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Abstract  

Background: The genetic landscape of cardiometabolic risk factors has been explored 

extensively. However, insight in the effects of genetic variation on these risk factors over the 

life course is sparse. Here, we performed genome-wide interaction studies (GWIS) on 

different cardiometabolic risk factors to identify age-specific genetic risks. 

Methods: This study included 270,276 unrelated European-ancestry participants from the 

UK Biobank (54.2% women, a median age of 58 [interquartile range (IQR): 50, 63] years). 

GWIS models with interaction terms between genetic variants and age were performed on 

apolipoprotein B (ApoB), low-density lipoprotein-cholesterol (LDL-C), log-transformed 

triglycerides (TG), body mass index (BMI), and systolic blood pressure (SBP). Replication 

was subsequently performed in the Copenhagen General Population Study (CGPS) and the 

Estonian Biobank (EstBB). 

Results: Multiple lead variants were identified to have genome-wide significant interactions 

with age (Pinteraction <1e-08). In detail, rs429358 (tagging APOE4) was identified for ApoB 

(Pinteraction = 9.0e-14) and TG (Pinteraction = 5.4e-16). Three additional lead variants were 

identified for ApoB: rs11591147 (R46L in PCSK9, Pinteraction = 3.9e-09), rs34601365 (near 

APOB, Pinteraction = 8.4e-09), and rs17248720 (near LDLR, Pinteraction = 2.0e-09). Effect sizes 

of the identified lead variants were generally closer to the null with increasing age. No 

variant-age interactions were identified for LDL-C, SBP and BMI. The significant 

interactions of rs429358 with age on ApoB and TG were replicated in both CGPS and EstBB. 

Conclusions: The majority of genetic effects on cardiometabolic risk factors remains 

relatively constant over age, with the noted exceptions of specific genetic effects on ApoB 

and TG. 
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Introduction 

Cardiovascular disease (CVD) remains a leading cause of death worldwide, and contributes 

substantially to morbidity and healthcare costs (1, 2). It is widely recognized that 

dyslipidaemia, hypertension, obesity, and behavioural factors such as smoking are important 

cardiovascular risk factors (2, 3). With the expansion of human genetic datasets, genome-

wide association studies (GWAS) have provided increasing insight into the underlying 

biological mechanisms of risk factors for multifactorial diseases which has resulted in the 

identification of targets for cardiovascular risk management and CVD prevention (4-6). Also, 

the Global Lipids Genetics Consortium (GLGC) identified several novel and ancestry-

specific loci for dyslipidaemia, resulting in improved insight in the underlying biology and 

fine-mapping of functional variants (7, 8). 

Most cardiometabolic risk factors are influenced by a combination of genetic and non-

genetic factors (9-11). Age is an important non-modifiable determinant for CVD risk (12, 13). 

Several studies have reported that the relative impact of modifiable risk factors on CVD risk 

may be greater in younger than in older individuals (14-16). However, the impact of age on 

the genetic architecture of cardiovascular risk factors has not been widely explored yet (12), 

which may be an explanation of the attenuated associations with increasing age. As the 

number of people reaching advanced age is increasing, the investigation of interactions 

between genetic variation and age on cardiovascular risk factors is increasingly important for 

the identification of targets for CVD prevention and intervention in older people. 

Cardiometabolic risk factors, including dyslipidaemia, hypertension, and obesity are 

predominant risk factors for CVD (17-19). Few studies have examined the interactions of 

genetic variants with age on blood pressure and body mass index (BMI), and only a few 

variants with small effect sizes varying over the life time have been identified thus far (20, 

21). Increased low-density lipoprotein-cholesterol (LDL-C) and triglycerides (TG) are main 
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components of dyslipidaemia associated with CVD risk (19, 22, 23). Recently, apoprotein B 

(ApoB) has been identified as a more precise indicator of CVD risk than LDL-C (24, 25). 

