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Abstract

Background
Mechanical ventilation (MV) is vital for critically ill ICU patients but carries

significant mortality risks. This study aims to develop a predictive model to estimate
hospital mortality among MV patients, utilizing comprehensive health data to assist
ICU physicians with early-stage alerts.

Methods
We developed a Machine Learning (ML) framework to predict hospital mortality in

ICU patients receiving MV. Using the MIMIC-III database, we identified 25,202 eligible
patients through ICD-9 codes. We employed backward elimination and the Lasso
method, selecting 32 features based on clinical insights and literature. Data
preprocessing included eliminating columns with over 90% missing data and using mean
imputation for the remaining missing values. To address class imbalance, we used the
Synthetic Minority Over-sampling Technique (SMOTE). We evaluated several ML
models, including CatBoost, XGBoost, Decision Tree, Random Forest, Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), and Logistic Regression, using a 70/30
train-test split. The CatBoost model was chosen for its superior performance in terms
of accuracy, precision, recall, F1-score, AUROC metrics, and calibration plots.

Results
The study involved a cohort of 25,202 patients on MV. The CatBoost model

attained an AUROC of 0.862, an increase from an initial AUROC of 0.821, which was
the best reported in the literature. It also demonstrated an accuracy of 0.789, an
F1-score of 0.747, and better calibration, outperforming other models. These
improvements are due to systematic feature selection and the robust gradient boosting
architecture of CatBoost.

Conclusion
The preprocessing methodology significantly reduced the number of relevant features,

simplifying computational processes, and identified critical features previously
overlooked. Integrating these features and tuning the parameters, our model
demonstrated strong generalization to unseen data. This highlights the potential of ML
as a crucial tool in ICUs, enhancing resource allocation and providing more personalized
interventions for MV patients.
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Introduction 1

In the United States, over one million patients receive mechanical ventilation (MV) 2

annually in Intensive Care Units (ICU), occupying 24–41% of ICU beds at any given 3

time [1]. Although MV is frequently considered a lifesaving intervention, patients 4

undergoing non-surgical procedures that require MV have a hospital mortality rate 5

exceeding 35% [2]. 6

7

This study aims to develop an improved predictive model to estimate the mortality 8

of MV patients using patient health data, including early-stage symptoms [3]. The 9

model is intended to assist ICU physicians in early alerting by utilizing a comprehensive 10

database containing easily obtainable and well-generalized health data for better 11

accuracy and prediction [4]. Previous research has demonstrated the feasibility of using 12

patient health data for predictive modeling in ICU settings, highlighting the importance 13

of integrating such models into clinical practice [5, 6]. 14

15

There are many factors to consider when assessing risk for mechanically ventilated 16

patients, including predictors available on the first day, which can be used to predict 17

hospital mortality [7]. Effective machine learning prediction requires careful feature 18

selection, accounting for the severity of the disease and outcomes to understand early 19

prediction factors and the impact of MV [8,9]. Previous studies have shown that 20

XGBoost performs well in predicting hospital mortality, aiding in understanding 21

different clinical situations for early-stage alerting [10,11]. However, different models 22

may be suitable for various purposes beyond performance, considering clinical outcomes 23

and contributing factors, which can influence mortality rates [12,13]. 24

25

From the present study, CatBoost performed better than other approaches. Clinical 26

situations and feature selection are crucial in assessing both short- and long-term 27

factors [14–16]. By implementing machine learning approaches, we can better 28

understand how these methods, combined with current healthcare data methodologies, 29

improve the evaluation of risk factors [17,18]. 30

31

We thoroughly examined the inclusion criteria for our feature selection process using 32

the MIMIC-III database when assessing risk factors, followed by various data extraction 33

techniques for data preprocessing. Additionally, we implemented several machine 34

learning models, each yielding unique results and offering different perspectives on 35

predicting the mortality rate for MV patients. 36

Methadology 37

Data availability 38

The Medical Information Mart for Intensive Care III (MIMIC-III) is a publicly 39

accessible dataset [4]. It contains de-identified health information from over 40,000 ICU 40

admissions at the Beth Israel Deaconess Medical Center, covering the years 2001 to 41

2012 [19]. Developed by the MIT Lab for Computational Physiology, MIMIC-III 42

includes a wide range of data categories, such as demographics, vital signs, laboratory 43

test results, medications, and mortality outcomes. This comprehensive dataset supports 44

extensive research in clinical informatics. 45
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Patient selection 46

