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Abstract 
 

Antidepressants exhibit a considerable variation in efficacy, and increasing evidence 

suggests that individual genetics contribute to antidepressant treatment response. Here, we 

combined data on antidepressant non-response measured using rating scales for depressive 

symptoms, questionnaires of treatment effect, and data from electronic health records, to 

increase statistical power to detect genomic loci associated with non-response to 

antidepressants in a total sample of 135,471 individuals prescribed antidepressants. We 

performed genome-wide association meta-analyses, leave-one-out polygenic prediction, 

and bioinformatics analyses for genetically informed drug prioritization. We identified two 

novel loci associated with non-response to antidepressants and showed significant 

polygenic prediction in independent samples. In addition, we investigated drugs that target 

proteins likely involved in mechanisms underlying antidepressant non-response, and 

shortlisted drugs that warrant further replication and validation of their potential to reduce 

depressive symptoms in individuals who do not respond to first-line antidepressant 

medications. These results suggest that meta-analyses of GWAS utilizing real-world 

measures of treatment outcomes can increase sample sizes to improve the discovery of 

variants associated with non-response to antidepressants.  

 

Introduction 
 

Antidepressants are the first-line pharmacological treatment for depression. Over 10% of 

the adolescent population uses antidepressant medication, and the rate of antidepressant 

prescriptions is increasing
1, 2

. Selective serotonin reuptake inhibitors (SSRIs) are the most 

used antidepressants
3-5

, because they are generally better tolerated compared to other 

antidepressant classes
4, 5

. However, treatment response to SSRIs and other antidepressants 

varies considerably between treated individuals, and less than half of individuals with major 

depression achieve remission of symptoms after initial antidepressant treatment
6, 7

. It has 

been shown that individuals who require several antidepressant treatment steps show 

worse longer-term treatment outcomes
7
. Although antidepressants are linked to a 

reduction in depressive symptoms
8
, they are often ineffective, with only approximately 35% 

achieving remission after their primary antidepressant treatment
6
, and approximately 50% 

achieving remission after completing two treatments of antidepressants
7
. Antidepressant 

non-response has been associated with illness severity, more comorbidities, higher 

antidepressant dose requirements, and higher suicide risk as well as suicide attempts
9, 10

. 

Thus, non-response to antidepressants is a major clinical problem, and early identification 

remains a critical priority in psychiatry research
11

.  

 

Increasing evidence suggests that genetic variation contributes to antidepressant treatment 

outcomes
11

. Discovering genomic variants associated with antidepressant treatment 

outcomes could facilitate the early identification of individuals who do not respond to first-

line treatments to avoid delay in reaching recovery and advance personal treatment. 

However, although common single nucleotide polymorphisms (SNPs) are reported to 

explain 42% of the variance of antidepressant response
12

, no robustly replicated 

associations have been detected to date
13-17

. Moreover, the largest genome-wide 
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association study (GWAS) of antidepressant response, measured using depression symptom 

scores (N=5,218), did not identify any genome-wide significant loci
18

. Antidepressant 

response is a polygenic phenotype, requiring larger sample sizes to elucidate the genetic 

architecture of antidepressant response
18

. Use of alternative outcome phenotypes such as 

antidepressant response information obtained from electronic health records (eHR)
19

 or 

self-reported questionnaires
20

 have been used to increase sample sizes. Combining these 

real-world data sources could provide the sample sizes needed for discovering genetic 

factors associated with antidepressant treatment outcomes
21

. In the current study, we 

integrated GWAS data on antidepressant non-response measured using rating scales for 

depressive symptoms, questionnaires of treatment effect, and outcome data from eHR, to 

increase statistical power to detect genomic loci associated with non-response to SSRIs and 

serotonin-norepinephrine reuptake inhibitors (SNRIs). We identified one novel locus 

associated with non-response to SSRIs, and one novel locus associated with non-response to 

SSRIs/SNRIs, as well as a replicable polygenic signal of non-response to SSRIs. Based on 

bioinformatics analyses, we shortlisted approved drugs that target proteins likely involved in 

mechanisms underlying antidepressant non-response. 