Thus far, insight in the effects of genetic variation on cardiometabolic risk factors over the 

life course is limited. Therefore, we aimed to assess the interactions of genetic variants with 

age on common cardiometabolic risk factors, namely ApoB, LDL-C, TG, BMI, and systolic 

blood pressure (SBP), by large-scale genome-wide interaction analysis (GWIS).  
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Methods 

Study population and design 

The primary (discovery) analyses of the present study were embedded in the prospective UK 

Biobank (UKB) cohort, which recruited over 500,000 participants aged 40-70 years across 

the entire United Kingdom during the baseline survey between 2006 and 2010. Extensive 

phenotypic and genotypic details of the participants have been collected since the baseline 

assessment, including sociodemographic data, lifestyle, physical measures, biological 

samples (blood, urine and saliva), genome-wide genotyping, and longitudinal follow-up on a 

wide range of health-related outcomes. The UKB cohort study was approved by the North-

West Multicentre Research Ethics Committee (MREC). All participants provided electronic 

written informed consent for the study. A detailed description of the UKB cohort study has 

been presented elsewhere (26).  

To minimize population stratification bias, the present study restricted participants to 

318,734 unrelated individuals with European ancestry, based on the estimated kinship 

coefficients for all pairs and the self-reported ancestral background (27). After excluding 

individuals with missing data on the examined five risk factors, we ultimately included 

270,276 participants. Details of missingness for each trait are presented in supplementary 

Table S1, with the largest percentage of missingness for SBP being 8.7%. 

Cardiometabolic risk factors 

All five cardiometabolic risk factors, being ApoB (g/L), LDL-C (mmol/L), TG (mmol/L), 

BMI (kg/m2), and SBP (mmHg), were collected and measured during the baseline assessment. 

ApoB, LDL-C, and TG were measured based on blood samples with the Beckman Coulter 

AU5800. Consistent with studies conducted by some large consortia (8, 28), the LDL-C level 

was divided by 0.7 if participants used statins. TG was natural log-transformed to normal 

distribution for subsequent analyses. The BMI values in the UKB data were calculated from 
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height and weight. SBP was measured twice in a resting sitting position at the study centre, 

and the average of the two measurements was used. In agreement with previous studies, 

including genetic studies (21), if participants reported taking antihypertensive medication, 10 

mmHg were added to the mean of the measured SBP. Besides, if a value was more than 6 

standard deviations (SD) above or below the mean, we set it to exactly at 6 SDs from the 

mean. 

Genotyping and genetic imputations 

UKB genotyping was conducted by Affymetrix using a bespoke BiLEVE Axium array for 

approximately 50,000 participants, and using the Affymetrix UK Biobank Axiom array for 

the remaining participants. All genetic data were quality controlled centrally by UKB 

resources. More information on the genotyping processes can be found online 

(https://www.ukbiobank.ac.uk). Based on the genotyped single-nucleotide polymorphisms 

(SNPs), UKB resources performed centralized imputations on the autosomal SNPs using the 

UK10K haplotype (29), 1000 Genomes Phase 3 (30), and Haplotype Reference Consortium 

reference panels (31). Autosomal SNPs were pre-phased using SHAPEIT3 and imputed using 

IMPUTE4. In total, ~96 million SNPs were imputed.  

Genome-wide interaction analyses 

Using the software program GEM (version 1.4.2) (32), the GWIS of each cardiovascular risk 

factor was carried out for the included 270,276 UKB individuals by the generalized linear 

model, with covariates including age, sex, first ten genetic principal components (PCs), and 

an interaction term between genetic variant and age. SNPs with a minor allele frequency 

below 0.001 were removed. The genome-wide significant interaction effect was set at a P 

value less than 1e-8 (5e-8 /five risk factors) to correct for the multiple testing. We used the 

Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA) web-

based application (https://fuma.ctglab.nl/) (33) to identify independent lead genetic variants 
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(r2 < 0.1), using the 1000 G Phase 3 EUR as reference panel population. Positional mapping 

is performed based on annotations obtained from ANNOVAR (34) with the maximum 

distance of 10kb from genetic variants to genes. 