We initially included patients who required mechanical ventilation (MV) in the ICU. To 47

exclude incomplete and duplicated data, we refined the dataset according to specific 48

inclusion criteria: (I) patients aged between 18 and 90 years; (II) patients with complete 49

mortality information; (III) patients with sufficient clinical data, ensuring columns with 50

fewer than 90% missing data were included. We utilized ICD-9 codes to identify 51

relevant patient records and linked these with ventilation-related data, resulting in a 52

final cohort of 25,202 patient samples. The flowchart of patient selection and data 53

preprocessing is illustrated in Fig 1. 54

Fig 1. Patient Selection Flowchart illustrating the inclusion criteria and data
preprocessing steps leading to the final cohort of 25,202 patient samples.

Feature selection and data preprocessing 55

The feature selection process in this study involved several stages. Initially, backward 56

elimination and the Lasso method were employed to identify the most significant 57

features [20,21]. This selection was further refined through an extensive review of 58

existing literature and clinical insights, resulting in the selection of 32 features. 59

60

The demographic data included age. Vital signs such as heart rate (HR), respiratory 61

rate (RR), respiratory rate set (RR Set), temperature (TEMP), non-invasive blood 62

pressure systolic (NIBP Systolic), non-invasive blood pressure diastolic (NIBP 63

Diastolic), arterial blood pressure systolic (ABP Systolic), and arterial blood pressure 64

diastolic (ABP Diastolic) were recorded. Additionally, laboratory values encompassing 65
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bicarbonate, serum creatinine, serum potassium concentration, and serum sodium 66

concentration were included. Comorbidities such as liver failure, chronic heart failure, 67

organ failure, sepsis, uncomplicated hypertension, and respiratory dysfunction were also 68

documented. Differences in vital signs, such as the differences in heart rate, respiratory 69

rate, NIBP systolic, and temperature, were calculated. The detailed overview of feature 70

information used in this study is presented in Table 1. 71

72

Table 1. Detailed Overview of Feature Information

Feature Type Feature Name Feature Type Feature Name

Lab Results

Bicarbonate max value

Vitals

Heart Rate min
Bicarbonate min value Respiratory Rate min
Serum Creatinine min value Respiratory Rate Set min
Serum Creatinine diff Temperature C (calc) min
Serum Potassium Concentration max value Arterial BP [Diastolic] min
Serum Sodium Concentration min value Heart Rate max
Serum Sodium Concentration diff Non Invasive Blood Pressure systolic min

Demographics Age Non Invasive Blood Pressure diastolic min

Comorbidities

liver failure count Temperature Fahrenheit min
Chronic heart failure count Arterial BP [Systolic] max
organ fail count NBP [Systolic] max
sepsis count Respiratory Rate Set max
Uncomplicated hypertension count Arterial BP [Diastolic] max
respiratory dysfunction count Temperature F max

Differences

Heart Rate diff
Respiratory Rate diff
NBP [Systolic] diff
Temperature F diff

To address class imbalances in the target variables, the Synthetic Minority 73

Over-sampling Technique (SMOTE) was applied [22]. Data preprocessing involved 74

removing columns with over 90% missing data and applying mean imputation to the 75

remaining missing values. Categorical features were converted into numerical codes 76

using a Label Encoder to integrate them into regression and machine learning models. 77

These preprocessing steps were essential for standardizing the dataset, enabling efficient 78

model training and evaluation, and ensuring that analyses accurately reflected the 79

original measurements and categories present in the dataset. 80

Model development and optimization 81

Our final dataset included 25,202 patients with 32 features. We performed a 70/30 82

train-test split to facilitate model evaluation, choosing this method over cross-validation 83

to improve performance and computational efficiency. We developed and assessed 84

several machine learning (ML) algorithms, including Logistic Regression, CatBoost, 85

XGBoost, Decision Tree, Random Forest, Support Vector Machine (SVM), and 86

K-Nearest Neighbors (KNN). 87

88

The performance of these models was primarily measured using the Area Under the 89

Receiver Operating Characteristic (AUROC) scores, with accuracy and F1 scores also 90

calculated for a comprehensive comparison. Given the widespread use of AUROC in 91

existing literature, it was selected as the primary metric for model evaluation [23]. 92

CatBoost emerged as the top performer, confirming its superior performance relative to 93

other models. Introduced in 2017, CatBoost is a novel boosting method based on 94

Gradient-Boosted Decision Trees (GBDT). It offers several advantages, including 95
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support for categorical variables, streamlined parameterization, fast prediction 96

capabilities, and notable accuracy [24]. Our study highlights the advantages of using 97

