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Abstract 

Background: 

In clinical research, there is a strong drive to leverage big data from population cohort studies and 

routine electronic healthcare records to design new interventions, improve health outcomes and 

increase efficiency of healthcare delivery. Yet, realising these potential demands requires substantial 

efforts in harmonising source datasets and curating study data, which currently relies on costly and 

time-consuming manual and labour-intensive methods. 

Objectives: 

We evaluate the applicability of AI methods for natural language processing (NLP) and unsupervised 

machine learning (ML) to the challenges of big data semantic harmonisation and curation. Our aim is 

to establish an efficient and robust technological foundation for the development of automated 

tools supporting data curation of large clinical datasets.  

Methods: 

We assess NLP and unsupervised ML algorithms and propose two pipelines for automated semantic 

harmonisation: a pipeline for semantics-aware search for domain relevant variables and a pipeline 

for clustering of semantically similar variables. We evaluate pipeline performance using 94,037 

textual variable descriptions from the English Longitudinal Study of Ageing (ELSA) database. 

Results: 

We observe high accuracy of our Semantic Search pipeline with an AUC of 0.899 (SD=0.056). Our 

Semantic Clustering pipeline achieves a V-measure of 0.237 (SD=0.157), which is on par with leading 

implementations in other relevant domains. Automation can significantly accelerate the process of 

dataset harmonization. Manual labelling was performed at a speed of 2.1 descriptions per minute, 

with our automated labelling increasing speed to 245 descriptions per minute. 

Conclusions: 

Our study findings underscore the potential of AI technologies, such as NLP and unsupervised ML, in 

automating the harmonisation and curation of big data for clinical research. By establishing a robust 

technological foundation, we pave the way for the development of automated tools that streamline 

the process, enabling health data scientists to leverage big data more efficiently and effectively in 

their studies, accelerating insights from data for clinical benefit. 
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Introduction 

Clinical research plays a vital role in advancing medical knowledge and improving patient care. 

Traditionally, clinical studies have employed randomized controlled experiments and prospective 

studies. These approaches can be time-consuming, resource-intensive, and may not always be 

feasible in certain clinical research contexts. In recent years, observational retrospective clinical 

studies have emerged as valuable alternatives that offer notable advantages in terms of cost and 

efficiency and can still yield valid results [1]. 

One significant catalyst behind the rise of observational retrospective clinical studies is the 

availability of extensive cohort and routine clinical practice databases, including notable examples 

like the English Longitudinal Study of Ageing (ELSA), Clinical Practice Research Datalink (CPRD), and 

Secure Anonymized Information Linkage (SAIL). These databases are characterized by their large size 

and heterogeneity, collectively forming what is commonly referred to as big data in the field of data 

science. 

Leveraging healthcare big data offers great potential for discovering insights into diverse clinical 

questions exploring the complexities of multiple long-term conditions (MLTCs), designing new 

interventions to improve healthcare outcomes and improving the quality and efficiency of 

healthcare delivery [2]. However, exploiting this potential requires significant effort in harmonising 

source datasets and curating the study data [3]. In observational studies, such as the Cluster-AIM 

study for development and validation of population clusters for integrating health and social care for 

patients with MLTCs [4], datasets must be curated from various cohort study databases or routine 

healthcare data databases. Such studies have complex and multi-faceted domains with 10s of 

thousands of variables to be curated for the specific research task at hand. The process of datasets 

harmonisation and study data curation encompasses several crucial steps. This includes defining the 

domains and sub-domains of interest, identifying relevant variables within these sub-domains, 

identifying the equivalent variables, and extracting the necessary data from the databases. Working 

with big data poses sizeable challenge particularly during the variable identification process  as the 

datasets can feature extensive numbers of domains and sub-domains, increasing the difficulty of 

variable selection and study dataset harmonisation within available time constraints [5,6].  

Furthermore, the absence of standards, frameworks, and journal requirements for the reporting and 

sharing of data harmonisation outcomes results in loss of resources, time, and effort [7].  Often, 

variable names and descriptions are ambiguous and inconsistent across datasets which increases the 

difficulty of dataset harmonisation [8]. 

Given the vastness of information in big data, comprising of thousands of variables and recorded 

over extensive periods of time, researchers face the daunting task of sifting through large collections 

of variables’ descriptions to identify the ones pertinent to their study objectives. This process 

demands considerable time and effort, often extending over many weeks and months. Researchers 

must meticulously draft sub-domain descriptions, identify relevant search terms, conduct thorough 

searches within the exceptionally large collections of variable descriptions, and review and select the 

variables that align with the defined sub-domains of interest. 

In the current manuscript, our work focuses on the research and validation of machine learning (ML) 

technologies to facilitate the creation of automated tools that aid in the harmonisation of datasets 

and the curation of research data for observational studies from healthcare big data sources. We 

explore advancements in the fields of Natural Language Processing (NLP) and unsupervised ML 

techniques. By utilising these technologies, we demonstrate how the variable identification process 

can be streamlined, reducing the time and effort required for dataset curation. To evaluate the 
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efficacy of the selected ML methods, we employ the ELSA datasets, specifically targeting the study of 

social care needs for people living with MLTCs. The domain was selected due to the complexity of 

variables and relevance to the Cluster-AIM study.  

