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Abstract 
Whole-genome sequencing (WGS) is increasingly favored over other genomic 
sequencing methods for clinical applications due to its comprehensive coverage and 
declining costs. WGS is particularly useful for the detection of copy number variants 
(CNVs), presumed to be more accurate than targeted sequencing assays such as WES 
or gene panels, because it can identify breakpoints in addition to changes in coverage 
depth. Recent advancements in bioinformatics tools, including those employing 
hardware acceleration and machine learning, have enhanced CNV detection. Although 
numerous benchmarking studies have been published, primarily focusing on open-
source tools for short-read WGS CNV calling, systematic evaluations that encompass 
commercially available tools that meet the rigorous demands of clinical testing are still 
necessary. In clinical settings, where the confirmation of reported CNVs is often 
required, there is a higher priority on sensitivity over specificity/precision compared to 
research applications. Moreover, clinical gene panel reporting primarily concerns 
whether a CNV affects coding regions or, in some cases, promoters, rather than the 
precise detection of breakpoints. This study aims to benchmark the performance of 
various CNV detection tools tailored for clinical reporting from WGS using reference cell 
lines, providing insights critical for optimizing clinical diagnostics. Our results indicate 
that while different tools exhibit strengths in either sensitivity or precision and are better 
suited for certain classes and lengths of variants, few can deliver the balanced 
performance essential for clinical testing, where high sensitivity is imperative. Generally, 
callers demonstrate better performance for deletions than duplications, with the latter 
being poorly detected in events shorter than 5kb. We demonstrate that the DRAGEN™ 
v4.2 CNV caller, particularly with custom filters on its high sensitivity mode, offers a 
superior balance of sensitivity and precision compared to other available tools.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2024. ; https://doi.org/10.1101/2024.07.12.24310338doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.12.24310338
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

Introduction 
The clinical utility of whole-genome sequencing (WGS) is based on its ability to provide 
a more comprehensive and accurate identification of genetic variants, including 
SNVs/indels mitochondrial variants, and CNVs, all within a streamlined workflow.1–5 The 
cost of short-read WGS has declined over the past decade, driven by advancements in 
sequencing chemistries, increased density of sequencing reads per flow cell surface, 
and the scalability of sequencing instruments.6,7  The cost of short-read WGS is nearly 
equivalent to that of whole-exome sequencing (WES) while providing at least an 8% 
increase in diagnostic yield of individuals with genetic disease7–10 Consequently, clinical 
laboratories are eager to leverage the benefits of this technology and require 
bioinformatics tools that can deliver accurate variant calls.11 
 
CNVs contribute significantly to genetic diversity and disease,12 yet they pose 
substantial detection challenges, especially in targeted sequencing assays.13 These 
assays, which have been the mainstay of clinical testing, typically detect variants based 
on subtle changes in sequencing coverage depth across exon footprints.14 Notably, the 
sensitivity for detecting single-exon deletions or duplications—a critical metric for clinical 
testing—has been reported to be around 50% at typical sequencing depths for WES 
(80-120X).15 WGS is set to supersede WES and gene panels in clinical settings due to 
its superior CNV/structural variant (SV) detection capabilities, faster turnaround times, 
and decreasing costs.2,16 Crucially, WGS facilitates the detection of entire CNVs, often 
spanning across intronic sequences not included in targeted panel sequencing, allowing 
the identification of the breakpoints of such variants, thus providing an additional layer 
of data beyond depth measurements to pinpoint these variants accurately.17 
 
Despite the appearance that CNV detection from WGS is a resolved issue, evidence to 
substantiate this claim remains scant. Recent advancements in CNV callers have 
predominantly focused on the identification of these variants from targeted sequencing 
data.14,18,19 Moreover, emerging methods, including deep learning, promise enhanced 
accuracy, but broad benchmarking is lacking.20,21 Nevertheless, systematic evaluations 
of these tools to meet clinical standards are essential. Tools for short-read WGS CNV 
calling must be rigorously evaluated for clinical applications, where orthogonal 
confirmation of CNVs is typically performed,22 emphasizing the need for high sensitivity 
over specificity/precision compared to research applications. 
 
