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ABSTRACT (147 words)  19 

Breast and ovarian cancers harboring homologous recombination deficiency (HRD) are 20 

sensitive to PARP inhibitors and platinum chemotherapy. Conventionally, detecting HRD 21 

involves screening for defects in BRCA1, BRCA2, and other relevant genes. Recent 22 

analyses have shown that HRD cancers exhibit characteristic mutational patterns due to 23 

the activities of HRD-associated mutational signatures. At least three machine learning 24 

tools exist for detecting HRD based on mutational patterns. Here, using sequencing data 25 

from 1,043 breast and 182 ovarian cancers, we trained Homologous Recombination 26 

Proficiency Profiler (HRProfiler), a machine learning method for detecting HRD using six 27 

mutational features. HRProfiler's performance is assessed against prior approaches 28 

using additional independent datasets of 417 breast and 115 ovarian cancers, including 29 

retrospective data from a clinical trial involving patients treated with PARP inhibitors. Our 30 

results demonstrate that HRProfiler is the only tool that robustly and consistently predicts 31 

clinical response from whole-exome sequenced breast and ovarian cancers. 32 

 33 

SIGNIFICANCE (48 words)  34 

HRProfiler is a novel machine learning approach that harnesses only six mutational 35 

features to detect clinically useful HRD from both whole-genome and whole-exome 36 

sequenced breast and ovarian cancers. Our results provide a practical way for detecting 37 

HRD and caution against using individual HRD-associated mutational signatures as 38 

clinical biomarkers.39 
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INTRODUCTION 40 

Repair of DNA double strand breaks by homologous recombination (HR) is an essential 41 

cellular mechanism for maintaining genomic stability and for preventing tumorigenesis 42 

(1). Prior studies have elucidated key genes in the HR pathway, including, BRCA1, 43 

BRCA2, RAD51, and PALB2, that commonly have pathogenic germline variants and/or 44 

somatic mutations in breast and ovarian cancers (1). Defects in HR genes can disable 45 

the HR repair pathway making cells vulnerable to double strand breaks and, thus, provide 46 

a treatment opportunity. Specifically, patients with cancers harboring defective HR repair 47 

are sensitive to both poly (ADP-ribose) polymerase inhibitors (PARPi) and to platinum 48 

chemotherapy (2,3). 49 

 50 

Conventional stratification of HR deficient (HRD) and HR proficient (HRP) cancers 51 

involves screening for canonical genomic markers, including pathogenic germline 52 

variants and somatic copy number alterations in HR genes (4-6). Previous experimental 53 

studies (7) and genomics analyses (8) have also revealed that HRD cells exhibit 54 

characteristic patterns of somatic mutations due to the activities of HRD-associated 55 

mutational processes. Currently, there are at least seven mutational signatures that have 56 

been putatively associated with and/or utilized to detect HRD: (i) single base substitution 57 

(SBS) signatures SBS3 and SBS8 both characterized by generally flat, yet distinct, 58 

profiles (9); (ii) genomic rearrangement signatures RS3 and RS5 reflecting non-clustered 59 

tandem duplications and deletion, respectively (10); (iii) small insertions and deletions 60 

(ID) signatures ID6 and ID8, predominately encompassing indels at microhomologies 61 
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(11); and (iv) copy number (CN) signature CN17 characterized by large tandem 62 

duplications (12). 63 

 64 

At least three machine learning approaches have also been developed to capture HR 65 

deficient cancers by examining the patterns of somatic mutations found in cancer 66 

genomes: HRDetect (13), CHORD (14), and SigMA (15). HRDetect uses signatures 67 

SBS3, SBS8, RS3, RS5, and indels at microhomologies corresponding to ID6 and ID8 to 68 

detect HRD in breast cancers (13). CHORD is an alternative pan-cancer HRD prediction 69 

tool that does not rely on mutational signatures, but it rather uses 29 mutational features 70 

directly observed in cancer genomes (14). CHORD is more computationally efficient and 71 

prior studies have shown that it has an almost identical performance to the one of 72 

HRDetect (13). However, both CHORD and HRDetect use HRD-specific patterns of 73 

genomic rearrangements that can be only reliably detected from whole-genome 74 

sequencing (WGS) data (13,14). By excluding genomic rearrangements, HRDetect can 75 

also be applied to whole-exome sequencing (WES) data, albeit, with significantly 76 

diminished performance (13). Conversely, CHORD’s implementation does not allow 77 

utilizing WES cancers. In contrast to CHORD and HRDetect, SigMA was developed to 78 

exclusively detect HRD-associated signature SBS3 from whole-genome, whole-exome, 79 

and targeted gene panel sequencing data with SigMA’s focus being on panel sequencing 80 

data (15). Nevertheless, to be applied to a sample, SigMA requires at least five somatic 81 

mutations within the examined cancer (15). Based on Memorial Sloan Kettering Cancer 82 