  

Methods 
 

GWAS sample description 

Using questionnaire data about the effectiveness of prescribed antidepressant drugs, we 

performed GWASs on non-response to SSRIs in the Estonian Biobank (EstBB)
22

,  the 

Australian Genetics of Depression Study (AGDS)
23

, the Genetic Links to Anxiety & Depression 

(GLAD) Study
24

, and the UK Biobank (UKB)
25

. Additionally, we performed GWASs on non-

response to SNRIs in the EstBB and AGDS cohorts. Utilizing prescription registry data, we 

defined treatment response and non-response to antidepressants based on antidepressant 

switching and performed GWASs on non-response to SSRIs and SNRIs in an Icelandic cohort 

from deCODE Genetics. In all cohorts, treatment response and non-response was defined as 

a binary measure, see Supplementary Materials for more details about phenotype 

definitions, antidepressant drugs included, and description of cohorts including genotype 

information.  

 

Publicly available GWAS summary statistics were obtained from a GWAS on treatment 

response to antidepressants performed by the Psychiatric Genomics Consortium (PGC)
18

. 

We used summary statistics from the European sample of the genome-wide analysis of 

remission after antidepressant treatment (predominantly SSRIs) in individuals diagnosed 

with major depressive disorder (MDD). Summary statistics from two GWASs on 

antidepressant treatment response performed by the 23andMe Research Team from 

23andMe, Inc.
20, 26

 were obtained upon request. In the GWASs from the 23andMe Research 

Team
20, 26

, treatment response and non-response to antidepressants was defined according 

to an antidepressant efficacy survey. We used separate summary statistics for treatment 

response to SSRIs and SNRIs. All GWAS samples and corresponding numbers of responders 

and non-responders are summarized in Table 1. All subjects provided written informed 

consent after receiving a complete description of the respective study. 

 

Genome-wide meta-analyses 
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Meta-analyses of GWAS summary statistics were conducted using inverse-variance-

weighted fixed effects models in METAL
27

. Separate meta-analyses were performed for non-

response to SSRIs, non-response to SNRIs, and non-response to either SSRIs or SNRIs. To 

investigate if the effects of genome-wide significant SNPs were consistent across the 

datasets, we performed a heterogeneity test in METAL
27

. Due to differences in the definition 

of antidepressant treatment response across GWASs, we also performed sensitivity meta-

analyses restricted to samples where treatment response was measured using only 

questionnaires (EstBB, AGDS, GLAD, UKB, and the GWASs from the 23andMe Research 

Team
20, 26

).  

 

Locus definition, variant annotation, and gene mapping  

To define genetic loci based on the association summary statistics produced with METAL
27

, 

we used Functional Mapping and Annotation of GWAS (FUMA)
28

 with default settings. 

Genetic variants with a p-value <5e
-8

 and with a linkage disequilibrium (LD) r
2 

<0.6 with each 

other were defined as independent significant variants. Of these, variants with an LD r
2 

<0.1 

were selected as lead variants. For a given lead variant, the borders of the genomic locus 

were defined as minimum/maximum positional coordinates over all corresponding 

candidate variants. Loci that were separated by less than 250 kb were then merged. 

 

To investigate previous phenotype associations, we queried the identified loci in the GWAS 

catalogue
29

. SNPs were also queried for known expression quantitative trait loci (eQTLs) 

across multiple tissues using the GTEx portal (GTEx v8)
30

, as well as in different brain tissues 

using the BRAINEAC portal
31

. SNPs were annotated with Combined Annotation Dependent 

Depletion (CADD)
32

 scores, which predict how deleterious the SNP effect is on protein 

structure/function, and RegulomeDB
33

 scores, which predict the likelihood of regulatory 

functionality of SNPs.  