In this study, we aimed to evaluate CNV calling tools designed for short-read, PCR-free 
WGS data. We used cell lines with known CNVs to assess their suitability for clinical 
gene-panel reporting from 50X WGS data. We compared the efficacy of several CNV 
callers using the HG002 reference cell line and a panel of 33 additional cell lines, all 
with documented CNVs in a selection of clinically relevant genes. 
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Materials and Methods 
Cell Lines Utilized. 
For whole-genome level benchmarking, we utilized the cell line characterized by the 
Genome-in-a-Bottle Consortium: HG002. Additionally, we selected 25 cell lines from the 
Coriell Institute catalog that have reported CNVs (Table 1). These cell lines include 
CNVs that overlap genes in a panel comprising 89 hereditary cancer genes, 79 
cardiometabolic disease genes, and 20 rare genetic disease genes (a total of 184 
genes after removing redundancies; Supplementary Table 1). 
 
Sample Preparation and Sequencing 
PCR-free WGS libraries from the DNA of Coriell Institute's cell lines were sequenced to 
a mean depth of 50X using paired-end 2x150bp reads on the Illumina NovaSeq 6000 
system. The reads were mapped to the human reference genome GRCh37 using the 
DRAGEN Secondary Analysis Platform.23 
 
CNV Detection Tools Evaluated 
We assessed multiple CNV calling tools for WGS including Delly (v1.6 - paired-end and 
split-read analysis),24  CNVnator (v0.4.1 - sequencing depth analysis),25 Lumpy (v0.2.13 
- paired-end and split-read analysis),26 Parliament2 (ensemble of multiple CNV 
callers),27 Cue (cue.v2.pt model - Deep Learning from alignments),21 and the DRAGEN 
4.2 CNV caller, which combines sequencing depth and split-read analyses (DRAGEN 
Secondary Analysis  Platform, Illumina, Inc.).23  We utilized the DRAGEN CNV caller in 
two modalities: default parameters, and SV-supported high sensitivity mode (hereafter 
referred to as DRAGEN HS).  All other tools used the default settings recommended by 
their respective developers and started from the same BAM alignments carried out with 
the DRAGEN multi-genome (graph) aligner.23  
  
Benchmarking Data Analysis 
Given our clinical focus, we evaluated CNV calls based on their potential to disrupt 
protein structure. For benchmarking, we defined true positives as events that 
overlapped with coding exons of canonical transcripts and matched the dosage 
direction of the CNV truth set. Thus, we counted events intersecting an exon where the 
dosage direction matched the truth set as true positives. Events not meeting this 
condition were considered false positives. To avoid double counting, we adjusted for 
events spanning multiple exons. Sensitivity and precision were calculated according to 
the definitions published by the Global Alliance for Genomes and Health (GA4GH) 
Benchmarking team.9 
 
For whole-genome level analysis, we used the Genome-in-a-Bottle SV truth set for 
HG002 v0.6 on GRCh37 (hs37d5) as our truth set.28 We identified CNVs in the truth set 
that overlapped with coding exons for the canonical transcripts of all human genes in 
GRCh37. The analysis was confined to events ranging from 500bp to 100kb. The 
original truth set contained 13 deletions and 4 duplications, overlapping 45 and 8 exons 
of GRCh37 canonical transcripts, respectively. To enhance our statistical analysis, we 
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also simulated additional gene models on top of other variants in the truth set. The exon 
structures of the genes BRCA1, BRCA2, CHEK2, PLP1, and GAA were used as 
templates for constructing new genes. However, to avoid problematic regions of the 
genome, the construction of synthetic genes was limited to the high-confidence regions 
of HG002 as identified by the GIAB Consortium and specified in the file 
HG002_SVs_Tier1_v0.6.bed. The simulation was also restricted so that the synthetic 
genes would not overlap with any real human genes. In two cases, a small adjustment 
was made to the position of the synthetic gene to explicitly support some duplication 
events we had in the data (the number of verified duplications was small, and we 
needed to make the most of the ones we had). This simulation added 47 deletions and 
6 duplications, overlapping 94 and 19 exons, respectively. 
 