CatBoost in hospital mortality prediction. 98

99

To provide a thorough comparison, we included six widely employed machine 100

learning algorithms as baseline models: Decision Tree, Random Forest, SVM, KNN, 101

Logistic Regression, and XGBoost. Decision trees partition the feature space 102

hierarchically, minimizing impurity in each split [25]. Random Forest, an ensemble 103

method, aggregates multiple decision trees for prediction [26]. SVM seeks an optimal 104

hyperplane for class separation, maximizing the margin [27]. KNN assigns class labels 105

based on the majority vote among the k nearest neighbors [28]. Logistic Regression 106

estimates binary outcome probabilities using a logistic function [29]. XGBoost, an 107

accelerated gradient boosting implementation, iteratively enhances predictive accuracy. 108

These diverse methodologies allowed us to comprehensively evaluate CatBoost’s 109

performance [30]. 110

111

In comparing CatBoost with these baseline models, distinct differences emerged [31]. 112

CatBoost’s symmetric algorithm for gradient-boosted decision trees provided significant 113

enhancements in accuracy, robustness, and computational efficiency [32]. Evaluation 114

metrics such as accuracy, precision, recall, F1-score, AUROC metrics, and calibration 115

plots highlighted the predictive strengths of each model across various criteria. By 116

employing these methodologies, we developed a robust predictive model for hospital 117

mortality in mechanically ventilated ICU patients. This model offers valuable insights, 118

supporting clinical decision-making and optimizing resource allocation within ICUs. 119

120

Statistical analysis of models 121

To validate the statistical robustness of our model results, we conducted a 122

comprehensive statistical analysis comparing the train and test sets using t-tests and 123

chi-square tests. The dataset was split into a 70% train set and a 30% test set, which 124

were used to evaluate the performance of trained models. A threshold p-value of 0.05 125

was set to determine the significance of differences [33]. This analysis focused on 126

identifying any significant discrepancies between the two datasets, ensuring the 127

reliability of the study’s findings. 128

129

T-tests were employed to compare the means of continuous variables between the 130

train and test sets. For categorical variables, chi-square tests were utilized to assess the 131

independence between the two sets. We tested the hypothesis that there was no 132

significant difference between the train and test sets. If the p-value for each variable was 133

greater than 0.05, we could reject the null hypothesis and conclude that the test set had 134

notable distinctions from the train set. This analysis was crucial for confirming the 135

consistency and generalizability of our model. 136

Features importance 137

We analyzed each variable’s impact on our model using SHAP (SHapley Additive 138

exPlanations) values, which measure feature importance. SHAP values reveal the most 139

influential features in predicting the model’s output by ranking them based on their 140

impact [34]. 141

142

The graphical representation of SHAP values includes a bar plot of mean absolute 143

SHAP values, indicating how much each feature contributes to the model’s predictions. 144
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For instance, ’Age’ was identified as the most significant feature, followed by 145

’Bicarbonate max value’ and ’respiratory dysfunction count’. These top-ranked features 146

had higher mean absolute SHAP values, showing their significant impact on the model’s 147

output. Lesser-impact features, such as ’Respiratory Rate min’ and ’Temperature 148

F max’, had lower SHAP values. The SHAP summary plot, presented in Fig 2, visually 149

demonstrates these findings. This analysis provides valuable insights into the internal 150

mechanics of our machine learning models, ensuring transparency, improving model 151

accuracy, and informing decision-making by highlighting key drivers of predictions. 152

153

Fig 2. SHAP Analysis Bar plot of mean absolute SHAP values, demonstrating the
impact of each feature on the model’s predictions, with ’Age’ being the most significant,
followed by ’Bicarbonate max value’ and ’respiratory dysfunction count’.

This graphical representation provides a valuable tool for understanding the inner 154

workings of complex machine learning models. By interpreting the average impact of 155

each feature on model output magnitude, we gain insights into which features drive 156

predictions the most and help ensure transparency in the predictive process. This, in 157

turn, aids in debugging, improving model accuracy, and making informed decisions. 158

This analysis provides valuable insights into the internal mechanics of our machine 159

learning models, ensuring transparency, improving model accuracy, and informing 160

decision-making by highlighting key drivers of predictions. 161
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Results 162

Cohort characteristics model completion 163

Following our approach for feature selection and data preprocessing for ICU patients 164

requiring mechanical ventilation, our final dataset included 25,202 patients from the 165