 

The Open Targets Genetics platform (https://genetics.opentargets.org/)
34

 was used to map 

the identified loci to genes. This portal contains functional genomics data from different cell 

types and tissues retrieved from various repositories and datasets, including data on gene 

expression, chromatin conformation, and protein abundance that are aggregated to make 

robust connections between variants and likely causal genes. For each variant-gene 

prediction, a Variant to Gene (V2G) association score is provided to assign likely causal 

genes for a given variant. For each locus, we considered the top 3 genes with the highest 

V2G scores.  

 

Multi-trait conditional and joint analysis, SNP-based heritability, and genetic correlation 

To account for the possible effect of major depression, we used multi-trait conditional and 

joint analysis (mtCOJO)
35

. We conditioned the effect of SNPs estimated for non-response to 

antidepressants on those of depression, using summary statistics of a GWAS on depression 

phenotypes
36

 including 246,363 cases and 561,190 controls, performed by the Psychiatric 

Genetics Consortium (PGC), excluding a 23andMe sample. This was done for non-response 

to SSRIs, non-response to SNRIs, and non-response to either SSRIs or SNRIs. We utilized 

linkage disequilibrium score regression (LDSC)
37

 to estimate the SNP-based heritability of 

our meta-analyzed GWAS as well as the GWAS summary statistics produced with mtCOJO. 

The SNP-based heritability was calculated on the observed scale. As non-response to 

antidepressants has been previously associated with genetics of other psychiatric traits as 
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well as cognitive traits
38

, LDSC
37

 was used to estimate bivariate genetic correlations 

between antidepressant non-response and various psychiatric and cognitive traits, using 

summary statistics from the following GWASs: Alzheimer’s disease
39

, attention deficiency 

hyperactivity disorder (ADHD)
40

, autism spectrum disorder
41

, anxiety disorder
42

, bipolar 

disorder
43

, general cognitive performance
44

, educational attainment
45

, intelligence
46

, 

insomnia
47

, depression phenotypes
36

, mood instability
48

, neuroticism
49

, posttraumatic stress 

disorder (PTSD)
50

, schizophrenia
51

, subjective well-being
52

.  

 

Leave-One-Out Polygenic Scoring  

Polygenic scores (PGSs) were constructed based on the association summary statistics 

produced in the GWAS meta-analysis of non-response to SSRIs, excluding each cohort in 

turn to create independent discovery and target datasets. The target samples were EstBB, 

UKB, AGDS, and deCODE. In EstBB, the PGS was calculated using the polygenic risk score 

continuous shrinkage (PRS-cs) approach
53

 with default options. In UKB and AGDS, PGSs were 

calculated using SBayesR
54

. In the deCODE sample, the PGS was calculated using LDPred
55

. 

In all four samples, the European sample of the 1000 Genomes Phase III
56

 was used to adjust 

for LD. To facilitate the interpretability of the results, PGSs were standardized within each 

sample (mean=0, SD=1) before statistical analysis. We performed logistic regression 

analyses to investigate if the PGS is associated with non-response to SSRIs in each of the 

four target samples. Age, sex, and the first ten principal components for genetic ancestry 

were included as covariates. Meta-analyses of results from the four cohorts were performed 

using the R-package metaplus
57

 with standard normal random effect. We also weighted the 

samples based on effective sample size, using the metafor
58

 R-package.  

 

Genetically informed drug prioritization 

To estimate gene associations, we used GSA-MiXeR
59

, a novel gene-set analysis (GSA) tool 

that estimates fold enrichment and identifies gene-sets with greater biological specificity 

compared to standard GSA approaches
59

. We ran GSA-MiXeR for the summary statistics 

produced in the GWAS meta-analysis of non-response to SSRIs, SNRIs, and SSRIs/SNRIs. 