For the additional 33 cell lines, we used the CNV annotations described on the Coriell 
Institute website as the truth set. Since the reported alterations for cell lines in the 
Coriell catalog are sometimes incomplete, we further curated the truth set by visually 
inspecting the alignments of any putative false positives from the callers within our gene 
panel of interest. If the signal presented in the coverage graphs was deemed 
convincing, the variant was added to the truth set (see Table 1). We also included seven 
cell lines in the study (not listed in the table) that harbor CNV events requiring a 
targeted caller due to extensive paralogy (e.g., CYP2D6, GBA, and PMS2). In this 
study, we excluded calls across these genes from our evaluation and treated these cell 
lines as 'true negatives' for the assessment of the false positive rate per sample. 
 
Custom artifact filter for DRAGEN HS 
Filtering for DRAGEN HS calls is designed to retain maximum sensitivity in genes of 
interest while discarding as many false positives as possible for the use case of gene-
panel reporting out of WGS. First, we rejected any records smaller than 500 bases (a 
size under which DRAGEN HS emits numerous false positives) and larger than 10 Mbp 
(where we observed several recurrent breakpoint-based artifacts spanning centromeres 
or extending into telomeres, not relevant for our use case). Calls based solely on 
junction reads over 100 kbp were also discarded due to recurrent artifacts; true calls in 
this range would typically have depth support as well. We also excluded any calls 
overlapping centromeres and telomeres. Finally, calls that had a reciprocal overlap of 
≥90% with recurrent artifacts identified across the cell lines were discarded. The 
resulting CNV calls product of using the DRAGEN HS method plus the custom filters will 
be hereafter referred as DRAGEN HS-F.   
 

Results 
Whole-genome benchmarking 
We evaluated CNV callers at the genome level using WGS data from the cell line 
HG002, which has been extensively characterized and for which a truth set for CNVs 
and structural variants is available in GRCh37.29 This cell line is derived from a healthy 
individual and therefore does not harbor many CNV that disrupt gene function, which 
are the focus of our evaluation. The truth set contained 13 deletions and 4 duplications, 
overlapping 45 and 8 exons of GRCh37 canonical transcripts, respectively. To improve 
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our statistical analysis, we also simulated gene models on top of other variants in the 
truth set to increase the number of overlaps evaluated. This simulation added 47 
deletions and 6 duplications, overlapping 94 and 19 exons, respectively. 
 
We included five commonly used open-source WGS CNV callers in our evaluation: 
Delly,24 CNVnator,25 Lumpy,26 and Parliament2 (an ensemble caller).27 Additionally, we 
evaluated two new WGS CNV callers: Cue, a deep-learning-based caller,21 and the 
DRAGEN 4.2 CNV caller, part of the hardware-accelerated DRAGEN Secondary 
Analysis Platform.23 This platform integrates the outputs of a sequencing depth-based 
CNV caller and a breakpoint-based caller into a unified call set. The DRAGEN caller can 
also be parametrized to operate in a high-sensitivity mode (HS), where sensitivity is 
gained at the expense of precision. We further evaluated the DRAGEN HS calls after 
filtering them through a custom process (referred as DRAGEN HS-F; cf. Methods). 
 
We evaluated sensitivity and precision considering only events that overlap exons of 
both canonical and synthetic transcripts. The truth set included a total of 60 deletions 
and 10 duplications, each overlapping one or more exons. Our results (Figure 1) show 
that the maximum combined sensitivity (for deletions and duplications) achieved was 
83% (DRAGEN HS), while the maximum precision was 76% (Cue). Delly exhibited high 
sensitivity (77%) but the lowest precision, and despite having the highest precision, 
Cue's sensitivity was relatively low (33%). Lumpy exhibited very low sensitivity and 
precision in our tests. The DRAGEN caller in high sensitivity mode (DRAGEN HS) 
achieved the best sensitivity, albeit at a lower precision (30%). However, after applying 
a set of custom filters (DRAGEN HS-F), the precision improved substantially, with only a 
small decrease in sensitivity (75%), delivering the best balance between sensitivity and 
precision. 
 