Center’s Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) data 83 
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(16), this limits SigMA’s applicability to approximately 37% of breast and ovarian cancers 84 

profiled with MSK-IMPACT targeted gene panel. 85 

 86 

In this manuscript, we perform retrospective analyses to evaluate the clinical utility of 87 

canonical gene-based biomarkers, HRD-associated mutational signatures, and machine 88 

learning approaches to detect treatment sensitive breast and ovarian cancers. While the 89 

presence of individual HRD-associated mutational signatures are generally ineffective in 90 

detecting clinical response, existing machine learning tools can capture treatment 91 

sensitivity in WGS cancers but not in WES cancers. To address this limitation, we 92 

developed Homologous Recombination Proficiency Profiler (HRProfiler), a machine 93 

learning method that harnesses only six mutational features for detecting clinically 94 

actionable HRD from both whole-genome and whole-exome sequenced breast and 95 

ovarian cancers. Our findings offer a pragmatic approach to detect HRD in WES cancers 96 

and underscore the importance of exercising caution when considering individual HRD-97 

associated mutational signatures as clinical biomarkers. 98 

99 
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RESULTS 100 

Feature engineering and model training of HRProfiler 101 

To determine the set of robust HRD-associated mutational patterns that can be detected 102 

using WGS and WES cancers, we identified significantly enriched mutation types specific 103 

to somatic SBSs (9), IDs (11), and CNs (12). In particular, using previously developed 104 

schemas (9,11,12), we compared the types of somatic mutations enriched in HRD or HRP 105 

cancers. Comparisons were performed for whole-genome sequenced breast cancers 106 

using a subset of the Sanger Institute’s 560 breast cancer genomes cohort (10) (Sanger-107 

WGS-Breast; Fig. 1a) as well as for whole-exome sequenced breast cancers using a 108 

subset of TCGA’s breast cancer cohort (17) (TCGA-WES-Breast; Fig. 1b). As previously 109 

done (13,14,18) patients were classified as HRD based on a combination of their genomic 110 

instability and the presence of pathogenic germline variants, somatic mutations, or 111 

methylation of BRCA1 or BRCA2. Feature engineering and the subsequent training of 112 

HRProfiler was performed only on the designated training datasets (Supplementary Fig. 113 

S1). 114 

 115 

At the SBS resolution, we observed a striking enrichment of C:G>T:A single base 116 

substitutions at 5’-NpCpG-3’ context (mutated based underlined; N reflects any base) in 117 

HRP samples (Fig. 1a-b). This suggests that a relatively large proportion of mutations in 118 

HRP samples are C:G>T:A transitions at CpG sites when compared to HRD samples. 119 

Conversely, HRD samples were enriched for C:G>G:C single base substitutions at 5’-120 

NpCpT-3’ context. At the indel resolution, we observed an enrichment of deletions 121 

spanning at least 5 base pairs (bp) with flanking microhomology sequences across HRD 122 
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samples (Fig. 1a-b). These mutations are known to arise from the erroneous activities of 123 

the microhomology-mediated end joining or the single strand annealing DNA repair 124 

pathways in the absence of a functional HR pathway (19). At the copy number resolution, 125 

Loss of Heterozygosity (LOH) events spanning 1 to 40Mb and heterozygous events 126 

spanning 10 to 40Mb with a Total Copy Number (TCN) state between 3 and 9 were 127 

enriched in HRD samples (Fig. 1a-b). In contrast, very large (>40Mb) heterozygous 128 

segments with TCN between 2 and 4 were enriched in HRP samples (Fig. 1a-b). This 129 

finding suggests that very large diploid segments or regions that have undergone 130 

genome-doubling are enriched in HRP samples, in line with the observation that HRP 131 

samples are genomically stable and harbor relatively low copy number aberrations (18). 132 

 133 

Based on these observations, we combined the mutational channels (Methods) into six 134 

genomic features: (i) genomic segments with LOH and sizes between 1 and 40 135 

megabases (abbreviated as LOH:1-40Mb); (ii) deletions spanning at least 5bp at 136 

microhomologies (DEL.5.MH); (iii) heterozygous genomic segments with TCN between 3 137 

and 9 and sizes between 10 and 40 megabases (3-9:HET:10-40Mb); (iv) C:G>G:C 138 

substitutions at 5’-NpCpT-3’ context (N[C>G]T); (v) C:G>T:A substitutions at 5’-NpCpG-139 

3’ context (N[C>T]G); and (vi) heterozygous genomic segments with TCN between 2 and 140 

4, and sizes above 40 megabases (2-4:HET:>40Mb). To evaluate if these genomic 141 

features are sufficient to distinguish HRD and HRP samples, we performed principal 142 

component analysis (PCA) using the training data. We observed a separation between 143 

HRD from HRP samples across the two principal components for both WGS (Fig. 1c) and 144 