From the outputs, we chose genes with a positive MiXeR AIC value and an enrichment value 

of >10. All genes identified from GSA-MiXeR
59

 as well as Open Targets Genetics
34

 were then 

studied within networks of protein-protein interactions (PPIs) of gene products, using the 

latest version of the human protein interactome from the Barabási lab
60

, consisting of 

18,217 unique proteins (nodes) interconnected by 329,506 PPIs after removing self-loops.  

 

As most approved drugs do not target disease-associated proteins but bind to proteins in 

their network vicinity
61

, we defined a network not only including the genes identified from 

GSA-MiXeR
59

 and Open Targets Genetics
34

, but also genes in their immediate network 

proximity. To define antidepressant non-response networks (one for non-response to SSRIs, 

one for non-response to SNRIs, and one for non-response to SSRIs or SNRIs), we used the 

method network propagation
62-64

, implemented in the Cytoscape
65

 application Diffusion
64

. 

Genes identified from GSA-MiXeR
59

 and Open Targets Genetics
34

 were used as input query 

genes, and the top 1% of proteins from the diffusion output were included in the 

antidepressant non-response network. The Drug Gene Interaction Database (DGIdb, 

(https://www.dgidb.org/) v.5.0.6 (04/04/2024)
66

 was used to identify drug-gene interactions 

between approved drugs and genes in the three antidepressant non-response networks. 
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Gene-set enrichment analysis (GSEA) was performed to test for enrichment of drug-gene 

interactions within our networks. 

 

For the drugs interacting with genes in our networks, we retrieved drug-induced gene 

expression data (drug versus no drug) from the Connectivity Map (CMap) 2020
67, 68

, 

extracted from the Phase 2 data release of the Library of Integrated Cellular Signatures 

(LINCS) using the cmapR package
69

 in R version 4.3.1. As low drug concentrations in CMap 

have been shown to reduce the quality of the data
70

, we selected the highest concentration 

per drug.  

 

We also performed transcriptome-wide association studies using S-PrediXcan
71

 to impute 

the genetically regulated gene expression using summary statistics produced in the GWAS 

meta-analysis of non-response to SSRIs, SNRIs, and SSRIs/SNRIs as input. Gene expression 

was imputed using high-performance gene expression prediction models trained using 

elastic net regression (downloaded from http://predictdb.org) trained on gene expression 

data from whole blood as well as 13 brain expression data sets from GTEx (version 8)
72, 73

 

and covariance matrices calculated from 503 individuals with European ancestry from the 

1000 Genomes project
56

. For gene expression in brain, S-MultiXcan
74

 was used to combine 

the S-PrediXcan results across the 13 brain tissues (more details in Supplementary 

Methods).  

 

To evaluate if the drugs interacting with genes in our networks could change the predicted 

expression levels associated with antidepressant non-response (whether these drugs down-

regulate genes up-regulated in antidepressant non-response or vice versa), the Spearman 

correlation ρ between the drug-induced gene expression perturbations and the predicted 

expression in drug target genes within the antidepressant non-response networks was 

calculated for each drug (separately for non-response to SSRIs, SNRIs, and SSRIs/SNRIs), 

where negative correlation coefficients indicate that the drug could reverse gene expression 

changes associated with antidepressant non-response.  

 

Results  
 

GWAS meta-analyses 

From the meta-analysis of non-response to SSRIs, including a total of 114,324 individuals 

(19,606 non-responders and 94,718 responders), we identified one novel genome-wide 

significant locus (rs1106260 T/C; chr9: 138,111,032-138,136,174; OR = 1.0502; SE = 0.009; p-

value = 3.55e-08). Another locus was found to be nominally significant (rs4884091 A/G; 

chr13: 78,971,895-79,003,053; OR = 1.0602, SE = 0.011, p-value = 6.38e-08). No genome-

wide significant loci were identified from the meta-analysis of non-response to SNRIs, 

including 21,147 individuals (5,649 non-responders and 15,498 responders). However, one 

locus was nominally significant (rs10104815 T/C; chr8: 136,780,782-136,869,414; OR = 