The rest of the manuscript is organized as follows: The methods section provides a description of the 

data utilized in the current study, the proposed data harmonisation and curation pipelines, the 

technologies employed in the pipelines, and the methods used to evaluate their performance. In the 

results section we present the corresponding evaluation results, which are then further analysed. 

The manuscript concludes with a discussion on the implications and potential applications of our 

findings, highlighting the benefits of automated tools for dataset harmonisation and curation in 

observational studies utilizing healthcare big data. 

Methods 

In his work, Bosch-Capblanch [8] defines three key characteristics necessary for the harmonization of 

variables: a unique identifier, a semantically identical description, and consistent statistical metrics 

for its values. Cunningham et al. [9] further define semantic harmonization as the process of 

collating this data into a singular consistent logical view. Although harmonisation and curation tools, 

such as BiobankConnect software [10], SORTA [11] and DataSHaPER [12] exist, their operation is 

underpinned by expert crafted ontology- and schema-based data annotation, which are difficult to 

create. Simpler rule-based approaches have also been employed but these rely on variable names 

similarity and are not general [8]. An alternative that can overcome these challenges is the use of 

data-driven Artificial Intelligence (AI) and Machine Learning (ML) algorithmic approaches [9]. Using 

techniques such as Natural Language Processing (NLP) and unsupervised learning we demonstrate 

tools supporting semantic data harmonisation and curation. We evaluate the performance in terms 

of accuracy and time savings of two semantic harmonisation automation pipelines: (1) Semantic 

Search for domain-relevant variables and (2) Semantic Clustering semantically similar variables. 

Evaluation Dataset  

We use the English Longitudinal Study of Ageing (ELSA) [13] datasets to evaluate the semantic data 

harmonisation process. The ELSA study surveyed households with at least one adult aged over 50 

with the aim to gain insight into all aspects of the UK’s ageing population.  The Study was conducted 

as a series of 10 stages, commencing in 1998 with the most recent stage finishing in 2019. Each 

Wave took place 2 years after the previous, with the same participants surveyed, subject to consent 

and other extenuating circumstances.  A total of over 18,000 people participated in the study, with 

consistent population of over 8,000 throughout the later 9 waves. The sample is based on 

respondents in the Health Survey for England (HSE), which annually surveys health and lifestyle 

changes. A variety of data collection methodologies were used including, Face-to-Face Interviews, 

Assisted Measurements (both Clinical and Physical) and Questionnaires (both paper-based and web-

based). Local area data can enable data linkage with consensus data concerning income, education, 

and employment. 

Although attempts have been made by Lee et al [14] to harmonise the ELSA datasets, not all 

available data has been incorporated. Additionally, no use of harmonisation tools is reported. In 

ELSA, 94,037 variables are recorded across 67 tabular files, leading to significant difficulties when 

navigating and analysing the datasets. This complexity makes ELSA an ideal use case for testing the 

proposed semantic harmonisation methodology. 

The number of variables across all waves in the ELSA study can be seen in Figure 1. A significant 

portion of variables across the ELSA datasets for waves 1-9 capture longitudinally the same 
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information but don’t have consistent naming between waves. Following the Bosch-Capblanch 

definition for harmonization of variables [8] we perform ELSA identifier-level harmonization by 

matching variable identifiers in a case-insensitive manner. This initial step ensures that variables 

with the same identifiers are recognized and treated as identical, despite potential variations in case.  

The identifier harmonisation eliminated variable identifier duplication, observing a reduction from 

94,037 variables to 22,402 unique variables.  

 

Figure 1: Number of ELSA variables in each wave. 

Semantic Harmonisation Methodology 

The focus of our study is on the semantic analysis of variable descriptions to identify semantically 

identical variables using NLP and ML technologies. We discuss the state-of-the-art semantics-aware 

text embedding technologies that underpin our approach. We then detail the design and 

implementation of the two semantic harmonization pipelines: 1) Semantic Search to identify 

domain-relevant variables and 2) Semantic Clustering of similar variables. 

Efficient Semantics-Aware Text Embedding  

We investigate NLP technologies that can efficiently generate text embeddings that capture 

semantic context for our harmonisation pipelines. NLP embeddings (i.e., dense vector 

representations) have gained prominent use in medical research for analysing unstructured textual 

data from Electronic Healthcare Records (EHR), Intensive Care Units (ICU), social media and Scientific 

Literature [15,16]. Embedding models are trained in an unsupervised manner, capturing knowledge 

from large unlabelled corpuses in high dimensional vector spaces. These embeddings can be 

leveraged in semantics-aware clustering and search tasks.  

Numerous methods of Sentence Embeddings have previously been proposed. Skip-Thought [17] 

trains an encoder-decoder gated recurrent unit (GRU) architecture to predict surrounding sentences 

from a given passage using an unsupervised methodology. By utilising the encoder, a latent space of 

semantically similar sentences is created, enabling use in semantic similarity tasks. Universal 

Sentence Encoders (USE) [18] improve upon Skip-Thought by introducing a transformer network for 

significant performance gains at the expense of model complexity, computation time and memory 

usage. Contextual embeddings aware of ordering and identity of each word are first computed, and 

subsequently summed at each word position into a fixed size 512-dimensional vector. The encodings 

are designed to be general-purpose and applicable to a wide range of domains. Chen et al [16] 
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utilises USEs within the healthcare domain to find similar sentences in EHR. However, testing on the 

BEIR dataset [19] indicates subpar performance on when compared to other Neural based methods.  