MIMIC-III database. The selected cohort was randomly split into training and testing 166

sets with a ratio of 70/30, resulting in 17,641 patients for training and 7,561 patients for 167

testing. The training set was used to train the models, while the testing set was 168

employed to evaluate the performance of our proposed model. To rigorously evaluate 169

the disparity between the training and testing sets, we conducted a statistical analysis 170

focusing on the hypothesis that the testing set exhibited notable distinctions from the 171

training set. A threshold p-value of 0.05 was set to ascertain the significance of the 172

differences. The analysis aimed to identify any substantial gaps between the two 173

datasets, ensuring the reliability of the study’s findings. The detailed cohort values and 174

p-values reflecting differences between the training and testing sets are presented in 175

Table 2. 176

177

Table 2. Detailed Overview of Cohort Characteristics for train and test cohort. Values are presented as means with the
standard deviations in parentheses.

Characteristics Train Cohort (N=17,638) Test Cohort (N=7,562) T-Stat P-Value

Age 63.12(16.50) 62.97(16.41) 0.68 0.49
Heart Rate min 60.02(16.77) 60.07(16.79) -0.2 0.84
Respiratory Rate min 8.31(4.23) 8.35(4.21) -0.6 0.55
Respiratory Rate Set min 10.12(3.72) 10.07(3.76) 1.18 0.24
Temperature C (calc) min 35.53(2.38) 35.53(2.4) 0.21 0.83
Arterial BP [Diastolic] min 33.46(13.95) 33.49(14.18) -0.15 0.88
Non Invasive Blood Pressure systolic min 86.08(11.99) 86.12(11.65) -0.22 0.82
Non Invasive Blood Pressure diastolic min 40.42(8.05) 40.33(7.97) 0.93 0.35
Temperature Fahrenheit min 94.02(8.23) 93.98(8.43) 1.13 0.26
Arterial BP [Systolic] max 166.22(22.91) 165.72(23.44) 1.58 0.11
NBP [Systolic] max 150.96(22.11) 150.57(22.33) 1.31 0.19
Respiratory Rate Set max 16.46(4.72) 16.42(4.71) 0.71 0.48
Temperature F max 100.32(1.95) 100.36(2.07) 0.71 0.48
Arterial BP [Diastolic] max 92.73(20.80) 92.39(20.59) 1.12 0.23
Heart Rate max 102.97(6.02) 101.98(14.46) 1.14 0.26
Heart Rate diff 58.12(27.83) 58.02(27.67) 0.28 0.78
NBP [Systolic] diff 69.82(36.85) 69.79(36.73) 0.06 0.95
Respiratory Rate diff 25.36(11.35) 25.16(11.34) 1.29 0.2
Temperature F diff 5.52(9.69) 5.42(9.17) 0.81 0.42
Bicarbonate max value 30.32(4.64) 30.36(4.92) -0.53 0.6
Bicarbonate min value 20.17(4.59) 20.19(4.61) -0.38 0.7
Serum Creatinine min value 0.80(0.67) 0.80(0.71) 0.37 0.71
Serum Creatinine diff 69.63(312.66) 66.18(336.43) 0.78 0.43
Serum Potassium Concentration max value 12.13(17.83) 11.83(17.04) 1.23 0.22
Serum Sodium Concentration min value 106.60(45.45) 106.59(45.36) 0.03 0.98
Serum Sodium Concentration diff 38.07(47.77) 38.21(49.47) -0.19 0.85
liver failure count 0.07(0.33) 0.07(0.32) 0.5 0.62
Chronic heart failure count 0.14(0.56) 0.12(0.5) 2.17 0.03
organ fail count 1.39(2.12) 1.35(1.88) 1.58 0.11
sepsis count 0.15(0.44) 0.15(0.43) 0.56 0.58
Uncomplicated hypertension count 0.75(0.70) 0.76(0.74) -0.67 0.5
Respiratory dysfunction count 0.30(0.62) 0.30(0.6) 0.45 0.65
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The results indicated that the training and testing sets were largely comparable. 178

However, one variable, ‘Chronic heart failure count,’ reflected a significant difference 179

between the datasets, as evidenced by its p-value. Overall, the analysis confirmed that, 180

apart from this variable, there were no significant differences between the training and 181

testing sets, ensuring that the model’s results are reliable and generalizable. 182