We then evaluated the performance of the callers, stratifying results by deletions and 
duplications (Figure 2). The performance for deletions followed a similar trend as 
described for the overall metrics (Figure 1). However, across all CNV callers, sensitivity 
was significantly lower for duplications. DRAGEN HS exhibited the highest sensitivity at 
47%, while Cue achieved the best precision at 50%. 
 
Finally, we evaluated the combined performance (deletions and duplications) stratified 
by event length (Figure 3): 1-5 kb and >=5 kb (up to 100 kb). Generally, all callers 
exhibited lower sensitivity for events of 1-5 kb, with some unable to detect events in this 
range (e.g., CNVnator and Cue). Additionally, the sensitivity for duplications was lower 
across all callers, particularly for events of 1-5 kb. DRAGEN demonstrated the best 
precision for small duplications. Surprisingly, many callers showed very high sensitivity 
for duplications greater than 5 kb, although their precision remained low, except for Cue. 
 
Benchmarking for virtual gene-panels from WGS data 
We expanded our evaluation beyond the HG002 cell line by selecting cell lines from the 
Coriell Institute catalog that were annotated with CNVs in exons of a “virtual” panel of 
184 genes commonly included in genetic testing for hereditary cancer, cardiovascular 
disease, and rare genetic disorders (Supplemental Table 1). Given that the rest of the 
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genome in these cell lines has not been characterized, we limited our evaluation to the 
exons of the virtual panel. Furthermore, as we identified putative false positive calls 
during our evaluations, we examined the pattern of running depth coverage in windows 
along the genome to determine whether these false positives were, in fact, real events. 
This step was necessary because it is not uncommon for cell lines to harbor events not 
listed in the catalog metadata. Ultimately, we included several non-listed events in the 
truth set for evaluation. 
 
In the 184 gene virtual panel, DRAGEN HS exhibited the highest sensitivity at 100%, 
while DRAGEN with standard settings achieved the highest precision at 77% (Figure 4). 
Notably, applying our custom filters to DRAGEN (HS-F) improved precision from 23% to 
62% without reducing sensitivity. The other callers in the study demonstrated lower 
sensitivity and precision; however, surprisingly, Delly exhibited higher precision here 
than in the WGS evaluation. Given the promising results of DRAGEN HS in this setting, 
we further analyzed its performance stratified by CNV event size, either by the number 
of exons spanned or the length of the event (Table 2). The sensitivity remained at 100% 
across all strata, while precision for DRAGEN HS-F was 100% for events smaller than 
1kb or overlapping one exon and decreased to 68% for events spanning five or more 
exons. 
 
To gain insights into failure modes, we examined the coverage patterns of genomic 
regions harboring examples of true and false positives from the DRAGEN HS-F caller. 
Figure 5A and 5B show examples of true positive deletions and duplications supported 
by both depth and junction breakpoints as a baseline. Figure 5C illustrates an example 
of a false positive, supported only by depth, that is caused by a mappability issue in 
regions paralogous to the PMS2CL pseudogene. Figure 5D depicts a false positive in 
ACTN2, which is actually a real deletion; however, the overextension of the 3’-end 
breakpoint results in a false positive exon overlap. In general, false positives were most 
commonly duplications ranging from 1-10kb in length.  
 

Discussion 
Given the relevance of CNVs in genetic diseases,12 the performance of CNV calling 
tools using NGS data can significantly impact the accuracy of clinical tests. Improving 
sensitivity for CNV detection in targeted sequencing panels—the workhorse of clinical 
testing to date—has been challenging, particularly for single-exon events.15 This 
difficulty arises from the limited data available to distinguish a diploid status from 
deletions or amplifications based solely on sequencing coverage depth, especially given 
the short length of typical exons.14,30 Some of this can be compensated for by 
increasing the overall sequencing depth (e.g., from ~200-300X to >=500X) at the 
expense of increased assay cost. This situation is poised to improve with the 
decreasing costs of whole-genome sequencing (WGS) in recent years and its growing 
adoption in clinical testing.7,8 Unlike targeted gene panels or whole-exome sequencing 
(WES), which only capture and sequence coding exon regions, WGS provides data 
across the entire span of a CNV, often including non-coding regions and breakpoints.17 
This additional information can be incorporated into CNV algorithms to improve the 
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sensitivity of variant detection, even if the event only overlaps a single exon. Numerous 
bioinformatics tools have been developed over the past decade for this purpose.14,18,19 
However, comprehensive benchmarking of these tools, focused on the goals of clinical 
genetic testing, is still lacking, particularly for those that include widely available 
commercial software used in top clinical labs. 
 