Bidirectional Encoder Representations from Transformers (BERT) models [20] are pre-trained 

transformer network producing contextual embeddings. Words are tokenized using WordPiece [21] 

with a 30,000 token vocabulary, after which 12 layers of multi-head attention are applied and 

passed to a simple regression function. RoBERTa demonstrated further improvements by adapting 

the training process by tuning hyperparameters and expanding training set sizes. Although BERT 

based models can be adapted to embed sentences by iterative processing of singular words, it is 

limited to a pre-determined fixed sized sentence length, restricting comparison performance and 

increases storage requirements. Sequences of BERT word embeddings may be averaged, into a 

singular sentence vector [22,23] however this results in significant performance degradation. 

Sentence-BERT (SBERT) [24] models have demonstrated good performance in Semantic Textual 

Similarity (STS) tasks, with semantically meaningful embeddings. It can map textual sentence input, 

up to 250 words in length, to a single fixed size vector. A modification is made of BERT architecture 

using Siamese, Triplet networks and subsequent pooling [20]. A cosine similarity objective function 

[24] is utilised to calculate similarity between processed sentences. Other metrics, such as the dot 

product, have been shown to outperform cosine similarity on specific datasets, however on average 

cosine similarity has marginally better performance [19].   

We leverage the SBERT architecture to underpin our semantic data harmonisation and curation 

solutions. We analyse and compare four pretrained SBERT-based language models to empirically 

investigate the impacts of model size and training set domain on harmonisation performance. These 

four models are MiniLM, MPNet, Sentence-T5-xxl and BioLinkBERT, and their specific training details 

are described below. 

MiniLM 

MiniLM [25] is proposed by Wang et al and implements a SBERT architecture [24]. The model 

compresses large Transformer models into smaller, more efficient models through deep self-

attention distillation. Leveraging subsequent development by Reimers et al [26] the MiniLM model 

was adapted to just six layers with an embedding vector size of 384. This results in the fastest 

inference times of 14200/sec on a V100 graphics processing unit (GPU). Training used 100 thousand 

steps on a tensor processing unit (TPU) v3.8, upon 1.17 billion sentence pairs, with majority from 

Reddit Comments [27], S20RC [28], WikiAnswers [29] and PAQ [30].  

MPNet 

MPNet [31] by Song et al improves upon the BERT [20] and SBERT pretraining methods by reducing 

positional discrepancies and leveraging dependencies amongst all tokens in a sentence through 

permutated language modelling. Further fine-tunning of MPNet has resulted in the creation of all-

mpnet-base-v1 [32], pretrained on 1.1 billion sentence pairs as with MiniLM. This model has 

increased complexity, with 768-dimensional embedding space, slowing inference to 2800/sec on 

V100 GPU. 

Sentence-T5-xxl 

Text-to-Test Transfer Transformer (T5) introduced by Raffel et al [33] excels in a variety of NLP tasks 

by leveraging Colossal Clean Crawled Corpus [34] and harnessing transfer learning. Ni et al. [35] 

scaled up the T5 model to 11 billion parameters and incorporated an SBERT architecture to develop 

the Sentence-T5-xxl model. Sentence-T5-xxl retains state-of-art performance in sentence embedding 

tasks, with 768 dimensional embeddings, however at the expense of very slow inference (50/sec on 
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V100 GPU). The model is trained on a corpus of two billion question-answer pairs from various 

online communities as well as the Stanford Natural Language Inference (SNLI) dataset [36].  

BioLinkBERT 

Yasunaga et al propose the LinkBERT [37] pretraining method which leverages links between 

documents, viewing a text corpus as a graph of documents and in so creating document contexts. 

This approach is especially relevant for the pretraining of domain specific models. BioLinkBERT is a 

pretrained language model using LinkBERT on PubMed to achieve state of the art performance in 

BioNLP tasks such as BioASQ [38] and USMLE [39]. The model uses a 512-dimensional embedding 

space and has comparable inference times to MPNet. 

 

 

Language models vector space comparison  

 

Figure 2: Illustration of distributions of cosine distances between normalized embedding vectors of each variable description 

across all SBERT models. 

To get an insight on the models’ vector spaces, we computed and plotted the cosine distance 

distributions of the embeddings for all variable descriptions in our datasets – see Figure 2. The plot 

indicates important similarities and differences in the vector spaces of the four models. MiniLM (M = 

0.869, SD = 0.142) and MPNet (M = 0.856, SD = 0.133) have similar distributions. T5 (M = 0.346, SD = 

0.055) and BioLinkBERT (M = 0.189, SD = 0.067) have a significantly lower mean and denser 

distribution. The wider cosine distance distribution of MiniLM and MPNet compared to T5 and  

BioLinkBERT provides for higher discrimination ability in the downstream tasks.   

Semantic Search for Domain-relevant Variables  

Semantic harmonization is the process of collating data into a singular consistent logical view [9]. 

Often this logical view is the collation of variables relevant to domains of interest. Semantic Search 

can automate suggestion of variables within a domain.  

Guha et al [40] introduces Semantic Search methodologies for improved web search results on the 

semantic web.  Unlike previous approaches that merged textual and semantic information into 
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single search indexes, this study uses inverted indexes for searching by textual content, contrasting 

with forward indexes, which fetch information using unique identifiers.   