WES (Fig. 1d) breast cancers. 145 
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Next, using the six genomic features, we trained a machine learning tool, HRProfiler, 146 

based on a linear kernel support vector machine. HRProfiler comprises WGS and WES 147 

models that were trained using 371 samples from the Sanger-WGS-Breast (13) and 672 148 

samples from the TCGA-WES-Breast (17) datasets respectively (Supplementary Fig. 149 

S1). Ten-fold cross validation was conducted to determine the feature weights for the two 150 

trained models. As expected, features with positive weights (i.e., LOH:1-40Mb, 151 

DEL.5.MH, 3-9:HET:10-40Mb, and N[C>G]T) were enriched in HRD samples, whereas 152 

features with negative weights (i.e., N[C>T]G and 2-4:HET:>40Mb) were enriched in HRP 153 

samples (Fig. 1e). 154 

 155 

Comparing HRD detection methods in WGS and WES breast cancers 156 

In principle, two distinct approaches have been utilized to evaluate the performance of 157 

methods for detecting HRD. In their original publications, CHORD and HRDetect have 158 

relied on concordance between their predictions and prior HRD genomic annotations 159 

(13,14). This concordance can be quantified by area under the receiver operating 160 

characteristic curve (AUC) with both CHORD and HRDetect reporting AUCs above 0.90 161 

for WGS cancers (13,14). However, this type of comparison requires a ground truth for 162 

HRD and HRP cancers which, in most cases, is not straightforward to derive. The second 163 

approach relies on comparing clinical endpoints for HRD and HRP predicted cancers in 164 

patients treated with either chemotherapy or PARPi. The advantage of this approach is 165 

that it could provide immediate clinical relevance. Unfortunately, such comparisons 166 

require the availability of well annotated clinico-genomics datasets which are currently 167 
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limited especially at the whole-genome resolution. Here, we utilize both approaches to 168 

put HRProfiler in the context of previously developed methods. 169 

 170 

To evaluate the performance of HRProfiler, SigMA, HRDetect, and CHORD in the context 171 

of HRD genomic ground truth annotations, we applied the four tools to an independent 172 

set of 237 whole-genome sequenced triple negative breast cancers (TNBCs) from the 173 

Sweden Cancerome Analysis Network – Breast project (SCAN-B; ClinicalTrials.gov 174 

identifier NCT02306096) (20) as well as to 71 held-out TCGA breast cancers which have 175 

been profiled using both whole-genome and whole-exome sequencing. Additionally, we 176 

applied the tools to an independent external WES dataset of 109 MSK-IMPACT breast 177 

cancers (21). All tools exhibited good AUC performance when applied to the WGS 178 

cancers (Fig. 2a-b; Supplementary Fig. S2a-b) while HRProfiler outperformed 179 

HRDetect and SigMA for WES breast cancers (Fig. 2c-d; Supplementary Fig. S2c-d). 180 

CHORD could not be applied to WES data. Importantly, HRProfiler was the only tool with 181 

AUCs above 0.90 across all WES and WGS breast cancer datasets (Fig. 2). 182 

 183 

To evaluate the potential clinical utility of HRProfiler, SigMA, HRDetect, and CHORD in 184 

serving as predictive biomarkers for adjuvant chemotherapy treated breast cancers, we 185 

applied the tools to a subset of 145 whole-genome sequenced chemotherapy-treated 186 

TNBCs with information for interval disease-free survival (20). Additionally, the 145 187 

TNBCs were down-sampled to whole-exomes (dWES) to further assess the ability of each 188 

tool to predict HRD robustly at both whole-genome and whole-exome resolutions. As 189 
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previously reported (20), when applied to WGS breast cancers, HRDetect was able to 190 

identify 99 HRD samples which exhibited better survival when compared to the 46 HRP 191 

samples after adjusting for grade and age at diagnosis (hazard ratio [HR]=0.42; p-192 

value=0.020; Fig. 3a). However, the tool exhibited markedly worse sample stratification 193 

on the dWES data (HR=0.54; p-value=0.092) with 39 samples (26.9% of all examined 194 

TNBCs) being differently annotated when compared to the WGS data. CHORD’s 195 

performance on WGS samples was very similar to that of HRDetect (Supplementary 196 

Fig. S3), however, the tool cannot be applied to the dWES data. Applying SigMA to the 197 

145 TNBCs did not result in a statistically significant separation for either the WGS breast 198 

cancers (p-value=0.068) or the dWES data (p-value=0.94; Fig. 3b). In contrast, 199 

HRProfiler was able to better stratify breast cancers from both WGS (HR=0.40; p-200 

value=0.021) and dWES data (HR=0.38; p-value=0.02; Fig. 3c). Importantly, only 9 201 

samples (6.2% of all examined TNBCs) were differently annotated by HRProfiler when 202 

the tool was applied to WGS and dWES data (Fig. 3c). Lastly, partitioning the 145 TNBCs 203 

based on the presence of defects in BRCA1/2 or the presence of HRD-associated 204 

signatures SBS3 or CN17 did not result in statistically significant separation 205 