We set out to assess and benchmark a set of commonly used WGS CNV callers that we 
were able to operate, including two recently released callers that implement innovative 
approaches: Cue, which uses a novel deep learning paradigm for structural variant 
identification,21 and DRAGEN 4.2 CNV caller, part of an FPGA-accelerated 
bioinformatics software suite that consolidates two independent approaches for CNV 
calling, namely, depth and breakpoint-based.23 In clinical genetic testing, the relevance 
of CNVs is established based on their ability to disrupt coding regions and impact the 
gene’s protein sequence. We, therefore, evaluated the callers based solely on how they 
overlap with coding regions, rather than attempting to assess the accuracy of their 
breakpoint identification or length. Importantly, we conducted evaluations for use cases 
where sensitivity needs to be very high (>99%), accepting lower precision because 
missing a clinically relevant variant in medical genetic testing is not acceptable.22 This 
lower precision is often managed by performing an orthogonal validation with a 
secondary technology (e.g. microarrays, RT-PCR, long-read sequencing) as part of the 
testing process to achieve a test-level precision of >99%.22 As long as the rate of CNV 
positive cases and false positives remains within single digits, this cost is amortized 
across all cases favorably. Thus, we prioritized sensitivity over precision in this 
evaluation. 
 
As ground truth, we utilized data from a cell line used as a genomic standard by NIST 
and characterized as part of the Genome-in-a-Bottle consortium (HG002),31 developing 
a truth set of SVs and CNVs to use as a reference at the whole-genome level.29 
Furthermore, we analyzed a series of cell lines previously described as harboring CNVs 
in a list of frequently tested genes. We analyzed this data focused on a virtual panel 
composed of genes that are typically tested for assays in hereditary cancer, 
cardiovascular disease, rare genetic disease panels.2,5 Performance was solely based 
on the coding regions of the genes in the aggregated panels encompassing 184 genes 
(Supplementary Table 1). Finally, we stratified our results by event type (deletion or 
duplication) and event size/length, to gain insights into the strengths and weaknesses of 
the different callers across these strata. 
 
Our study provides a comprehensive evaluation of CNV detection tools in both whole-
genome and gene-panel settings, including commercial tools available to clinical labs 
and that often are excluded in published benchmarks. It demonstrates the varying 
performance levels of different callers, particularly between deletion and duplication 
detection. DRAGEN HS emerged as the most sensitive tool, achieving 100% sensitivity, 
a crucial requirement for clinical applications where detecting every possible event can 
be vital. However, its precision was lower at initial settings, a challenge commonly faced 
in high-sensitivity callers. The ability to customize filters according to specific clinical 
needs further enhances its utility. The application of our custom filters (DRAGEN HS-F) 
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significantly improved precision without sacrificing sensitivity, highlighting the potential 
of optimized bioinformatics pipelines to balance the trade-offs between sensitivity and 
precision effectively. 
 
These findings underscore the importance of tailored computational strategies in 
enhancing the utility of genomic data for clinical diagnostics. However, the presence of 
false positives, especially in regions with complex genomic architectures like those near 
pseudogenes, implied the need for bespoke callers tailored to the specific genes of 
interest in difficult genes such as in the case of CYP2D6.32  
 

Conclusions 
The study underscores the importance of continuous benchmarking and improvement of 
CNV detection tools to meet clinical demands. DRAGEN v4.2 HS-F, with its adjustable 
sensitivity and precision, emerges as a promising option for integrating WGS into 
clinical diagnostic pipelines. Continued improvement of CNV detection methods is 
needed to improve analytical accuracy and reduce the cost and dependence on 
orthogonal validation of WGS results. 
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Tables 
Table 1: Detailed Metrics of CNV Detection by Caller. The table indicates the gene(s) 
overlapped by a CNV, chromosome (Chr), length of relevant events (based on our calls 
with DRAGEN), number of exons overlapped by CNV, and the type of event, either 
deletion (DEL) or duplication (DUP). * in the “Type” column indicates homozygous 
event. Some of these cell lines have multiple events and large complex rearrangements 
not listed by Coriell. We examined likely true positives, and when deemed confident, we 
added them to the truth set. 