0.9213; p-value = 6.62e-08). From the meta-analysis of non-response to SSRIs/SNRIs, 

including a total of 135,471 individuals (25,255 non-responders and 110,216 responders), 

we identified one novel genome-wide significant locus (rs60847828 T/C; chr16: 8,460,781-

8,490,789; OR = 1.0844; SE = 0.014; p-value = 1.18e-08), and one locus that was nominally 

significant (rs11677238 T/G; chr2: 114,336,733-114,512,514; OR = 1.0439; SE = 0.008; p-

value = 5.424e-08). Manhattan plots from the three meta-analyses are shown in Figure 1. 
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Quantile-quantile plots are shown in Figure S1. SNPs at the two genome-wide significant loci 

show no evidence of heterogeneity (p<5e-8), indicating that the effect is consistent across 

datasets (Table S1, Figures S2-3). When restricting the meta-analyses to samples where 

treatment response was measured using only questionnaires, similar results were obtained 

albeit the associations were no longer significant (p>5e-8) (Figure S4-5). All loci achieving 

genome-wide or nominally significance (p<1e-5) are reported in Tables S2-7. 

 

Investigation of the genome-wide significant loci (rs1106260 and rs60847828) in the GWAS 

catalogue
29

 showed no previous associations. Functional annotation of rs1106260 and 

rs60847828 using FUMA
28

 does not suggest these SNPs to be deleterious (CADD scores 

<12.37) or likely to have regulatory functionality (RegulomeDB scores = 5-7). The top three 

genes with the highest V2G score for the identified locus for non-response to SSRIs 

(rs1106260) were OLFM1, MRPS2, and PIERCE1, of which the nearest gene is OLFM1 

(distance = 168,906 bp, downstream gene variant). No significant associations were found in 

the GTEx portal (GTEx v8)
30

 for the lead SNP (rs1106260). Additional assessment of the lead 

SNP (rs1106260) and gene expression of OLFM1, MRPS2, and PIERCE1 in the BRAINEAC 

database
31

 showed significant associations between rs1106260 and gene expression of 

OLFM1 in the medulla (p=0.015) and temporal cortex (p=0.005). The top three genes for the 

identified locus for non-response to SSRIs/SNRIs (rs60847828) were TMEM114, METTL22, 

and ABAT, of which the nearest gene is TMEM114 (distance = 154,116 bp, intergenic 

variant). The lead SNP (rs60847828) was neither found in the GTEx portal (GTEx v8)
30

 nor in 

the BRAINEAC database
31

. 

 

The locus that was nominally significant associated with SSRI non-response (rs4884091) has 

been previously associated with SSRI non-response in the GWAS from the 23andMe Team20. 

The top three genes with the highest V2G score for this locus were OBI1, POU4F1, and 

EDNRB, of which POU4F1 is the nearest gene (260,067 bp, intron variant). One gene was 

mapped to the locus that was nominally significant associated with SNRI non-response 

(rs10104815), KHDRBS3 (339,483 bp, intergenic variant), and this locus has been previously 

associated with non-response to SNRIs in the GWAS from the 23andMe Team20. The top 

three genes for the locus that was nominally significant associated with SSRI/SNRI non-

response (rs11677238) were SLC35F5, RABL2A, and PAX8, of which the nearest gene is 

RABL2A (40,168 bp, upstream gene variant).  

 

Multi-trait conditional and joint analysis, SNP-based heritability, and genetic correlations 

After conditioning on depression, the identified loci were still significantly associated with 

non-response to antidepressants (Table S8-10). SNP-based heritability estimates for all 

meta-analyses were in the range 0.019-0.028 and are reported in Table S11. Genetic 

correlation analyses show positive associations between non-response to antidepressants 

and most psychiatric traits, and negative associations with cognitive traits and subjective 

well-being (Figure 2, Table S12-14). Similar results were obtained using the meta-analyses 

restricted to questionnaire data (Figure S6-8, Table S15-17) and non-response to 

antidepressants conditioned on depression (Figure S6-8, Table S18-20).  