Look-up analyses for potential gene-age interactions 

The power issues for strict genome-wide significant tests may result in some variants with 

weak interactions with age not being identified. In addition to the primary analyses, we thus 

performed conventional (marginal) GWAS, and extracted independent lead variants with 

genome-wide significant effects on the corresponding risk factor (P-values for the marginal 

effects less than 5e-8). Subsequently, we explored their interaction effects with age in the 

GWIS described above. The statistically significant threshold of the interaction term was 

defined as 0.05 divided by the corresponding number of extracted genetic variants for each 

risk factor. The identified variants showing statistically significant interaction with age were 

then explored in GWAS Catalogue (https://www.ebi.ac.uk/gwas/) to investigate their mapped 

gene. 

Stratified analyses for lead genetic variants  

Included participants were categorized into three age groups, [40, 50), [50, 60) and [60,70] 

years. For lead genetic variants showing genome-wide significant interaction with age after 

Bonferroni correction (P-values for the interaction terms less than 1e-8), we performed linear 

regressions to assess the associations of their genotypes with the corresponding risk factors in 

the different age groups, adjusting for sex and the first ten genetic PCs. We further tested the 

interaction effects as well as the age-stratified effects of the identified lead variants and age in 

women and men separately. 

Replication of the main study results  

The Copenhagen General Population Study (CGPS) is an ongoing prospective cohort study of 

109,751 Danish adults aged 20–100 years, recruited between 2003 and 2015 (35). Invited 
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individuals were randomly selected from the national Danish Civil Registration System to 

represent the general population of white Danish adults. All participants filled in a 

questionnaire, had a physical examination, and had blood samples collected for biochemical 

analyses at the baseline survey.  

The Estonian Biobank (EstBB) is a population-based biobank cohort that currently 

comprises more than 200,�000 individuals, representing ~ 20% of the adult population in 

Estonia. Details of the EstBB has been described elsewhere (36). Briefly, all included 

participants completed a comprehensive questionnaire at baseline, including personal data, 

genealogical data, lifestyle data, medical history and current health status, etc. Blood samples 

for DNA, plasma, and white blood cell are also collected and stored at baseline. Besides, all 

EstBB participants have been genotyped. The EstBB project is being conducted according to 

the Estonian Human Genes Research Act (HGRA), and all included participants have signed 

a broad informed consent form. 

For replication purposes of the main findings, in CGPS and EstBB, we tested the 

interactions between the lead variants and age, and performed the age-stratified analyses. For 

analyses conducted in EstBB, generalised linear models were adjusted for sex, age (not 

included in age-stratified analyses) and the first ten genetic PCs. As only a small proportion 

of participants have chip data in CGPS, the generalised linear models in CGPS were 

unadjusted for genetic PCs and only adjusted for sex and age. In EstBB and CGPS, 

interactions were also tested separately for women and men, and was carried out in the sub-

population of 40- to 70-year-olds to align with the UKB study population. 
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Results 

Characteristics of study participants 

A total of 270,276 unrelated European-ancestry participants (54.2% women, and a median 

age at inclusion of 58 [interquartile range (IQR): 50, 63] years) from UKB were eligible for 

analyses in this study. The baseline characteristics of the cardiometabolic risk factors in the 

UKB stratified by age, are presented in Table 1. In addition, 97,283 participants (65.6% 

women) from EstBB, and 107,435 participants (55.11% women) for ApoB and 107,504 

participants (55.10% women) for TG from CGPS were included for validation analyses. The 

detailed characterises from both two validation studies were presented in Table S2. In general, 

and as expected, the levels of the examined risk factors were higher in the older group.  

In addition, the genotype frequencies of the lead genetic variants (detailed below) in 

different age groups from the UKB and validation studies (EstBB and CGPS) were presented 

in Table 2. The frequencies of the examined genotypes were similar across the different age 

groups. 