Traditional keyword-based retrieval models require explicit observation of search terms, therefore 

increasing index size and total query time. In contrast, neural embedding-based methods alleviate 

these inefficiencies by utilising a unified, both textual and semantic, embedding space [41]. For an 

instance, word embeddings have seen success in extending full text search for legal document 

collections [42].  

In the current work we propose a neural embedding-based solution to automating semantics-aware 

search for variables relevant to given domain of interest. The solution enables the user to specify a 

phrase, whose embedding will be compared against all variable description embeddings, enabling 

the closest matches to be selected. This significantly reduces the time taken for variable selection, as 

well as improving performance over basic approaches such as keyword search, by leveraging 

semantic contexts. Based on our analysis of efficient semantics-aware text embedding technologies, 

we utilise the SBERT model architecture and evaluate the MiniLM, MPNet, BioLinkBERT and T5-XXL 

pretrained model. 

As illustrated in Figure 3, we incorporate the SBERT model into the proposed Semantic Search 

pipeline. Embeddings of variable meta-data descriptions are precomputed, enabling the use of 

efficient Semantic Search methods. We use the cosine similarity function to compare qualitative 

domain specific phrase embeddings to all variable embeddings. Although other metrics, such as the 

dot product, are also appropriate, it has been shown that cosine distance has the best performance 

on average [19].  

 

 

Figure 3: Implemented pipeline processes for Semantic Search of variable descriptions. 

Finally, to select the domain-relevant variables, the proposed pipeline outputs the top N descriptions 

with the largest similarity to the search phrase can be chosen. An alternative to this current 

functionality could be to apply a thresholding function on the distance of the variables’ embeddings 

from the search phrase embedding. However, as presented in Figure 2, various models have varying 

sparsity of embeddings and therefore thresholds need to be appropriately adapted for each model.  
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Semantic Clustering of Variables into Domains 

Building on the pipeline for identifying variables relevant to a specific domain of interest, we propose 

a new pipeline for the unsupervised grouping of variables into semantically cohesive domains.  We 

base this pipeline on unsupervised ML methods for dimension reduction and clustering to enable a 

fully automated grouping of semantically similar variables based on the sentence embeddings of the 

variable descriptions in the dataset metadata. Figure 4 depicts the pipeline for unsupervised variable 

domain clustering which, in addition to the text embedding algorithm, incorporates an algorithm for 

dimensionality reduction of the high dimensional embedding space and an algorithm for clustering. 

Variables within the same cluster are semantically similar and are harmonised together in the same 

domain.  

Previous efforts have been made to cluster embeddings of supervised models, with varying levels of 

success. Nikifarjam et al. [43] embedded short form tweets using Word2Vec [44], clustered these 

using K-means, after which a Conditional Random Fields classification model was trained upon. Xu et 

al. [45] uses K-means to cluster dense neural embeddings with a unique Convolutional Neural Network 

model. Bodrunova et al. [46] uses Hierarchal Agglomerative Clustering to group Universal Sentence 

Encoder embeddings, with the addition of Markov Stopping moment to choose optimal number of 

clusters. Similarly, An et al. [47] uses a range of both static and dynamic Sentence Embeddings, which 

are clustered with k-means at into a specified number of groups by Spatial Histogram analysis. Gupta 

et al. [48] makes the insight that lowering embedding dimensionality previous to clustering using an 

Encoder-Decoder Model, improves clustering performance. 

The above unsupervised clustering algorithms require a pairwise dis-similarity to be computed for 

every combination of description embeddings. As stated previously, we use cosine similarity for the 

comparison of the SBERT embeddings. Cosine similarity is converted to cosine distance by the 

following simple conversion 𝑐𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  1 −  𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, as the clustering 

algorithms use a distance measure. Furthermore, embedding vectors are normalised prior to cosine 

distance calculations to ensure consistency between various embedding models.  
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Figure 4: Implemented pipelines processes for unsupervised clustering of variable descriptions. 

For the pipeline in Figure 4 we compared three dimensionality reduction algorithms, namely PCA, t-

SNE and UMAP, and also three clustering algorithms, namely K-means, Hierarchical Agglomerative 

Clustering and HDBSCAN. 

Dimensionality Reduction Algorithms Selection 

Gupta et al. [48] finds naive clustering of high-dimensional contextual BERT embeddings produces 

deficient results. An et al. [47] reinforces this theory by surveying embedding model’s clustering 

ability using Spatial Histograms, which found high-dimensional dynamic SBERT to be least able to 

cluster when compared to low-dimensional static GloVe models. We argue that by reducing 

embedding dimensionality and therefore clustering complexity, an increase in clustering 

performance can be observed. 

Established techniques such as Principal Component Analysis (PCA) [49] observe the principal 

components with maximal variance in an unsupervised methodology. These seek to preserve 

pairwise distance structures [50] at a local level. 

Van der Maaten et al. introduces T-distributed stochastic neighbour embeddings (t-SNE) [51]. The 

algorithm maps high dimensional elements to a 2 or 3-dimensional representation, whilst preserving 

distances with neighbouring elements. In contrast to PCA, t-SNE seeks to preserve local distances 

over global distances [50]. It has extensive use for visualisations of high-dimensional vector spaces. 