 

Polygenic prediction of non-response to SSRIs 

Meta-analysis of leave-one-out PGS analyses using SSRI non-response GWAS results in four 

samples showed a significant association with non-response to SSRIs (OR=1.016, CI=1.005-
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1.039, p-value=0.029), shown in Figure 3. However, in two out of the four samples, the PGS 

was not significantly associated with SSRI non-response (Table S21). Similar results were 

obtained when the samples were weighted based on effective sample size (OR=1.03, 

CI=1.00-1.05, p-value=0.025) (Figure S9). 

 

Genetically informed drug prioritization 

From GSA-MiXeR, all genes with a positive AIC value and an enrichment score >10 can be 

found in Table S22 (non-response to SSRIs, N=65), Table S23 (non-response to SNRIs, 

N=108), and Table S24 (non-response to SSRIs/SNRIs, N=76). The genes included in the 

three networks and the corresponding diffusion output values as well as their node degrees 

can be found in Table S25 (SSRIs, N=252), Table S26 (SNRIs, N=287), and Table S27 

(SSRIs/SNRIs, N=260).  

 

Drug target genes in the SSRI non-response network were most significantly (p<5e-4) 

enriched for targets of the synthetic cannabinoid nabilone, and the target genes in the 

SSRI/SNRI non-response network were most significantly (p<5e-4) enriched for targets of 

bremelanotide, a drug developed to treat sexual dysfunction. However, after correction for 

the total number of drug-gene interactions (N=2,896), the enrichments remained non-

significant (FDR>0.05). The drug target genes in the SNRI non-response network were 

significantly (FDR<0.05) enriched for several GABA receptor agonists (Table S28-30). 

 

In the SSRI non-response network (Figure S10), six drugs (letrozole, clozapine, vandetanib, 

decamethonium, paclitaxel, budesonide) showed significant (p<0.05) opposite gene 

expression perturbations in drug (drug-induced expression) versus SSRI non-response-

associated expression in drug target genes in brain tissue. For blood, eight drugs 

(temazepam, acetazolamide, chlordiazepoxide, ethionamide, amisulpride, rimonabant, 

clonazepam, fluorouracil) showed significant opposite gene expression (Table S31-S34). In 

the SNRI non-response network (Figure S11), two drugs (selegiline and norethindrone) 

showed significant (p<0.05) opposite gene expression perturbations in brain, and 2 drugs 

(dexamethasone and kinetin) in blood (Table S35-38). In the SSRI/SNRI non-response 

network (Figure S12), the drug simvastatin showed significant (p<0.05) opposite gene 

expression perturbations in brain, and the drug ascorbic acid showed significant opposite 

gene expression in blood (Table S39-42). However, after correction for multiple correlation 

analyses (number of drugs), all correlations remained non-significant (FDR>0.05). Figure S13 

summarizes the steps undertaken to identify drugs that could potentially address 

antidepressant non-response (more details in Supplementary Results), and the top drugs 

are shown in Figure 4.  

 

Discussion 
 

In the present study, we identified two novel genome-wide significant loci associated with 

antidepressant non-response and showed that a polygenic score derived from our results 

predicted non-response to SSRIs in independent cohorts. By meta-analyzing real-world 

pharmacogenomic information on antidepressant non-response based on clinically assessed 

symptom scores, self-reported treatment outcomes, and data from eHR, this study 

represents the largest genetic investigation of non-response to antidepressants to date.  
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For the locus associated with non-response to SSRIs (rs1106260), the gene with the highest 

V2G score is OLFM1, which is also the nearest gene. The glycoprotein olfactomedin 1 