Genome-wide interaction analyses 

In total, we observed genome-wide significant interaction effects (P-values for interaction 

terms < 5e-8) between 258 genetic variants and age on the examined phenotypes, of which 

234 for ApoB, 23 for TG, and 1 for BMI (Table S3). No genome-wide significant gene-age 

interaction effects were identified for LDL-C and SBP. After Bonferroni correction for 

multiple testing for the number of examined phenotypes, 70 variants remained that had 

genome-wide significant interaction effects with age (P-values for interaction terms < 1e-8), 

of which 48 for ApoB and 22 for TG.  

Among these 70 variants with significant interactions with age, four lead variants for 

ApoB (rs11591147 (Pinteraction = 3.9e-09, βinteraction = 0.0018) mapping to PCSK9; rs34601365 

(Pinteraction = 8.4e-09, βinteraction = -0.0006) mapping to TDRD15; rs17248720 (Pinteraction = 2.0e-
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09, βinteraction = 0.0007) mapping to LDLR; and rs429358 (Pinteraction = 9.0e-14, βinteraction = -

0.0009) mapping to PVRL2, TOMM40, APOE, and APOC1), and one lead variant for TG 

(rs429358 (Pinteraction = 5.4e-16, βinteraction = -0.0019) mapping to PVRL2, TOMM40, APOE, 

and APOC1) were identified (Figure 1). 

Except for the interaction of rs17248720 with age on ApoB in women, the 

interactions of the lead variants with age remained significant (P-values for the interaction 

terms < 0.01) in both women and men (Table S4). In addition, the interaction results from 

validation cohorts (EstBB and CGPS) were presented in Table S5. Notably, both two cohorts 

showed significant interactions between rs429358 [tagging APOE4] and age on ApoB 

(Pinteraction = 4.60e-05 in EstBB; Pinteraction = 9.07e-05 in CGPS) and on TG (Pinteraction =  2.59e-

05 in EstBB; Pinteraction =2.35e-07 in CGPS). These interactions remained in both women and 

men, and in the 40-70 year old subpopulation. (Table S5).  

Look-up analyses for potential gene-age interactions  

A total of 958 independent genetic variants showed marginal effects on the corresponding 

risk factor, of which 145 were associated with ApoB, 175 with TG, 198 with LDL-C, 239 

with BMI and 201 with SBP. Among these genetic variants, a total of 17 independent 

variants showed evidence for interaction with age after correction for multiple testing, i.e., 9 

for ApoB (P-values for the interaction terms < 0.05/145), 2 for TG (P-values for the 

interaction terms < 0.05/175), 1 for LDL-C (P-values for the interaction terms < 0.05/198), 3 

for BMI (P-values for the interaction terms < 0.05/239), and 2 for SBP (P-values for the 

interaction terms < 0.05/201). In addition to already identified genes by GWIS, several more 

genes were found, such as LIPC for ApoB (rs261334, Pinteraction = 4.44e-06) and TG 

(rs1077835, Pinteraction = 1.16e-04), and FTO (rs11642015, Pinteraction = 1.1e-04) for BMI 

(Table 3).  
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Stratified analyses 

Figure 2 shows the associations of the four lead SNPs (rs11591147, rs34601365, rs17248720, 

rs429358) with ApoB and the association of rs429358 with TG in different age groups. The 

homozygous genotypes were observed to have greater effects on the corresponding risk 

factors than the heterozygous genotypes. Notably, with the exception of the association 

between the homozygous group of rs11591147 [R46L in PCSK9] and ApoB, the associations 

of the genotype groups (both heterozygous and homozygous) relative to the reference group 

with the corresponding phenotypes attenuated with age. For example, the homozygous 

genotype (C; C) of rs429358 [tagging APOE4] had the largest effect on TG in the 40- to 50-

year-old age group, with a 1.11-fold [95% CI: 1.08, 1.14] increase, and had the smallest 

effect in the 60- to 70-year-old age group, with a 1.03-fold [95% CI: 1.01, 1.05] increase. 