However, t-SNE see detrimental performance when mapping to more than 3 dimensions, as it 

frequently converges on local minima. This prohibits its use for in clustering description  embeddings, 

because of the limited range of dimensions.  
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Uniform Manifold Approximation and Projection (UMAP) [50] performs non-linear mappings to 

arbitrarily lower dimensions, as opposed to t-SNE. The algorithm preserves the global structure, 

whilst displaying superior time efficiency, enabling scaling to significantly larger datasets, which is 

vital for the Big Data health care domain. Although, UMAP is stochastic algorithm, it may be 

initialised with a pre-defined seed to ensure deterministic execution. Superior performance over t-

SNE and PCA has been shown when classifying MNIST and Fashion-MNIST datasets [50].  

We leverage UMAP’s superior performance and adaptability to map variable embeddings across 

various dimensions: 10, 50,100, 200 and 300. 

Clustering Algorithms Selection 

K-means clustering is prominent method of vector quantization, introduced by MacQueen et al [52]. 

Datapoints are assigned to a fixed number of clusters, by minimising intra-cluster distances between 

centroid and all assigned all datapoints. This process is repeated over a specified number of 

iterations. The number of iterations can be determined by the Lloyd Expectation Maximisation 

algorithm [53] or set to a maximum number.  

In an unsupervised setting, when the number of domains is not predefined, it is challenging to find 

the optimal number of clusters.  This often necessitates reliance on labour-intensive methods such 

as visualization and human judgment to infer groupings of variables [54]. Moreover, this approach 

lacks adaptability in modifying the cluster number; it requires the clusters’ number to be specified 

beforehand and necessitates a complete re-computation of the model for minor adjustments in 

hyper-parameters. Hierarchical clustering alleviates this inefficiency.  

Hierarchal Agglomerative Clustering (HAC) [55] groups high dimensional embeddings into a 

hierarchical structure based on any distance information. These can then be truncated at a desired 

level into distinct clusters. The algorithm is highly flexible with satisfactory performance across any 

distance metrics, as opposed to centroid and median based algorithms. The algorithm offers 

significant adaptability over simpler methods such as K-means, by allowing fine granularity 

adjustments by altering the linkage threshold. Stepwise dendrograms enable the visualisation of 

hierarchal tree structures for comprehensive analysis of variable similarity irrespective of the linkage 

threshold. Computationally efficiency is greatly increased for lower linkage threshold by only 

requiring shallow inspections of the hierarchical tree structure, offering major time reductions when 

compared to K-means. However, its full space partitioning assumption means that all points must be 

assigned to a cluster forcing outliers to be assigned to a cluster which affects clusters cohesiveness 

and decreases harmonisation performance. This inefficiency can be addressed by allowing for some 

points to be treated as noise and not assigned to clusters. 

HDBSCAN [56] extends density-based spatial clustering of applications with noise (DBSCAN) [57] by 

using clustering hierarchy in addition to allowing for noise points, i.e., outliers, which are not 

assigned to clusters. Empirical testing demonstrates substantial performance gains over competing 

algorithms such as OPTICS [58] in the majority of cases. Although due to the algorithms complexity a 

major computation expenditure is necessary, when compared to K-means, it is still significantly 

faster than HAC for large datasets. 

Density based algorithms, such as DBSCAN, can efficiently identify anomalies in low density region as 

and discarded them in accordance with a single linkage: minimum number of samples, which 

dictates the minimum number of neighbouring components to a core point for it be established. 

HDBSCAN generalises this with an additional hierarchal minimum cluster size parameter, which 

states clusters with fewer components are not established and deemed spurious. By forgoing 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2024. ; https://doi.org/10.1101/2024.07.12.24310136doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.12.24310136
http://creativecommons.org/licenses/by/4.0/


   

 

11 

 

clustering completeness, stronger harmonisations may be achieved. An extension of Prim’s 

algorithm is used to construct a Minimum Spanning Tree, given density-based groupings, in order to 

extract the HDBSCAN hierarchy. An optimisation method is used to extract a globally optimal 

solution from the hierarchal structure [47–51]. 

Clustering Goodness Metrics Selection 

Evaluating the goodness of clustering results across various clustering algorithms, hyper-parameters 

and dimensional mappings has long been seen as a vital issue essential to the success of clustering 

applications [59]. Clustering validation evaluates the goodness of clustering results [60] without the 

need for external validation measures such as labelled validation datasets.   

Lie et al. [61] reviews 11 metrics and analyses properties such as monotonicity, noise, density, 

subclusters criteria, in addition to the criteria of compactness and separation.  Empirical evidence 

suggests silhouette score [62] correctly identifies optimal clustering in most cases, however it 

promotes the merging of nearby subclusters into one for datasets with prominent subclusters, in 

order to maximise inter-cluster separation. In contrast, S_Dbw [63] satisfies all five aspects, at the 

expense of computational complexity. However, this property may not be desirable for use with 

sparse embeddings from SBERT models, as it may prioritise smaller subclusters, dividing semantically 

similar variables into separate clusters. Nisha et al [64] also promotes the use of silhouette score for 

evaluating the goodness of clustering. The silhouette score is valued in clustering analysis for its 

ability to measure both the cohesion within clusters and the separation between them, providing a 

combined metric that ranges from -1 to 1. It is applicable to various clustering methods without 

requiring ground truth labels, making it suitable for unsupervised learning scenarios. However, it can 

be computationally intensive. 