(OLFM1) is highly expressed in the brain and participates in neural progenitor maintenance, 

cell death in brain, optic nerve arborization, and axonal growth
75, 76

. As OLFM1 plays a role 

in neuronal development, it has previously been suggested as a candidate gene for 

neuropsychiatric disorders
77

. In a study aiming to identify biomarkers for mood disorders, 

OLFM1 showed strong evidence for predicting both depression and mania and was 

suggested as a target gene to treat depression
78

. One of the genes mapped to the identified 

locus for non-response to SSRIs/SNRIs (rs60847828) was ABAT. Variants within the GABA 

transaminase (ABAT) gene region have been associated with altered processing of 

somatosensory stimuli, indicating ABAT as a potential vulnerability marker for affective 

disorders
79

. Furthermore, it has been suggested that variants within ABAT affect valproic 

acid response
80

. Increasing evidence indicates that dysfunction of GABA, as well as 

glutamate systems contributes to depression-related behavior, and that ketamine’s 

antidepressant effects are related to its effect on glutamatergic and GABAergic neurons
81, 82

. 

Interestingly, our SNRI non-response network includes several GABA receptor genes, and we 

shortlist several drugs acting on the GABA system. These GABA receptor agonists may 

counteract the GABAergic deficits in depression
83

. We also shortlist several drugs with anti-

inflammatory actions. A growing body of evidence supports an association between 

depression and inflammatory processes, and clinical trials have indicated antidepressant 

treatment effects for anti-inflammatory agents, both as add-on treatment and as 

monotherapy
84

. Our SSRI network includes CNR1 and CNR2, the genes encoding the two 

main cannabinoid receptors, which are the primary targets for endogenous and exogenous 

cannabinoids. Studies suggest that the endocannabinoid system may be involved in the 

aetiology of depression and that targeting this system has the potential to relieve 

depressive symptoms
85

. However, the evidence that cannabinoids improve depressive 

disorders is weak and studies examining the effects of cannabinoids on mental disorders are 

needed
85, 86

.  

 

Individual differences in pharmacological treatment response can often be attributed to 

genetic variability in cytochrome P450 genes (CYP450). In our antidepressant non-response 

GWASs as well as previous GWASs on antidepressant non-response, no association with 

CYP450 genes was detected. However, our SNRI network includes CYP17A1 and CYP2B6, 

both identified from network propagation that prioritizes genes with biological and 

functional similarity to the input genes. Genetic variation in CYP2B6 influences the 

metabolism of several SSRIs and SNRIs
87

. Guidelines from the Clinical Pharmacogenetics 

Implementation Consortium (CPIC) highlight the impact of CYP2B6, and HTR2A genotypes, 

among others, on antidepressant dosing, efficacy, and tolerability
87

. The pharmacodynamic 

gene HTR2A (serotonin-2A receptor) is included in our SSRI non-response network, also 

identified from network propagation.  

 

We show an association between genetic liability of psychiatric disorders and non-response 

to antidepressants, which is in line with clinical studies
88

. We also identified a significant 

association between genetic propensity for cognitive phenotypes and improved 

antidepressant response. Similar genetic correlations have been shown in the previous 

GWAS on antidepressant response from the PGC
18

 as well as in a study investigating the 

genetic and clinical characteristics of treatment-resistant depression
38

. The strongest 
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negative genetic correlations with non-response to antidepressants were observed for 

ADHD. This may indicate that phenotypic misspecification could underlie non-response to 

antidepressants. In fact, undetected ADHD has been associated with lack of response to 

SSRIs in MDD cases
89

. In adults, ADHD may be undiagnosed, and ADHD symptoms are often 

mistaken for those of their psychiatric comorbidities
90

.  

 

Some limitations of the present study should be acknowledged. We combine various 

samples with differences in the assessment of treatment non-response, which introduces 

heterogeneity. Moreover, our study could potentially include individuals who were treated 

with antidepressants for conditions other than depression, especially in the sample where 

eHR were used to define non-response based on switching as proxy phenotype. 