The results of the age-stratified analyses for women and men from UKB were similar 

to those of the main analysis (Figure S1). In addition, the age-stratified analyses in validation 

cohorts showed similar results to the main analyses (Figure 2). The direction and the 

decreasing trend with aging for all the genetic effects, especially for rs429358, are in line 

with the main analyses.  
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Discussion 

Our genome-wide interaction studies in 270,276 unrelated European-ancestry participants 

from UKB identified multiple genetic variants that showed significant interactions with age 

on two of the five examined cardiometabolic risk factors. Specifically, four lead variants 

were identified for ApoB: rs11591147 [R46L in PCSK9], rs34601365 [near TDRD15 and 

APOB], rs17248720 [near LDLR], and rs429358 [tagging APOE4]; one lead variant was 

identified for TG: rs429358 [tagging APOE4]. No genome-wide significant interaction 

effects were found for LDL-C, SBP and BMI. The effect sizes of identified lead variants 

were closer to null with increasing age. The interactions of rs429358 [tagging APOE4] with 

age were replicated in EstBB and CGPS.  

In the present study, three independent variants, which are located near or in genes 

that play a clear role in ApoB metabolism, were found to have significant interactions with 

age on ApoB levels. First, it is well known that the proprotein convertase kexin/subtilisin 

type 9 (PCSK9) increases plasma levels of LDL-C by interacting with the LDL receptor 

(LDLR) and decreasing endocytic recycling of the LDLR. The missense R46L variant in the 

PCSK9 gene is thought to inhibit this cycle and thereby lower LDL-C (37, 38). A previous 

study showed that carriers of PCSK9 R46L variant could lower LDL-C level and ApoB level 

(39). In addition, the common variant rs17248720-T, located at the 5’ end of LDLR gene, was 

found to be associated with increased LDLR transcriptional activity, lower LDL-C levels (40), 

and lower non-high-density lipoproteins (non-HDL) cholesterol levels (41). These 

observations are in line with changes in ApoB levels. In accordance, we found that both the 

R46L variant in PCSK9 and the rs17248720-T variant near the LDLR gene were associated 

with the lower ApoB levels. Since ApoB-100 is the main structural protein of LDL, the lower 

LDL-C levels caused by the R46L variant and rs17248720-T variant is therefore likely 

paralleled by reduced ApoB levels. Lastly, rs34601365 is in vicinity of the TDRD15 and 
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APOB genes, which are located in the same genomic locus, less than 250kb apart. There is 

evidence that the rs34601365 or its proxy SNP rs62122481 (effect allele: A, mapping to 

APOB) associated with higher ApoB levels (42). 

Interestingly, our study, including the replication analyses, found that rs429058, 

tagging the APOE4, had significant interactions with age on both ApoB and TG levels. 

Apolipoprotein E (ApoE) is an apolipoprotein component of chylomicrons, very-low-density 

lipoproteins (VLDL) and HDL. ApoE plays an important role as ligand responsible for the 

clearance of chylomicron and VLDL remnants in the liver through interaction with hepatic 

lipoprotein receptors, primarily the LDLR (43, 44). Among the three ApoE isoforms (ε2, ε3, 

and ε4), encoded by different APOE alleles, ApoE ε3 is the most common isoform. Relative 

to ApoE ε3, the ApoE ε4 has been found to be associated with higher TG, ApoB, and LDL-C 

levels (45). This has been attributed to the preference of ApoE ε4 for VLDL, a higher ApoE 

ε4-associated VLDL-production rate and/or higher VLDL-TG-lipolysis activity (46). In 

addition, participants with the homozygous APOE ε4 have a lower hepatic LDLR activity 

than individuals with homozygous APOE ε3 (47), which could lead to reduced clearance of 

VLDL remnants and, consequently, to TG accumulation as well. Our findings of elevated 

levels of ApoB and TG associated with the APOE ε4 variant (rs429358, effect allele: C) are 

consistent with these results and conclusions. 

It is well-known that the APOE ε4 is negatively associated with human longevity (48). 