(Supplementary Fig. S4). Nevertheless, stratifying the 145 TNBCs based on the 206 

presence of ID6 was able to separate the breast cancers, but captured 41 fewer HRD 207 

patients compared to HRProfiler (HR=0.48; p-value=0.04; Supplementary Fig. S4). 208 

 209 

Comparing HRD detection methods in WES ovarian cancers 210 
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To determine if the breast cancer specific mutational features can be generalized to 211 

another HRD-associated cancer, we trained an ovarian-specific whole-exome model 212 

using 182 high-grade serous carcinoma from the TCGA-Ovarian-WES dataset (17) 213 

(Supplementary Fig. S5a). As done for breast cancer, ten-fold cross validation was 214 

conducted for HRProfiler to determine the feature weights for the trained whole-exome 215 

model. Similar features to the ones observed in breast cancer were enriched in HRD and 216 

HRP ovarian cancers (Supplementary Fig. S5b). To examine the performance of 217 

HRProfiler, SigMA, and HRDetect in the context of HRD genomic ground truth 218 

annotations for whole-exome sequenced ovarian cancer, we applied the three tools to 40 219 

held-out TCGA ovarian samples as well as to an independent set of 50 MSK-IMPACT 220 

whole-exome sequenced ovarian cancers (21) (Supplementary Fig. S6a-b). For both 221 

datasets, HRProfiler outperformed the other two approaches by consistently exhibiting 222 

AUCs above 0.90 (Supplementary Fig. S6a-b). 223 

 224 

To assess the clinical utility of HRProfiler, SigMA, and HRDetect to serve as predictors of 225 

clinical outcome in ovarian cancer, we examined the progression free survival for an 226 

independent set of 25 high-grade ovarian cancers from a phase Ib PARPi clinical trial of 227 

olaparib in combination with the PI3K inhibitor buparlisib (BKM120; ClinicalTrials.gov 228 

identifier NCT01623349) (22). HRProfiler’s annotations were able to separate PARPi 229 

treated samples based on progression free survival (HR=0.25; p-value=0.037; Fig. 4) 230 

with HRDetect also performing relatively well on these data (HR=0.32; p-value=0.056; 231 

Fig. 4b). Moreover, partitioning the 25 PARPi-treated ovarian cancers based on the 232 

presence of any of the HRD-associated signatures SBS3, CN17, or ID6 did not lead to 233 
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 12 

differences in survival endpoints (Supplementary Fig. S7). Lastly, annotating samples 234 

as HRD and HRP based on defects in BRCA1/2 genes provided separation in progression 235 

free survival for the 25 PARPi-treated ovarian cancers (Supplementary Fig. S7). 236 

237 
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DISCUSSION 238 

There is an increasing momentum in precision oncology towards more comprehensive 239 

genomic profiling to identify complex biomarkers like HRD as part of routine clinical care 240 

(23). With continuing advances in sequencing technologies and the corresponding 241 

exponential decrease in their cost, clinical whole-exome sequencing is becoming 242 

increasingly more prevalent (24-26). To harness the clinical utility of whole-exome 243 

sequencing for predicting HRD, we present a novel machine learning approach called 244 

HRProfiler that utilizes a minimal set of six genomic features to predict HRD across both 245 

whole-genome and whole-exome sequenced breast and ovarian cancers. Unlike existing 246 

methods that focus solely on mutation types enriched in HRD samples (13-15), HRProfiler 247 

incorporates small and large-scale mutational events enriched in both HRD and HRP 248 

cancers. HRProfiler also circumvents the need for genomic rearrangements and 249 

mutational signature extraction, which can be unreliable especially when using sparse 250 

datasets derived from whole-exome sequencing data (11). 251 

 252 

HRProfiler demonstrated comparable performance to existing approaches when applied 253 

to whole-genome sequencing data and the tool surpassed other machine learning 254 

methods when applied to whole-exome sequenced cancers. The sub-optimal 255 

performance of HRDetect on whole-exome sequenced tumors is perhaps unsurprising 256 

given that HRDetect was developed for whole-genome sequenced breast cancers and 257 

the original publication noted a poor performance for whole-exome sequenced tumors 258 

(13). In contrast, despite its tailored design for whole-exome and targeted panel 259 

sequencing data, SigMA exhibited comparatively limited performance in our tests. Indeed, 260 
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SigMA is a machine learning surrogate for detecting HRD-associated signature SBS3 and 261 

our results show that SBS3 alone is not a reliable predictor of survival even when detected 262 

by other tools. Similarly, other HRD-associated signatures, such as CN17 and ID6, did 263 

not provide consistent clinical separation for breast or ovarian cancers. Overall, these 264 

results indicate that the presence of an individual HRD-associated signature in a cancer 265 

sample does not necessarily indicate a clinically significant or an actionable event. 266 