We incorporate the Silhouette score goodness of clustering metric due to its favourable qualities 

[61] and reported performance. The metric computes the pairwise difference between intra-cluster 

(within cluster) and inter-cluster (between clusters) distances [62].  

Validation Approach  

To analyse and validate the performance of the Semantic Search and Semantic Clustering pipelines 

we create a testing dataset by manually partitioning a set of variables, an appropriate  approach 

when ground truth data absent [47]. We developed validation domains building on the Simpson et 

al. [5] Delphi Study which identifies 31 domains related to determinants of improved care in 

multimorbidity. We identified a subset of 12 validation domains relevant to ELSA variable 

descriptions including: finance; housing; engagement in meaningful activities and social 

participation; Access to social care, community-based services and other provision; Use of 

technologies to support individuals at home; Recognition of and support with lifestyle factors; 

Prescribing and medication management; Enhanced support from family and other informal carers; 

Person-centred and holistic care; Supporting self - management of conditions; Support with daily 

living and independent living; and Environmental factors and wider social determinants of health. A 

random sample of 2000 variables from the ELSA dataset were taken, and manually labelled with 12 

validation domains to create a test set for comparison. Manual comparison is performed only using 

the description of variable, and no other external information, allowing for comparison between 

human and automated pipelines performance. 

For the Semantic Search pipeline evaluation, the resulting cosine similarity score for each variable  

are evaluated using the AUC metric [65], calculating the area under the receiver operating 

characteristic (ROC) curve. This ensures performance is measured for a given validation domain and 
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search phrase, irrespective of the chosen similarity threshold, by comparing against the labelled test 

set. 

For Semantic Clustering pipeline evaluation, we firstly use Silhouette score [62]to converge on 

optimal set of clusters and then use the V-measure[66,67] to evaluate clustering performance 

against the test set. Standard pairwise comparison is not possible as the arbitrary number of clusters 

is not equal to the fixed number of 12 validation domains in our test set, requiring an alternative 

approach. Therefore, for a given domain the cluster with maximum V-measure is assumed to match 

that domain. To quantify harmonisation performance across multiple embedding dimensions and 

clustering algorithms, a mean of the maximal v-measures is taken across all domains to enable 

thorough comparison. Boltužić et al [67] utilised the V-measure metric [66], measuring a harmonic 

mean of homogeneity and completeness, which are more desirable aspects of clustering than 

accuracy. As opposed to precision and recall, V-measure is not influenced by incomplete clustering, 

where some elements are not clustered. The measure is independent of the dataset or clustering 

algorithm utilised and it vital to note that it favours more coherent incorrect samples. Similar 

measures such Q2 [70], are dependent of the number of clusters and do not explicitly calculate 

completeness. V-measure [71] is invariant to the number of clusters. Empirical evidence 

demonstrates effective evaluation of highly dimensional TF-IDF vectors [66], as well as 

Transcriptomic Data for Breast and Lung Cancer [72] using V-measure.  

Results 

Semantic Search Evaluation  

Table 1 captures the accuracy of variable selection using AUC for Semantic Search on the test set of 

12 domains, each described by a search phrase, including 2000 variables. 

  AUC 

Domain  

(Simpson et al. Table 5 care need 

determinant number) 

Search Phrase MiniLM MPNet BioLink
BERT 

T5-XXL 

Finance/ financial assistance 
(18) 

Finance, inherit, 
insurance or benefits 

0.828 0.800 0.601 0.873 

Housing/accommodation that 
meets individual's needs (25) 

House, mortgage, or 
property 

0.920 0.883 0.673 0.851 

Able to engage in meaningful 
activities and social 
participation (22) 

Current job or 
Retirement 

0.823 0.889 0.659 0.838 

Access to social care, 
community-based services 
and other provision (7) 

Formal help received 
such as Nurse or Doctor 

0.910 0.853 0.697 0.911 

Use of technologies to 
support individuals at home 
(31) 

Technology devices, 
Aids, or cars 

0.931 0.891 0.633 0.822 
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Recognition of and support 
with lifestyle factors (23) 

Diet, Exercise, Alcohol 
and Smoking 

0.793 0.850 0.685 0.828 

Prescribing and medication 
management (14) 

Medication, Drugs taken 
and tablets 

0.993 0.988 0.606 0.987 

Enhanced support from 
family other informal carers 
(27) 

Informal help received 0.873 0.886 0.703 0.906 

Person-centred and holistic 
care (1) 

Measurements of Blood 
and other bodily 
functions 

0.930 0.928 0.699 0.879 

Supporting self - 
management of conditions 
(12) 

How did you feel or 
emotions 

0.946 0.911 0.698 0.851 

Support with daily living and 
independent living (16) 

Received help with daily 
tasks 

0.933 0.926 0.698 0.946 

Environmental factors and 
wider social determinants of 
health (21) 

Environment outdoors 0.914 0.937 0.698 0.970 

 Mean (SD): 0.899 
(0.056) 

0.895 
(0.046) 

0.671 
(0.036) 

0.888 
(0.053) 

Table 1: Area under the curve metrics across all sentence embedding models tested, when matching a user generated 

search phrase to manually labelled validation domains.  