Coriell ID Gene(s) affected Chr Length (kb) 
# of 
exons Type 

HG00343 CHEK2 22 5 2 DEL 

HG00634 PALB2 16 13 1 DUP 

HG03694 ATM 11 16 4 DUP 

NA02325 AXIN1-MEFV-PKD1-TSC2 16 >3,000 145 DUP 

NA02325 
LZTR1-SMARCB1-CHEK2-
NF2 22 >5,500 60 DUP 

NA03330 PARK2 6 198 1 DUP 

NA03330 BRCA2-N4BP2L1 13 3,174 26 DUP 

NA03330 SUCLA2 13 1,924 38 DUP 

NA03330 PARK2 6 198 1 DUP 

NA04372 GALC 14 32 7 DEL 

NA04517 GALC 14 32 7 DEL* 

NA04520 TSC2 16 89 35 DEL 

NA05117 DMD X 165 2 DEL 

NA08618 ATM-DDX10 11 >3,500 125 DUP 
NA10283 DMD X 358 16 DEL* 

NA11661 GAA 17 1 1 DEL 

NA13434 PLP1 X 1 2 DEL* 

NA13480 ELN 7 1,304 33 DUP 

NA13480 JAK2 9 133 3 DUP 

NA14626 BRCA1 17 6 1 DUP 

NA18668 CFTR 7 21 2 DEL 

NA18949 BRCA1 17 6 2 DEL 
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NA19401 TK2 16 6 1 DEL 

NA20381 CLN3 16 1 2 DEL 

NA21698 PARK2-PACRG 6 >4,500 1 DEL 

NA21939 FBN1 15 6 4 DEL 

NA22208 PCCA 13 147 8 DEL 

NA23599 MECP2 X 15 2 DEL 
NA23710 CDKL5 X 8 2 DEL 

ND01039 PARK2 6 156 1 DEL 
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Table 2: Detailed Metrics of CNV Detection for DRAGEN modalities 
 

Exons spanned CNV length 

No. of exons 
Precision 
HS (%) 

Precision HS-
F (%) 

Length 
(kb) 

Precision 
HS (%) 

Precision HS-
F (%) 

1 8 100 0.5 - 1 100 100 
2 - 5 10 81 1 - 10 30 89 
> 5 1 68 >10 2 74 
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Figure Legends 
 
Figure 1. WGS Performance of the CNV/SV Callers Benchmarked.  DRAGEN v4.2 
CNV caller achieved the best balance of sensitivity and precision. The DRAGEN caller 
in high sensitivity mode (DRAGEN HS) had the highest sensitivity, albeit at a lower 
precision. On the other hand, Cue exhibited the best precision but had low sensitivity. 
We developed a set of custom filters for DRAGEN HS (cf. DRAGEN HS-F), which 
successfully improved precision with only a small reduction in sensitivity. 
 
Figure 2. Performance Exhibited by the Callers Stratified by CNV Type: Deletions 
or Duplications. The performance for deletions follows a similar trend as described for 
overall metrics. Across all CNV callers, sensitivity was much lower for duplications, with 
DRAGEN HS exhibiting the highest sensitivity and Cue achieving the best precision. 
 
Figure 3. Performance by CNV Length. Performance is further stratified by event size, 
categorized as either 1-5kb or larger than 5kb. All callers exhibited lower sensitivity for 
smaller events, with some unable to detect events in this range. Sensitivity for 
duplications was particularly low for all callers, especially for events between 1-5kb. 
 