 267 

HRProfiler’s ability to separate HRD samples sensitive to treatment with PARP inhibitors 268 

from whole-exome sequencing data opens additional opportunities for broadening 269 

treatment options to a wider patient population. Given the non-tissue-specific nature of 270 

the HRD mutational footprint, our six mutational features can be refined in the future to 271 

predict HRD status in other HRD-associated cancers, including prostate and pancreatic 272 

cancers. Such an effort will ideally require large sets with well annotated clinico-genomics 273 

datasets for both cancer types, which, to the best of our knowledge, are currently not 274 

available. 275 

 276 

Although we assessed HRProfiler's performance using independent datasets 277 

encompassing 417 breast and 115 ovarian cancers, along with retrospective data from 278 

two clinical trials, we recognize the constraints posed by the use of relatively small sample 279 

sizes for some of the reported survival analyses. Future large-scale, independent, and 280 

purposefully designed clinical trials will be necessary to validate HRProfiler’s capacity to 281 

serve as a predictive and/or prognostic biomarker for routine clinical decision making. 282 

Notwithstanding, HRProfiler provides a crucial link in utilizing the molecular phenotypic 283 
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changes of impaired DNA repair mechanisms for detecting homologous recombination 284 

deficiency in whole-exome sequenced cancers. Moreover, the tool provides a robust and 285 

consistent approach that allows detecting whole-exome sequenced cancers that are 286 

sensitive to PARP inhibitors. 287 

288 
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METHODS 289 

Data sources and pre-processing 290 

In this study, previously published datasets were used for all feature engineering, model 291 

development, and validation for both whole-genome sequenced (WGS) and whole-292 

exome sequenced (WES) breast and ovarian cancers.  293 

For breast cancer, we downloaded CaVEman mutations and ASCAT allele-specific copy 294 

number for 560 Sanger breast cancers (10) from: ftp://ftp.sanger.ac.uk/pub/cancer/Nik-295 

ZainalEtAl-560BreastGenomes/. Additional WGS breast cancer datasets used in this 296 

study included the 237 Triple Negative Breast (TNBC) samples from the SCAN-B clinical 297 

trial (20). CaVEman somatic mutations and ASCAT copy number for the 237 TNBC 298 

samples were downloaded from: https://data.mendeley.com/datasets/2mn4ctdpxp/. For 299 

the breast cancer WGS dataset from the Pan-Cancer Analysis of Whole Genomes 300 

project, consensus somatic mutations and copy number calls were downloaded from the 301 

International Cancer Genome Consortium’s data portal: 302 

https://dcc.icgc.org/releases/PCAWG. For The Cancer Genome Atlas (TCGA) breast 303 

cancer WES dataset, the catalogues of somatic mutations and sequencing data were 304 

downloaded from the genomics data commons (https://portal.gdc.cancer.gov/) portal and 305 

allele-specific whole-exome copy number calls were derived using ASCAT: 306 

https://github.com/VanLoo-lab/ascat. For the WES MSK-IMPACT breast cancers, 109 307 

whole-exome sequenced breast cancers were downloaded from dbGaP (accession 308 

number: phs001783.v1.p1) and processed using an ensemble variant calling pipeline: 309 

https://github.com/AlexandrovLab/EnsembleVariantCallingPipeline 310 
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For ovarian cancer, the WES derived catalogues of somatic mutations and sequencing 311 

data from TCGA were downloaded from the genomics data commons portal, and allele-312 

specific whole-exome copy number calls were derived using ASCAT. For the ovarian 313 

cancer WES MSK-IMPACT dataset, 50 whole-exome sequenced ovarian cancers were 314 

downloaded from dbGaP (accession number: phs001783.v1.p1) and processed using the 315 

same ensemble variant calling pipeline as the one utilized for breast cancer. Lastly, we 316 

downloaded the 25 PARPi treated high-grade ovarian cancers from dbGaP (accession 317 

number: phs003019) and processed these data using the ensemble variant calling 318 

pipeline. 319 

 320 

Feature engineering for predicting HRD 321 

As previously done (13,14,18), a sample with an HRD score of at least 42 for breast 322 

cancer (5) and 63 for ovarian cancer (27) or one harboring germline/somatic alterations 323 

in BRCA1 or BRCA2 was annotated as homologous recombination deficient (HRD) for all 324 

training purposes. All other samples were annotated as homologous recombination 325 

proficient (HRP). To identify significantly enriched features in HRD and HRP samples, we 326 

generated the average mutational profiles based on proportions across the 96 327 

substitution, 83 indel, and 48 copy number mutational contexts. To determine differences 328 

in channels at every resolution, we performed Fisher’s exact tests to evaluate if there is 329 

any statistically significant difference in the average proportion of a given channel 330 

between HRD and HRP samples. Significant channels were identified for all types of 331 

mutational contexts if their absolute log2 fold-change (FC) was greater than 0.75 for WGS 332 

samples and 0.25 for WES samples, and their -log10(FDR adjusted p-value) was greater 333 
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than 3. Similar workflow was adopted for both whole-genome and whole-exome samples 334 

and only channels significantly enriched across both WGS and WES were considered for 335 

the feature engineering process. At the single base resolution, A[C>T]G, C[C>T]G, 336 