We observe that the performance of the domain-specific embedding BioLinkBERT is inferior in 

comparison to other generalised embeddings. The remaining general embedding models MiniLM, 

MPNet and T5-XXL have comparative performance, however, MiniLM exhibited the highest AUC 

score (M=0.899 SD=0.056), as well as having smallest model size. Smaller models require less 

memory and computational power and generally load and execute faster. Therefore, MiniLM can be 

assumed the best performant model. Interestingly, SBERT exhibited Named Entity Recognition (NER) 

abilities, linking entities within similar semantic use cases. Tobacco products such as “Paan Masala” 

and “Bidi” where harmonised within the same lifestyle domain. 

Semantic Clustering Evaluation Results 

Table 2 captures the variables grouping accuracy of Semantic Clustering on the test set using the 

three clustering algorithms under assessment. 

Clustering 

Algorithm 

Dimensions Allocated 

Clusters 

Silhouette Mean Max V-

measure (SD) 

K-means (77) 50 76 0.662 0.223 (0.125) 

HAC (0.01) 50 3 0.685 0.079 (0.110) 
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HDBSCAN 

(20,20) 

300 25 0.817 0.237 (0.157) 

Table 2: The highest Maximum V-measure averaged over each validation domain across each clustering algorithm. UMAP 
projections of MiniLM variable description embeddings were clustered using: K-means (centroids = 77), Hierarchal 

Agglomerative Clustering (linkage = 0.01), HDBSCAN (minimum samples = 20 and minimum cluster size = 20).  

For the evaluation of Semantic Clustering, we adopt the best Semantic Search embedding model 

MiniLM due to its optimal performance and low computational requirements. The original 384- 

dimensional embedding is reduced using UMAP into a range of dimensions: 10, 50, 100, 200, 300. 

Silhouette score was used to select optimal clustering, enabling thorough hyper-parameter tuning of 

the algorithms. Table 2 displays the Mean Max V-Measure (MMV) of the optimal clustering using K-

means, HAC or HDBSCAN. We find HDBSCAN to produce superior results allocating 25 clusters with a 

maximum Silhouette score of 0.817 and maximum MMV of 0.237 (SD=0.157), when a 20 minimum 

cluster size of and 20 minimum number of samples is used. Performance is in line with comparable 

study by Boltužić et al [67]. A minor reduction to 300 dimensional embeddings was optimal for this 

task, indicating HDBSCAN's superior performance in high dimensional spaces when compared to 

HAC and K-means. Both K-means and HAC gave optimal clustering with 50 dimensional embeddings, 

indicating difficulty in clustering high-dimensional vector spaces. 

HAC was unable to discriminate clusters when applied after UMAP dimensionality reduction. When 

using the lowest linkage value of 0.01, only a single homogenous cluster was allocated for 200 and 

300 dimensional embeddings. When analysing HAC dendrograms, we observed that neighbouring 

clusters are semantically dis-similar [64]. 

Discussion 

We observe high accuracy of the Semantic Search pipeline, with mean AUC across the 12 domains of 

0.899 (SD=0.056) for the best performing embedding model MiniLM. The Semantic Clustering 

pipeline performance is on par with leading implementations in argumentation mining [67] , with a 

mean maximum V-measure of 0.237 (SD=0.157).  

Considerable time and resource savings are accomplished by employing the automated pipelines, 

both for Semantic Search and Semantic Clustering. The execution times of the longest running 

pipeline, Semantic Clustering, are shown in Error! Reference source not found., with fastest 

configuration being with the HDBSCAN clustering method, only taking 4.85 seconds to encode and 

cluster 2000 variable descriptions. Restricting the pipeline to MiniLM and HDBSCAN algorithms, 

tuning was performed using a Grid Search across 5 UMAP dimensions and 13 different HDBSCAN 

minimum cluster sizes. 65 iterations were processed within 510 seconds. 

Similarly, Semantic Search across all ELSA variables is also performed in seconds. In contrast, manual 

labelling of 2000 variables took approximately 16 hours, costing significant human resources. 

Extrapolating this to 22,402 unique variables, a manual labelling of entire dataset would take 176 

person-hours. In our experiment, the speed of automated variables clustering and assigning to 

clusters (approximately 245 variables per minute) is over 100 times faster than the speed of manual 

variables labelling (approximately 2.1 variables per minute). Using ML technologies can dramatically 

aid data harmonisation for Big Data datasets, catalysing future health data science research.  

Clustering 

Algorithm 

Encoding 

Time (s) 

Clustering 

Time (s) 

Evaluation 

Time (s) 

Total Time 

(s) 
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K-means (77) 3.720 5.286 3.675 12.681 

HAC (0.01) 3.720 0.117 0.160 3.997 

HDBSCAN 

(20,20) 

3.720 1.529 0.824 6.073 

Table 3: Time taken in seconds for the encoding of 2000 variable descriptions using MiniLM and clustered using: K-means 
(centroids = 77), Hierarchal Agglomerative Clustering (linkage = 0.01), HDBSCAN (minimum samples = 20 and minimum 

cluster size = 20). 

Currently it is not possible to directly compare our validation domains to benchmark datasets as they 

do not exist for the study and curation of MLTCs and social care needs. However, we can assess the 

differences in the approaches for applying techniques for datasets incorporating other domains. 