Figure 4. Gene-Panel Level Performance. This figure presents the overall 
performance of CNV callers benchmarked for the gene panel use case. The data show 
that the DRAGEN v4.2 CNV caller exhibited the best balance between sensitivity and 
precision. When set to high sensitivity mode (DRAGEN HS), it achieved the highest 
sensitivity, albeit at the cost of decreased precision. The use of custom filters (DRAGEN 
HS-F) successfully improved precision without sacrificing sensitivity. In contrast, the 
other callers in the study demonstrated lower sensitivity and precision. 
 
Figure 5. Examples of True Positive and False Positive CNV Calls for DRAGEN 
HS-F. Coverage graphs (100bp bins) show DRAGEN CNV calls marked with 
arrowheads. "D" indicates calls backed by depth analysis, and "J" denotes calls backed 
by junction reads (breakpoints). Shaded green vertical areas represent exons of the 
canonical transcripts of genes in the panel, while other regions are shown in blue. Panel 
A displays a true positive (TP) deletion (DEL) in FBN1; Panel B shows a TP duplication 
(DUP) in PARK2; Panel C illustrates a false positive (FP) deletion in the PMS2 gene, 
caused by mappability issues in regions paralogous to the PMS2CL pseudogene 
(evidenced by a drop in MAPQ>5 coverage line); Panel D depicts a TP deletion in 
ACTN2 where the overextended right breakpoint results in a FP exon overlap.  
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Figures 
 
Figure. 1 WGS performance of the CNV/SV callers benchmarked.  
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Figure 2. Performance exhibited by the callers stratified by CNV type, either deletions or duplications.  
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Figure 3. Performance by CNV length. 
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Figure 4. Virtual Gene-Panel Performance.  
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Figure 5. Examples of true positive and false positive CNVs calls for DRAGEN HS-F 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2024. ; https://doi.org/10.1101/2024.07.12.24310338doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.12.24310338
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Table 1. Gene list for evaluation of gene-panel mode

ABCC9 CLN3 HOXB13 NF2 RYR2 TPM1
ABCG5 COL3A1 JAK2 NOTCH1 SAMD9 TRDN
ABCG8 CRYAB JPH2 NTHL1 SAMD9L TSC1
ACTA2 CSRP3 JUP PALB2 SCN5A TSC2
ACTC1 CTNNA1 KCNH2 PARK2 SDHA TTN
ACTN2 DDX41 KCNJ2 PCCA SDHAF2 TTR
AIP DES KCNQ1 PCSK9 SDHB VCL
ALK DICER1 KIT PDGFRA SDHC VHL
ANKRD26 DMD LAMP2 PHOX2B SDHD WT1
APC DOLK LDLR PKD1 SKI
APOB DSC2 LDLRAP1 PKP2 SLC2A10
APOE DSG2 LIPA PLN SMAD3
ATM DSP LMNA PLP1 SMAD4
AXIN1 EFEMP2 LOX PMS2 SMARCA4
AXIN2 EGFR LPA PMS2CL SMARCB1
BAG3 ELN LZTR1 POLD1 SMARCE1
BAP1 EMD MAX POLE SRP72
BARD1 EPCAM MECP2 POT1 STK11
BLM ETV6 MEFV PRKAG2 SUCLA2
BMPR1A FANCC MEN1 PRKAR1A SUFU
BRCA1 FANCM MET PRKG1 TAFAZZIN
BRCA2 FBN1 MITF PTCH1 TCAP
BRIP1 FBN2 MLH1 PTEN TERC
CACNA1C FH MSH2 PTPN11 TERT
CASQ2 FHL1 MSH3 RAD51C TGFB2
CAV3 FLCN MSH6 RAD51D TGFB3
CDC73 FLNA MUTYH RAF1 TGFBR1
CDH1 FLNC MYBPC3 RB1 TGFBR2
CDK4 GAA MYH11 RBM20 TK2
CDKL5 GALC MYH7 RECQL TMEM127
CDKN1B GALNT12 MYL2 RET TMEM43
CDKN2A GATA2 MYL3 RIT1 TNNC1
CEBPA GBA MYLK RNF43 TNNI3
CFTR GLA NBN RPS20 TNNT2
CHEK2 GREM1 NF1 RUNX1 TP53
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