G[C>T]G, and T[C>T]G channels were consistently enriched across HRP samples in both 337 

whole-genome and whole-exome datasets. Due to the overlapping/similar mutational 338 

context, these four channels were combined into a single feature termed N[C>T]G, where 339 

N represents any of the four nucleotide bases (A, C, T, or G). Similarly, A[C>G]T, 340 

C[C>G]T, G[C>G]T, and T[C>G]T were channels consistently enriched in HRD samples 341 

and were combined into a single feature N[C>G]T. At the indel resolution, 5:Del:M:1, 342 

5:Del:M:2, 5:Del:M:3, 5:Del:M:4, and 5:Del:M:5 were significantly enriched channels in 343 

HRD samples that represent varying lengths of microhomology sequences at relatively 344 

large deletion sites where the length of the deletion is at least 5 base pairs long. These 345 

indel channels were combined into a single feature: DEL.5.MH, where DEL.5 presents 346 

deletions of length at least 5 bp and MH represent microhomology sequences. At the 347 

copy number resolution, multiple significant Loss of Heterozygosity (LOH) events were 348 

identified. These events represented LOH segments of at least 1 Mb, where majority of 349 

the segment sizes ranged between 1 and 40Mb. These were combined into a single 350 

feature LOH:1-40Mb. A similar approach was applied to aggregate significant copy 351 

number channels for diploid/genome-doubled copy number segments into a single 352 

feature 2-4:HET:>40Mb that accounts for segments with a total copy number state 353 

between 2-4 and sizes of at least 40Mb. Lastly, significant copy number channels for 354 

amplification events were combined into a single feature: 3-9:HET:10-40Mb, where 3-9 355 
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represents the segments with a total copy number state of at least 3 and segment sizes 356 

between 10 to 40Mb. 357 

Training and comparing HRD detection methods in WGS cancers 358 

To train a model for predicting HRD at WGS resolution, we used samples from the 560 359 

Breast dataset. Only 371/560 samples that were labelled as evaluated in the HRDetect 360 

publication (13) were considered. The six features derived from the feature engineering 361 

step were extracted from the 371 samples and were normalized using StandardScaler in 362 

python’s sklearn package. The training was based on 371 breast samples, comprising 363 

131 HRD and 240 HRP samples, and used a linear kernel support vector machine with 364 

L2 regularization. Next, 10-fold cross validation was conducted to tune for hyper-365 

parameters and obtain feature weights from the model. To test the model’s performance, 366 

we predicted HRD probabilities for 71 WGS TCGA breast samples that were sequenced 367 

at both whole-genome and whole-exome resolutions. Samples with an HRD probability 368 

at least 0.50 were considered as HRD. To validate the model on an external dataset, we 369 

predicted HRD probabilities for 237 Triple Negative Breast (TNBC) samples and 370 

evaluated its performance against the ground truth. The performance of the model was 371 

assessed using machine learning metrics such as sensitivity, precision, and F1 score. To 372 

compare the performance of HRProfiler with other tools, HRD annotations were 373 

determined for the 237 TNBC samples using HRDetect, CHORD, and SigMA. 374 

 375 

Training and comparing HRD detection methods in WES cancers 376 

To train a breast cancer specific model for predicting HRD at WES resolution, we used 377 

samples from TCGA breast cancer dataset. Only 743 samples that had HRD annotations 378 
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were used for both training and testing. The six features derived from the feature 379 

engineering step were extracted as proportions, except for DEL.5.MH, which was 380 

extracted as absolute counts. All features were normalized using StandardScaler in 381 

python’s sklearn package. The training was based on 672 breast samples that included 382 

156 HRD and 516 HRP samples. Next, 10-fold cross validation was conducted to tune 383 

for hyper-parameters and obtain feature weights from the model. The model’s 384 

performance was tested on the held-out 71 breast samples that were previously 385 

sequenced at both whole-genome and whole-exome resolution. Samples with an HRD 386 

probability at least 0.50 were considered as HRD. To validate the model on an external 387 

dataset, we predicted HRD probabilities for 109 MSK-IMPACT breast cancer whole-388 

exome sequenced samples and evaluated the model’s performance against the ground 389 

truth. The performance of the model was assessed using conventional machine learning 390 

metrics such as sensitivity, precision, and F1 score. The WES model was also applied to 391 

the down-sampled 237 TNBC samples. The whole-exome features for the 237 TNBC 392 

samples were derived by down-sampling the ASCAT copy number calls to segments that 393 

spanned the exonic regions. The mutation and indel calls were down-sampled to whole-394 

exome resolution using SigProfiler (28). To compare the performance of HRProfiler with 395 

other tools, HRD probabilities were also determined for SigMA and HRDetect.  396 

 397 

To train an ovarian-specific model for predicting HRD at WES resolution, we used 398 

samples from the TCGA ovarian dataset. Only 228 samples that had HRD annotations 399 

were used for both training and testing. Analogous to training HRProfiler for WES breast 400 

cancers, the six features derived from the feature engineering step were extracted as 401 
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proportions, except for DEL.5.MH, which was extracted as absolute counts. All features 402 

were normalized using StandardScaler in the python sklearn package. The training was 403 

based on 182 ovarian cancers that comprised of 82 HRD and 100 HRP samples. Next, 404 