As shown in Table 2, the frequency of the APOE ε4 allele was somewhat lower in older 

individuals (>70 years), and the interaction between rs429358 and age may be partially 

attributable to the negative effect of APOE ε4 on longevity. In addition, we found that the 

genetic effects of all the identified variants on the corresponded phenotypes decreased with 

increasing age. There is evidence that the increase of LDL-C with age is explained by a 

reduced capacity for its removal, which would be mediated via a reduced hepatic LDLR 
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expression (49). This finding has been validated by some animal studies (50). In conjunction 

with the roles of all the identified genes in lipoprotein metabolism as described above, the 

reduction in LDLR expression could also explain the attenuated genetic effects (including 

APOE ε4 allele) with aging in our study.  

Previous studies identified different genetic variants showing age-dependent effects 

on lipids levels during life course (51-53). For example, one study identified an age-

dependent association (Pinteraction = 0.024) between rs2429917 [SGSM2] and LDL-C (50), 

while another study did not find any significant variants for LDL-C after the adjustment for 

multiple testing (52). In addition, one study of blood pressure using meta-regression models 

with a joint 2 degree of freedom likelihood ratio test identified 20 independent genetic 

variants exhibiting significant interactions with age, but none of those variants passed the 

interaction term test with a threshold of P < 5e-8 (21). Our study did not find genetic effects 

on SBP that varied significantly (P < 5e-8) across age, and only further identified 2 SNPs 

showing significant variant-age interactions (P < 0.00025) by look-up analyses (Table 3), one 

of which mapped to the same gene [CCDC71L] as found in the previous study (21). For the 

genetic effects on BMI over age, the present study identified one SNP with a threshold of P < 

5e-8 (Figure 1), and further identified three SNPs with a threshold of P < 0.00021 by lookup 

analyses (Table 3). Three of the mapped genes  i.e., TMEM18, FTO, and SEC16B, were also 

found in previous studies with a nominal significant threshold (Pinteraction < 0.05) (20, 54). 

However, it is important to note that, based on the studies mentioned above, there is little 

evidence of significant changes in genetic effects throughout the life course, which is 

concordant with our findings. Considering the increased prevalence of cardiovascular disease 

with aging (55, 56), all these findings may imply that the relative importance of genetic 

effects versus environmental influences could decrease with aging. 
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Mendelian randomization (MR) has emerged as a valuable tool to investigate 

potential causal associations by using genetic variants as instruments against false inferences 

resulting from confounding and reverse causality (57, 58). One of the assumptions to use MR 

methods is that the relationship between the genetic variant and the exposure should stay 

constant over time. Thus, the present study provides evidence that most genetic variants 

likely fulfil this key condition during adulthood. However, with the development of drug-

targeted MR studies focusing on specific genetic variants (59), such as the effects of PCSK9 

inhibitor on atherosclerotic risk, caution must be exercised when combining or comparing 

results across studies with different age distributions.  

The present study was conducted in a large study sample with a relatively large 

statistical power to detect genetic variants showing genome-wide significant interactions with 

age. In addition, our main findings were replicated in two other large cohort studies with a 

much larger age range. However, there are some limitations to be addressed. First, due to the 

lack of data for the number, dose, and type of antihypertensive medications taken, we could 

not correct the blood pressure parameters accurately. In addition, we screened for age-

dependent genetic effects by incorporating an interaction term between variants and age in 

statistical models. This approach does not address the molecular mechanisms underlying the 

interactions in determining a phenotype, thereby potentially limiting insights into the biology.  

In conclusion, the present study indicates that the majority of genetic effects on 

cardiometabolic risk factors remain relatively constant over middle age, with the noted 

exception of some specific genetic effects on ApoB and TG, which play a less prominent role 

in old versus young age. 
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Figure 1. Circular Manhattan plot for the log-transformed (base 10) P-values of the interaction 

terms between genetic variants and age. Abbreviations in clockwise direction: ApoB, apolipoprotein B; 