Evaluation metrics proposed and baseline models’ performance 183

The results for both the proposed and baseline models are summarized in Table 3. The 184

proposed approach, using the CatBoost model, achieved an AUROC of 0.862, an 185

accuracy score of 0.789, and an F1 score of 0.747. These metrics highlight the model’s 186

accuracy and robustness in reducing both Type I and Type II errors, validating its 187

effectiveness for our predictive modeling tasks. The plot of the ROC curves for both the 188

proposed and baseline models is presented in Fig 3. 189

190

Table 3. Summary of the evaluation metrics (AUCROC, Accuracy, Precision,
Recall, F-Score) for the prediction models on the test set

Model AUROC Accuracy Precision Recall F-Score

Decision Tree 0.793 0.734 0.697 0.678 0.687
Random Forest 0.826 0.750 0.708 0.714 0.711
KNN 0.776 0.714 0.624 0.654 0.663
Logistic Regression 0.805 0.737 0.689 0.706 0.697
SVM 0.837 0.766 0.721 0.745 0.732
XGBoost 0.857 0.784 0.766 0.717 0.741
CatBoost (Proposed) 0.862 0.789 0.771 0.724 0.747

Fig 3. Model Comparison The AUROC curves and scores for seven models:
CatBoost, XGBoost, SVM, Logistic Regression, Random Forest, KNN, and Decision
Tree.
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Among the baseline models developed using the MIMIC-III database, the Support 191

Vector Machine (SVM) and XGBoost models performed notably well, with high 192

AUROC, accuracy, precision, recall, and F1 scores. In contrast, the Decision Tree and 193

K-Nearest Neighbors (KNN) models showed relatively lower performance across these 194

metrics. Overall, the CatBoost model emerged as the top-performing model, followed 195

closely by SVM and XGBoost. The results indicate that the proposed approach 196

outperforms the best baseline models. 197

198

Fig 4 shows the calibration curves for seven machine learning models: CatBoost, 199

XGBoost, SVM, Logistic Regression, Random Forest, KNN, and Decision Tree. The 200

X-axis represents the predicted probability, and the Y-axis represents the true 201

probability, with the diagonal line indicating perfect calibration. Observations reveal 202

that CatBoost, XGBoost, and Logistic Regression exhibit good calibration, closely 203

aligning with the diagonal line. SVM and Random Forest show moderate calibration, 204

with some deviation. In contrast, KNN and Decision Tree exhibit poor calibration, 205

slightly deviating from the diagonal line. These results suggest that CatBoost, 206

XGBoost, and Logistic Regression are better at predicting accurate probabilities. 207

Fig 4. Calibration Curves for seven machine learning models, comparing predicted
probabilities with true probabilities. CatBoost, XGBoost, and Logistic Regression show
better calibration, while KNN and Decision Tree show poorer calibration.

Discussion 208

Summary of existing model compilation 209

Several models have been concurrently developed to predict mortality for ICU patients, 210

specifically those receiving mechanical ventilation (MV). These include machine learning 211
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(ML) frameworks using various techniques and databases, with a particular focus on the 212

MIMIC-III database due to its comprehensive nature. Notably, Zhu et al. utilized a 213

wide range of features and ML methods, ultimately finding that the XGBoost model 214

performed best with the highest AUC among their tested models. 215

216

In Zhu’s study, which also utilized the MIMIC-III database, data preprocessing 217

resulted in a dataset of 25,659 patients and 55 predictors. Their features included 218

demographics, ICU diagnosis, pre-ICU comorbidities, vital signs, disease severity scores, 219

and laboratory test results from the first day of ICU admission. Various machine 220

learning methods were employed, including KNN, bagging, logistic regression, decision 221

tree, XGBoost, random forest, and neural networks [7]. 222

223

In contrast to the existing literature, our study employs a more streamlined feature 224

selection process, using only 32 features derived from backward elimination, the Lasso 225

method, and expert clinical insights. We addressed class imbalances using the Synthetic 226

Minority Over-sampling Technique (SMOTE) and managed missing data with median 227

imputation and categorical transformations via Label Encoder. Our proposed approach 228

leverages the CatBoost model, known for its superior handling of categorical variables 229

and computational efficiency. The CatBoost model in our study achieved an AUROC of 230