10-fold cross validation was conducted to tune for hyper-parameters and obtain feature 405 

weights from the model. The model’s performance was tested on the 39 ovarian cancer 406 

that were sequenced at whole-exome resolution. Samples with an HRD probability at 407 

least 0.50 were considered as HRD. To validate the model on an external dataset, we 408 

predicted HRD probabilities for 50 MSK-IMPACT whole-exome sequenced ovarian 409 

cancers and evaluated the model’s performance against the ground truth. The 410 

performance of the model was assessed using conventional machine learning metrics 411 

such as sensitivity, precision, and F1 score. To compare the performance of HRProfiler 412 

with other tools, HRD annotations were determined for the same samples by HRDetect 413 

and SigMA using the default breast WGS and ovarian WES pre-trained models, 414 

respectively.  415 

 416 

Deriving HRD status based on HRD-associated signatures, genes, and tools 417 

Germline and somatic mutations for BRCA1 and BRCA2 and, when available, gene 418 

expression and promoter methylation changes in BRCA1 and BRCA2 were incorporated 419 

for the BRCA1/2 annotations. Specifically, for TCGA breast cancers, the BRCA1/2 420 

annotations were derived from Polak et al. (29). Conversely, for TCGA ovarian cancers, 421 

these annotations were derived from Steele et al. (12). For all other datasets, BRCA1/2 422 

annotations were derived from their respective publications. 423 

 424 
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SigprofilerAssigment (v0.1.2) was used to determine the presence of HRD-associated 425 

signatures SBS3, ID6, and CN17 (30) using the Catalogue Of Somatic Mutations In 426 

Cancer (COSMICv3.4) reference signatures. A sample was classified as HRD positive 427 

for a given HRD signature, if it had at least one mutational event attributed to that 428 

signature. 429 

 430 

HRDetect was run using the Signature.tools.lib (v2.3.0) package in R, available at 431 

https://github.com/Nik-Zainal-Group/signature.tools.lib. The default HRD probability 432 

threshold of 0.70 was employed for predicting HRD status for WGS samples. To execute 433 

HRDetect on WES data, we utilized the pre-trained WGS model for prediction. The 434 

rearrangement signatures RS3 and RS5, which cannot be derived from WES data, were 435 

set to zero, and the default probability threshold of 0.70 was applied for classifying whole-436 

exome sequenced cancers as HRD. 437 

 438 

CHORD was run using the extractSigsChord function installed from GitHub: 439 

https://github.com/UMCUGenetics/CHORD/. It was executed using default settings, and 440 

a probability threshold of 0.50 was applied for classifying samples as HRD. 441 

 442 

SigMA (v2.0) was downloaded from GitHub: 443 

https://github.com/parklab/SigMA/archive/refs/tags/2.0.tar.gz and it was run using the run 444 

function for signature 3 (also known as SBS3) prediction. For WGS breast datasets, we 445 

used the following parameters when running SigMA: data='wgs', do_assign=T, 446 

do_mva=T, tumor_type='breast', and catalog_name='cosmic_v3p2_inhouse', and we 447 
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utilized SigMA strict predictions (pass_mva_strict) for our analysis. When running SigMA 448 

on WES datasets, we followed the same procedure as for WGS datasets, except for the 449 

data and tumor_type parameters. For predicting signature 3 status for TCGA datasets, 450 

the data parameter was set to 'tcga_mc3', otherwise, it was set to 'seqcap' for all other 451 

WES and down-sampled WES datasets. The tumor_type parameter was set to 'breast' 452 

for breast and 'ovary' for ovarian whole-exome sequencing data. 453 

 454 

Survival analysis 455 

The survival analysis was conducted using the KaplanMeierFitter and CoxPHFitter 456 

function from the lifelines package in python (31). Interval disease free survival was used 457 

to evaluate patients treated with chemotherapy from the 237 TNBC dataset. Progression 458 

free survival endpoint was used to evaluate the survival trends for 25 high-grade ovarian 459 

cancer patients treated with PARP inhibitor. P-values and hazard ratios listed in the 460 

Kaplan Meier plots are based on the p-values derived from the Cox proportional hazards 461 

(coxph) model adjusted by dichotomized age of diagnosis (below and above 50 years 462 

old) as well as tumor stage or grade.  463 

 464 

Statistics 465 

All statistical analysis were conducted in python using the scikit-learn package. All p-466 

values were corrected for multiple hypothesis testing using Benjamini-Hochberg 467 

procedure, where applicable. 468 

 469 

 470 
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Availability of data and materials  471 