TG, triglyceride; LDLC, low-density lipoprotein cholesterol; BMI, body mass index; BP, blood pressure. The 

orange line indicates a P-value of 5e-8, and the red line indicates a P-value of 1e-8 after Bonferroni correction 

for multiple testing. Red dots indicate genome-wide significant SNPs with P-values smaller than 5e-8 for the 

interaction terms. Labelled gene names in black were identified by FUMA.
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Figure 2. Associations between the genotypes of the lead SNPs and the corresponding 

phenotypes for age-stratified analyses in UKB and two validation cohorts. ApoB, apolipoprotein B; 

EA, effect allele; SNP: single nucleotide polymorphism; TG: triglyceride. Cohort names: UKB, UK Biobank; 

EstBB, Estonian Biobank; CGPS, Copenhagen General Population Study. In UKB and EstBB, linear 

regressions were adjusted for sex and the first ten genetic principal components, whereas in CGPS only sex was 

adjusted. For EstBB, the figure showed the results of rs62122481 (effect allele: A), which is an proxy SNP for 

rs34601365. 
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Table 1 The baseline characteristics of the study population from UK Biobank. 

 Overall [40, 50) [50, 60) [60, 70] 

n 270276 67989 95695 106592 

Age (median [IQR]) 58 [50, 63] 46 [43, 48] 56 [53, 59] 64 [62, 67] 

Sex = Male, n (%) 123805 (45.8) 30901 (45.4) 42116 (44.0) 50788 (47.6) 

ApoB (g/L), mean (SD) 1.03 (0.24) 1.00 (0.23) 1.06 (0.23) 1.04 (0.24) 

LDL-C (mmol/L), mean (SD) 3.57 (0.86) 3.46 (0.79) 3.66 (0.84) 3.56 (0.90) 

TG (mmol/L), median [IQR] 1.49 [1.05, 2.14] 1.31 [0.92, 2.00] 1.50 [1.06, 2.17] 1.57 [1.14, 2.20] 

SBP (mmHg), mean (SD) 137.86 (18.57) 129.54 (15.85) 136.95 (17.76) 143.98 (18.66) 

BMI (kg/m2), mean (SD) 27.34 (4.70) 26.92 (4.85) 27.43 (4.84) 27.53 (4.46) 

Lipid-lowering medication = 1, 
n (%) 

45929 (17.0) 2844 ( 4.2) 13085 (13.7) 30000 (28.1) 

BP-lowering medication = 1, 
n (%) 

54693 (20.2) 4133 ( 6.1) 16822 (17.6) 33738 (31.7) 

Abbreviations: ApoB, apolipoprotein B; BMI, body mass index; BP, blood pressure; IQR: interquartile range; 
LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pressure; SD, standard deviation; TG, 
triglyceride. 
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Table 2. The genotype distribution of the identified lead variants among different age groups in UK Biobank and Validation cohorts. 

  UK Biobank Estonian Biobank Copenhagen General Population Study 

  
[40, 50) [50, 60) [60, 70] [20, 40) [40, 50) [50, 60) [60, 70) [70, 80] [20, 40) [40, 50) [50, 60) [60, 70) [70, 80) [80, 110] 

rs11591147                

 
G; G 96.62% 96.56% 96.5% 97.06% 97.19% 97.04% 96.83% 96.93% 97.77% 97.35% 97.34% 97.32% 97.32% 96.99% 

 
T; G 3.35% 3.41% 3.47% 2.91% 2.76% 2.93% 3.14% 3.03% 2.21% 2.63% 2.64% 2.66% 2.67% 3.01% 

 
T; T 0.03% 0.03% 0.03% 0.03% 0.05% 0.03% 0.03% 0.05% 0.02% 0.02% 0.02% 0.02% 0.01% 0.00% 

rs17248720 
         

      

 
C; C 77.74% 77.7% 77.94% 84.33% 84.40% 84.54% 84.28% 84.52%       

 T; C 20.91% 20.94% 20.65% 15.00% 14.92% 14.82% 15.00% 14.87%       

 
T; T 1.35% 1.36% 1.41% 0.68% 0.67% 0.64% 0.73% 0.61%       

rs34601365*                

 C; C 4.08% 4.06% 4.04% 11.14% 11.32% 11.17% 11.35% 10.60%       

 C; CT 32.06% 32.24% 32.42% 44.19% 44.63% 44.29% 43.84% 44.91%       

 CT; CT 63.86% 63.7% 63.54% 44.67% 44.06% 44.54% 44.81% 44.49%       

rs429358 
         

      