Sui X et al. opt to train classification models [73], necessitating the use of ground truth training sets 

for the target domains. Our approach avoids this requirement by using unsupervised methods. 

Landthaler et al. [74] extends text search for legal documents using a static Word2Vec embeddings 

in conjunction with a t-SNE visualisation. Successful empirical grouping of sentences it shown, but no 

performance evaluation is provided. Boltužić et al [67] performs a small-scale STS task upon textual 

online debate forums, identifying prominent arguments in an unsupervised manner, with HAC and 

simpler Skip-gram methods. This achieves V-measure results in the range of 0.15 to 0.30 with an 

average of 0.233, which is in line with our more sophisticated SBERT embeddings methodology with 

an MMV of 0.237 (SD=0.157) when using HDBSCAN. The study uses a dataset of 3014 sentences, 

similar to our use of 2000 randomly selected ELSA variables (from the over 120,000 ELSA variables).  

Boltužić et al [67] performs a small-scale STS task upon textual online debate forums, identifying 

prominent arguments in an unsupervised manner, with HAC and simpler skip-gram methods. This 

achieves V-measure results in the range of 0.15 to 0.30 with an average of 0.233, which is in line 

with our more sophisticated SBERT embeddings methodology with an MMV of 0.237 (SD=0.157) 

when using HDBSCAN. The study uses a dataset of 3014 sentences, similar to our use of 2000 

randomly selected ELSA variables (from the approximately 120,000 ELSA variables).  

It is important to note that any such model performance is subjective and conditional upon the 

phrase inputted. As the ELSA dataset features minimal specialised medical terminology, generalised 

models such as MiniLM trained on a general English language corpus exhibit increased performance. 

However other specialised datasets with domain specific terminology in variable descriptions, could 

see substantial improvements with domains specific models, such as BioLinkBERT.  

Semantics-aware search and clustering discussed in this manuscript are general and applicable to 

other electronic healthcare data. However, to increase the usability of Semantic Clustering further 

efforts need to be made to increase human interpretability of the output clusters. Visualisation tools 

such as ClusterVision [54] could assist with the interpretation of high-dimensional embedding 

clusters, enabling identification of embedding semantic misidentifications and biases.  

Conclusions 

In recent years observational retrospective clinical studies have emerged as valuable alternatives to 

traditional clinical trials offering cost-effectiveness and efficiency while still generating valid results. 

The availability of cohort and routine databases, such as ELSA, CPRD, and SAIL, has been a significant 

catalyst of this trend by providing access to vast amounts of data, known as big data in the field of 

data science. Leveraging this big data, however, requires substantial efforts in harmonising individual 
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source datasets and curating study data, as the current process relies on manual and labour-

intensive methods. 

In this manuscript we discussed the research and validation of AI technologies, particularly in the 

areas of natural language processing (NLP) and unsupervised ML, to streamline the harmonisation 

and curation of datasets for observational studies using healthcare big data sources. We explored 

the latest advancements in NLP and unsupervised ML techniques needed for the development of 

automated tools for the harmonisation process. 

We proposed two pipelines: Semantic Search for domain-relevant variable identification and 

Semantic Clustering for identifying semantically similar variables. These pipelines combine state -of-

the-art AI algorithms, such as MiniLM pretrained Sentence-BERT model for semantics aware text 

embedding, UMAP for dimensionality reduction and HDBSCAN for clustering. The performance of 

these pipelines was evaluated using the ELSA database. 

Our results demonstrate high accuracy in Semantic Search, achieving an AUC of 0.899, while 

Semantic Clustering exhibited performance comparable to leading implementations in other 

domains, with a V-measure of 0.237 (SD=0.157). Importantly, our automated tools significantly 

reduced the time and resources required for data harmonisation and curation compared to manual 

approaches. 

Our study findings underscore the potential of AI technologies, such as NLP and unsupervised ML, in 

automating the harmonisation and curation of big data for clinical research. By establishing a robust 

technological foundation, we pave the way for the development of automated tools that streamline 

the process, enabling researchers to leverage big data more efficiently and effe ctively in their 

studies. 
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Abbreviations 

AI: Artificial Intelligence 

BERT: Bidirectional Encoder Representations from Transformers 

DBSCAN: density-based spatial clustering of applications with noise 

EHR: Electronic Healthcare Records 

ELSA: English Longitudinal Study of Ageing  

HSE: Health Survey for England 

HAC: Hierarchal Agglomerative Clustering 

HDBSCAN: Hierarchal density-based spatial clustering of applications with noise 

ICU: Intensive Care Units 

ML: Machine Learning 

MAP: Mean Average Precision  

MMV: Mean Max V-Measure 

MLTC: Multiple Long-Term Conditions  

NLP: Natural Language Processing  

PCA: Principal Component Analysis 

STS: Semantic Textual Similarity  

SBERT: Sentence-BERT 

SemDHP: Semantic Data Harmonisation Pipeline 

SNLI: Stanford Natural Language Inference 

t-SNE: T-distributed stochastic neighbour embeddings 

T5: Text-to-Test Transfer Transformer 

UMLS: Unified Medical Language System 

UMAP: Uniform Manifold Approximation and Projection 

USE: Universal Sentence Encoders 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2024. ; https://doi.org/10.1101/2024.07.12.24310136doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.12.24310136
http://creativecommons.org/licenses/by/4.0/