HRProfiler is an open-source tool, and it is freely available for academic use as a python 472 

package at https://github.com/AlexandrovLab/HRProfiler. The pre-trained models for 473 

whole-genome and whole-exome sequenced breast and ovarian cancers are provided as 474 

part of the tool. 475 
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FIGURE LEGENDS 619 

Figure 1: Feature engineering to identify significantly enriched somatic mutational 620 

features across HRD and HRP breast cancers. (a-b) Volcano plots with log2 fold 621 

change (FC) enrichments across the average proportions of somatic mutations for 96 622 

substitution, 83 indel, and 48 copy number mutational channels between homologous 623 

recombination deficient (HRD) and homologous recombination proficient (HRP) cancers 624 

for 371 Sanger-WGS-Breast (a) and 672 TCGA-WES-Breast samples (b). Channels with 625 

an absolute FC greater than 0.75 for WGS and 0.25 for WES, and a -log10 FDR adjusted 626 

p-value greater than 3 are colored. Channels colored in red are enriched in HRD samples, 627 

while channels highlighted in blue are enriched in HRP samples. (c-d) Principal 628 

component (PC) analysis highlights the relevance of the features derived from the 629 

significant channels in (a-b) by separating HRD from HRP samples across the 371 630 

Sanger-WGS-Breast (c) and 672 TCGA-WES-Breast cohorts (d). (e) The average 10-fold 631 

cross validation weights of the six features derived from the WGS and WES breast 632 

training datasets using a linear-kernel support vector machine. Positive weights reflect 633 

features predictive for HRD samples, while negative weights correspond to features 634 

predictive for HRP samples. 635 

 636 

Figure 2: Performance of HRD tools on external validation datasets using HRD 637 

genomic ground truth annotations. Receiver operating characteristic curves (ROCs) 638 

were derived for HRProfiler, SigMA, HRDetect, and CHORD. Areas under the ROCs 639 

(AUCs) were calculated for each tool and shown in the legends of the respective panels. 640 

(a) ROCs for 237 whole-genome sequenced (WGS) triple negative breast cancers. (b) 641 
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ROCs for 71 WGS TCGA breast cancers. (c) ROCs for 71 whole-exome sequenced 642 

(WES) breast cancers. (d) ROCs for 109 WES MSK-IMPACT breast cancers. No ROCs 643 

are shown for CHORD in panels (c) and (d) as the tool cannot be applied to WES data. 644 

In all plots, the x-axes reflect the false positive rates while the y-axes correspond to the 645 

true positive rates. Precision and recall curves for the same samples are provided in 646 

Supplementary Figure S2. 647 

 648 

Figure 3: Predicting survival in breast cancers treated with chemotherapy by HRD 649 

tools. Kaplan-Meier curves and confusion matrices for samples predicted as HRD and 650 

HRP by (a) HRDetect, (b) SigMA, and (c) HRProfiler in 145 chemotherapy-treated triple 651 

negative breast cancers. In each panel, the left plot reflects the Kaplan-Meier curves for 652 

whole-genome sequenced breast cancers (WGS). The middle plot corresponds to the 653 

Kaplan-Meier curves for the same samples when down-sampled to whole-exomes 654 

(dWESs). The right plot contains a confusion matrix that provides a comparison of each 655 

tool’s HRD annotations from WGS and dWES data. The y-axes on all Kaplan-Meier 656 

curves reflect Interval Disease Free Survival (IDFS), and the x-axes correspond to time 657 

measured in years. Listed p-values and hazard ratios (HRs) are based on a Cox 658 

proportional hazards model after adjusting for age at diagnosis and tumor grade. 95% 659 

confidence intervals are provided for all HRs within the Kaplan-Meier plots. The 660 

performance of CHORD on WGS data, which was almost identical to the one of 661 

HRDetect, can be found in Supplementary Figure S3. Comparisons of the clinical utility 662 

of BRCA1/2 defects and HRD-associated signatures SBS3, CN17, and ID6 for the same 663 

patients are provided in Supplementary Figure S4. 664 
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Figure 4: Predicting survival in ovarian cancers treated PARP inhibitor by HRD 665 

tools. Kaplan-Meier curves for progression free survival (PFS) across 25 PARP inhibitor 666 

treated patients with high-grade serous ovarian cancer. Patients are annotated as HRD 667 

or HRP based on the predictions from HRProfiler (left panel), SigMA (middle panel), and 668 

HRDetect (right panel). Listed p-values and hazard ratios (HRs) are based on a Cox 669 

proportional hazards model after adjusting for age at diagnosis and tumor stage. 95% 670 

confidence intervals are provided for all HRs within the Kaplan-Meier plots. Comparisons 671 

of the clinical utility of BRCA1/2 defects and HRD-associated signatures SBS3, CN17, 672 

and ID6 for the same patients are provided in Supplementary Figure S7. 673 
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