 T; T 71.08% 71.48% 71.98% 76.30% 75.87% 75.88% 76.22% 75.94% 67.58% 68.28% 68.27% 68.26% 70.36% 72.63% 

 
C; T 26.52% 26.17% 25.71% 22.01% 22.53% 22.40% 21.92% 22.75% 29.15% 28.61% 28.70% 28.83% 26.97% 25.72% 

 C; C 2.40% 2.34% 2.30% 1.69% 1.60% 1.72% 1.87% 1.30% 3.28% 3.11% 3.03% 2.91% 2.67% 1.65% 

*: For Estonian Biobank, the table showed the genotype frequency of rs62122481(AA; AC; CC in descending order) as rs62122481 is an proxy of rs34601365 and mapped 
to the same ApoB gene.       
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Table 3. Genetic variants showing statistically significant interaction with age by look-up analyses. 

RSID CHR POS Non Effect 
Allele 

Effect 
Allele N EAF Beta of gene-age 

interaction term 
SE for gene-age 
interaction term 

P-Value of 
interaction term Risk factor Gene 

rs11591147 1 55505647 G T 270276 0.017401 0.001846 0.000314 3.95e-09 ApoB PCSK9 

rs964184 11 116648917 G C 270276 0.866742 0.000575 0.00012 1.56e-06 ApoB ZPR1 

rs261334 15 58726744 G C 270276 0.787306 0.000375 9.85e-05 0.000138 ApoB 
ALDH1A2, 

LIPC 

rs143020224 19 11187324 C G 270276 0.118749 0.000693 0.000122 1.43e-08 ApoB SMARCA4 

rs2738447 19 11227480 A C 270276 0.59224 -0.00038 8.18e-05 4.44e-06 ApoB LDLR 

rs8107974 19 19388500 A T 270276 0.076432 0.000705 0.000153 3.94e-06 ApoB SUGP1 

rs62122481 2 21216815 C A 270276 0.377134 -0.00046 8.37e-05 3.44e-08 ApoB 
LINC02850, 

APOB 

rs28601761 8 126500031 C G 270276 0.419322 0.000457 8.21e-05 2.64e-08 ApoB 
LINC00861, 

TRIB1 

rs115478735 9 136149711 A T 270276 0.185887 -0.00048 0.000104 4.50e-06 ApoB ABO 

rs11673631 19 45225423 G C 270276 0.043586 0.00284 0.000697 4.60e-05 LDL-C 
CEACAM16-

AS1 

rs1077835 15 58723426 A G 270276 0.220221 -0.00078 0.000202 0.000116 TG 
ALDH1A2, 

LIPC 

rs5117 19 45418790 T C 270276 0.233472 -0.00098 0.000204 1.52e-06 TG APOC1 

rs916880 7 27229119 G A 270276 0.92636 0.053438 0.011098 1.47e-06 SBP 
HOXA13, 

HOXA11-AS 

rs62481856 7 106412082 G A 270276 0.19807 0.03294 0.007419 9.01e-06 SBP 
CCDC71L, 
LINC02577 
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rs539515 1 177889025 A C 270276 0.204885 -0.00838 0.001984 2.43e-05 BMI 
SEC16B, 

LINC01741 

rs11642015 16 53802494 C T 270276 0.403745 -0.00628 0.001624 0.00011 BMI FTO 

rs6728726 2 623976 T C 270276 0.827083 -0.00833 0.002045 4.66e-05 BMI 
TMEM18, 

LINC01875 
Abbreviations: ApoB, apolipoprotein B; BMI, body mass index; CHR, chromosome; EAF, effect allele frequency; LDL-C, low-density lipoprotein cholesterol; POS, 
position; SBP, systolic blood pressure; SE, standard error; TG, triglyceride. 
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