses. Interactions with CHiCAGO score ≥ 5 were treated as high confidence for target gene 

analysis and visualisation. 
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