Heterogeneity could also be introduced by differences in dosing, treatment duration, and 

co-treatment with other drugs. However, we performed heterogeneity tests and restricted 

our meta-analyses to samples where non-response was measured using only similar 

questionnaires, and these sensitivity analyses showed that the results were consistent 

across samples. It should also be noted that the individuals in our samples are of European 

ancestry, and our results may therefore not be directly translatable to other ethnicities.  

 

In conclusion, these results suggest that meta-analyses of GWAS utilizing real-world 

measures of treatment outcomes can increase sample sizes to improve the discovery of 

variants associated with non-response to antidepressants. 
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Tables 
 

Table 1: GWAS samples included in the GWAS meta-analysis of non-response to SSRIs, non-

response to SNRIs, and non-response to SSRIs/SNRIs 
GWAS sample Antidepressant 

class 

N total 

(Neff total) 

 

N 

responders 

N 

non-

responders  

Treatment 

response measure 

Pain et al. 2022
18

 SSRIs 5,151 

(4,479) 

1,852  

 

3,299  

 

Depression 

symptom scores 

Li et al. 2016
26

 + 

Li et al. 2020
20

 

SSRIs  19,740 

(17,586) 

 

13,130  6,610  

 

Antidepressant 

efficacy survey 

 SNRIs 7,079 

(6,943) 

4,030  

 

3,049  

 

 

EstBB SSRIs 7,168 

(4,272) 

5,862  

 

1,306  

 

Antidepressant 

efficacy survey 

 SNRIs 968  

(584) 

789  

 

179  

 

 

AGDS SSRIs 9,208 

(6,902) 

6,908  

 

2,300  

 

Antidepressant 

efficacy survey 

 SNRIs 4,426 

(4,304) 

2,580  

 

1,846  

 

 

GLAD SSRIs 4,184 

(2,416) 

3,452  

 

732  

 

Antidepressant 

efficacy survey 

UKB SSRIs 19,811 

(10,632) 

16,648  3,163  

 

Antidepressant 

efficacy survey 

deCODE SSRIs 49,062 

(8,391) 

46,866  2,196  

 

Antidepressant 

switching  

 SNRIs 8,674 

(2,148) 

8,099  

 

575  

 

 

Total SSRIs 114,324 

(64,975) 

94,718  19,606   

 SNRIs 21,147 

(16,560) 

15,498  5,649  

 

 

 SSRIs/SNRIs 135,471 

(82,187) 

110,216  25,255   

EstBB = Estonian Biobank, AGDS = Australian Genetics of Depression Study, GLAD = Genetic Links to Anxiety & Depression, UKB = UK 

Biobank 
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Figure legends 
 

Figure 1: Manhattan plot showing genome-wide association results of the GWAS meta-

analysis on non-response to SSRIs (blue), SNRIs (green), and SSRIs or SNRIs (pink). Genome-

wide significant lead SNPs are encircled in black.  

 

Figure 2: Genetic correlation between non-response to antidepressants and Alzheimer’s 

disease (AD), attention deficiency hyperactivity disorder (ADHD), autism spectrum disorder 

(ASD), anxiety disorder, bipolar disorder (BD), cognitive performance (COG), educational 

attainment (EDU), insomnia, intelligence, depression phenotypes, mood instability (MOOD), 

neuroticism, posttraumatic stress disorder (PTSD), schizophrenia (SCZ), subjective well-being 

(SWB). *p<0.05, **p<0.01, ***p<0.001  

 

Figure 3: Forest plots showing the results from leave-one-out polygenic prediction of non-

response to SSRIs in four independent cohorts, as well as meta-analyzed across these 

cohorts. Effects are reported as odds ratios (95% confidence interval).   

 

Figure 4: Top drugs identified based on gene-set enrichment analyses and drug-induced 

versus antidepressant non-response-associated gene expression, and their protein 

interaction partners in the SSRI non-response network (A), the SNRI non-response network 

(B), and SSRI/SNRI non-response network (C). Nodes refer to genes or drugs, and edges 

refer to gene-drug interactions or gene-gene interactions through identified protein-protein 

interactions between gene products (proteins). 
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