0.862, a significant improvement from the initial 0.821 AUROC score, and demonstrated 231

notable performance in terms of accuracy (0.789) and F1-score (0.747). This is a 232

marked improvement over Zhu et al.’s findings, which, despite using more features (55 233

in total), did not achieve as high an AUROC score. Additionally, the calibration plots 234

showed that our models are well-calibrated. 235

236

The key advantages of our approach over previous studies are multifold: (1) our 237

systematic feature selection process, combined with clinical insights, ensures that only 238

the most pertinent features are included, reducing complexity and enhancing model 239

accuracy; (2) the application of SMOTE effectively addresses the imbalance in target 240

variables, which was not considered in previous studies; and (3) CatBoost’s gradient 241

boosting architecture and efficiency in handling high-dimensional data make it a 242

superior choice for this application, outperforming traditional models in both accuracy 243

and computational speed. 244

Study limitations and future research 245

Our study has several limitations that need to be acknowledged. Firstly, we were unable 246

to validate our model using external datasets due to the lack of access to comprehensive 247

databases similar to MIMIC-III. This limitation restricts our ability to confirm the 248

generalizability and robustness of our proposed model across different patient 249

populations and clinical settings. Future research should focus on validating our models 250

using external datasets to ensure their applicability in diverse healthcare environments. 251

252

Secondly, the MIMIC-III database we utilized is over ten years old and lacks 253

comprehensive historical information for many patients. This could introduce bias in 254

our dataset selection, potentially affecting the model’s performance and its relevance to 255

current clinical practices. The reliance on an older database may not fully capture the 256

advancements in ICU care and patient management that have occurred over the past 257

decade. To address this limitation, future research should aim to leverage newer 258

databases that reflect the latest clinical data and practices, thereby improving the 259

model’s accuracy and applicability. 260

261
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Additionally, while our study implemented advanced feature selection and data 262

preprocessing techniques, there is still room for improvement in handling missing data 263

and imbalances in the dataset. Future studies could explore more sophisticated 264

imputation methods and balancing techniques to further enhance model performance. 265

By addressing these limitations, future research can build on our findings and contribute 266

to more robust and generalizable predictive models for ICU patient outcomes. 267

268

Future research should explore the integration of deep learning approaches, such as 269

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), which 270

can provide significant improvements in handling complex and high-dimensional data. 271

These methods are particularly useful for capturing temporal patterns and dependencies 272

in the data, which are critical in predicting outcomes for ICU patients. Assessing the 273

feasibility and effectiveness of these advanced models in the context of ICU mortality 274

prediction could lead to more accurate and reliable predictions. 275

276

Furthermore, it is essential to consider the clinical implementation of predictive 277

models. Developing user-friendly tools and interfaces that can be seamlessly integrated 278

into clinical workflows will be crucial. Engaging with clinicians during the development 279

process to understand their needs and preferences will ensure that the models are not 280

only accurate but also practical and easy to use in everyday clinical practice. This 281

approach will ultimately enhance the adoption and impact of predictive models in 282

improving patient outcomes in the ICU. 283

284

Lastly, future studies should investigate the potential of employing real-time data 285

streams and continuous learning models to keep the predictive systems up-to-date with 286

the latest clinical data and practices. This dynamic approach could significantly 287

improve the model’s responsiveness and accuracy, ensuring that it remains relevant and 288

effective in rapidly evolving clinical environments. 289

290

Conclusion 291

This study significantly improves the prediction of hospital mortality for ICU patients 292

on mechanical ventilation using advanced machine learning techniques. By applying 293

data imputation, bootstrapping, and model optimization, we enhanced our models’ 294

predictive accuracy and robustness, as shown by the substantial improvements in AUC 295

and accuracy metrics. 296

297

The CatBoost model, noted for its efficient handling of categorical variables and 298

computational demands, proved particularly effective. Our streamlined feature selection 299

process and the use of SMOTE ensured the inclusion of relevant features, reducing 300

complexity and boosting model performance. Additionally, our models demonstrated 301

good calibration, ensuring that predicted probabilities closely matched actual outcomes. 302

303

However, limitations remain. The absence of external dataset validation and reliance 304

on the older MIMIC-III database may introduce biases and limit generalizability. 305

Future research should validate our models with newer, diverse datasets to enhance 306

applicability across clinical settings. Incorporating additional data types, such as 307

clinical notes and images from the MIMIC-III dataset, could further improve model 308

accuracy and reliability. Leveraging these data sources aims to develop models that 309

perform well both in controlled environments and real-world clinical settings. 310

311

July 12, 2024 11/14

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2024. ; https://doi.org/10.1101/2024.07.12.24310325doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.12.24310325
http://creativecommons.org/licenses/by/4.0/


Ongoing research and integration of varied datasets and advanced data types will 312

continue to improve model generalizability and performance, ultimately aiding clinicians 313

in making informed decisions and improving patient outcomes in ICUs. 314
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